JP3835832B2 - Preparation of suspensions and emulsions and quality control method - Google Patents

Preparation of suspensions and emulsions and quality control method Download PDF

Info

Publication number
JP3835832B2
JP3835832B2 JP22006694A JP22006694A JP3835832B2 JP 3835832 B2 JP3835832 B2 JP 3835832B2 JP 22006694 A JP22006694 A JP 22006694A JP 22006694 A JP22006694 A JP 22006694A JP 3835832 B2 JP3835832 B2 JP 3835832B2
Authority
JP
Japan
Prior art keywords
emulsions
viscosity
suspension
water
suspensions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22006694A
Other languages
Japanese (ja)
Other versions
JPH0881688A (en
Inventor
潔 龍原
昌純 田浦
次利 小倉
昭夫 開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22006694A priority Critical patent/JP3835832B2/en
Publication of JPH0881688A publication Critical patent/JPH0881688A/en
Application granted granted Critical
Publication of JP3835832B2 publication Critical patent/JP3835832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、Orinoco Bitumen を原料とするオリマルションや、石油精製での残さなどの重質油を水中に高濃度に分散させ、燃料として開発したO/W型のエマルション、石炭を微粉にして水と懸濁した流動性燃料CWM(coal water mixture)、等の状態を適切に保つためにその粘度を推定して、調製および品質管理する方法に関する。
【0002】
【従来の技術】
現在、開発されているオリマルション、エマルション、CWM、等は使用に際しては、懸濁液、エマルション類の状態を適切に保つことが必要である。懸濁粒子の凝集による粗粒分の発生、溶質の沈降などの劣化を起こしたものは、粘度の増加、熱量の減少などにより燃料として不適切であり、剪断速度に対する粘度特性にヒステリシスを生じるなど性状が不安定でハンドリングが困難な場合も生じる。調製時に極端に微粒子を生じると、固形分濃度を上げることが困難になり、燃焼時の熱量が不足し、この場合も燃料として不適切である。
【0003】
これらの状態を監視するために懸濁液、エマルション類の粘度特性を知り、目的の粒度特性を得るためにこれらの粘度を調製することが非常に重要である。従って、直接粘度を測定することなく、簡便な測定により懸濁液、エマルション類の粘度を求め、これらの状態をモニターできる方法の開発が望まれている。
【0004】
従来、懸濁液、エマルション類の状態を監視する方法としては、試料の一部を分取し、粘度、度分布などを直接、測定するしか手段がなく、多くの手間と労力を必要とした。測定の性質上、相当量の試料を分取する必要があり、測定の自動化なども困難であった。
【0005】
粘度特性に関しては、高濃度懸濁液の粘度特性を正しく記述できる粘度式はこれまで存在せず、簡便な方法で粘度の推定が可能な手法は存在しなかった。高濃度で粒度分布を持った懸濁液であるO/Wエマルションをレオロジー的に取り扱う試みは、Eilersのアスファルトエマルションの実験結果を基に数多くの粘度式が提案されている。これらの粘度式の多くは、粒子の最高容積値ΦVCを仮定するもので、重質油濃度40%以下では実験値とよい一致を示すが、それ以上の高濃度ではレオロジー特性を充分に記述できていない。
【0006】
また、従来の技術では、重質油濃度が70〜80重量%という高濃度のエマルション、懸濁液は調製できなかった。従って、そのような領域でのレオロジー特性は調べられていない。
【0007】
そのため、燃料として適した粘度のO/Wエマルション、CWMなどを調製するためには、濃度を変化させて、試行錯誤を繰り返して適した濃度組成を決定するしか方法がなく、多くの工程と労力を必要とした。
【0008】
【発明が解決しようとする課題】
重質油エマルション、CWMなどの利用に際し、懸濁粒子の凝集による粗粒分の発生、可燃成分の沈降などの経時変化による劣化は大きな問題である。凝集による粗粒分の発生は粘度を増大させ、懸濁液、エマルション類の流動性を損なう。凝集沈降による、懸濁液、エマルション類の可燃成分の濃度の減少は、熱量の減少につながり燃料としての特性を著しく損なう。沈殿物の生成により、ボイラーや輸送管などを損傷する可能性もある。従って、粒度分布、粘度特性などの性状を常時監視する必要があるが、これらの物性値をオンラインで計測することは困難であった。
【0009】
燃料としての発熱量を考慮すると、これらの重質油エマルション、CWMなどの可燃成分(重質油、微粉炭など)は高濃度である方が望ましい。一方で、余りに高濃度に調整し、粘度が高くなって、ポンプ輸送などが困難になると実用上の障害となる。粘度特性が固形分濃度から予測可能ならば、流動性の液体として取り扱い得る範囲で、重質油濃度を最大限に調整するための指標として用い得るため工業的に有効である。従って、度分布、粘度特性などの性状を把握し、常時監視する必要があり、直接粘度を測定することなく、電磁波、超音波、光、等を用いて簡単に粘度を推定する方法の開発が望まれていた。
【0010】
【課題を解決するための手段】
本発明は前述の課題を解決するために、ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波、等を用いる手法、即ち、核磁気緩和(NMR)法、誘電緩和法、超音波緩和法、赤外・ラマン・可視の分光などのいずれかの手法で、拘束水量を測定することにより懸濁粒子の表面積を求め、それにより懸濁液、エマルション類の粒度、粘度等の性状を推定し、これらを監視し、調製することを可能とする。固体表面の性質や界面活性剤濃度などが変化しない場合には、拘束水量と懸濁粒子の表面積には相関が有ることは実験結果として得られている。且つ、これらの測定を試料を分取することなく行う方法、または、少量の試料を分取して行う方法として適用する構成とする。
【0011】
即ち、本発明は、(1)ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の懸濁粒子の表面の拘束水量を測定し、拘束水量と懸濁粒子表面積との相関関係に基づいて同懸濁液、エマルション類の懸濁粒子の表面積を求め、その結果を用いて各種組成範囲での同懸濁液、エマルション類の性状を推定し、監視することにより、同性状を調製可能とし、前記懸濁液、エマルション類の測定は試料の一部を分取することなく、試料を保存または搬送する途中で行うことを特徴とする懸濁液、エマルション類の調製及び品質管理方法を提供する。
【0012】
又、(2)ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の水構造の状態を懸濁粒子の体積を含む拘束水の体積分率として測定し、その結果を用いて所定の粘度式より各種組成範囲での同懸濁液、エマルション類の粘度を推定し、監視することにより、同粘度を調製可能とし、前記懸濁液、エマルション類の測定は試料の一部を分取することなく、試料を保存または搬送する途中で行うことを特徴とする懸濁液、エマルション類の調製及び品質管理方法も提供する。
【0013】
又、(3)ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の懸濁粒子の表面の拘束水量を測定し、拘束水量と懸濁粒子表面積との相関関係に基づいて同懸濁液、エマルション類の懸濁粒子の表面積を求め、その結果を用いて各種組成範囲での同懸濁液、エマルション類の性状を推定し、監視することにより、同性状を調製可能とし、前記懸濁液、エマルション類の測定は直接粘度測定が不可能な程度の少量の試料を分取して行うことを特徴とする懸濁液、エマルション類の調製及び品質管理方法も提供する。
【0014】
更に、(4)ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の水構造の状態を懸濁粒子の体積を含む拘束水の体積分率として測定し、その結果を用いて所定の粘度式より各種組成範囲での同懸濁液、エマルション類の粘度を推定し、監視することにより、同粘度を調製可能とし、前記懸濁液、エマルション類の測定は直接粘度測定が不可能な程度の少量の試料を分取して行うことを特徴とする懸濁液、エマルション類の調製及び品質管理方法も提供する。
【0015】
【作用】
本発明は前述の手段により、(1)懸濁液、エマルション類中の懸濁粒子、即ち、油滴粒子周囲の拘束水量は、核磁気緩和(NMR)法、誘電緩和法、超音波緩和法、赤外・ラマン・可視の分光などの手法で、測定することが可能である。この測定された拘束水量から表面積との相関関係より懸濁粒子の表面積を推定し、それにより懸濁液、エマルション類の粒度、等の性状を推定し、これを監視し、調製することを可能とする。固体表面の性質や界面活性剤濃度などが変化しない場合には、拘束水量と懸濁粒子の表面積には相関が有ることは実験結果として得られている。従って、この性状を監視しておけば、使用目的に応じて懸濁液、エマルションの粒度、等の調製が容易に可能となるとともに、この拘束水量の測定を懸濁液、エマルション類の試料の一部を分取することなく、試料を保存又は搬送途中において行うので前述の作用を奏すると共に測定場所に限定されることなく簡単に粘度、等の性状を正確に推定することができる。
【0016】
又、(2)この測定された拘束水量の体積を求め、この拘束水の体積を懸濁粒子の体積に含めることにより、懸濁液中の実効的な懸濁粒子の体積分率である有効体積分率を求めることができる。この有効体積分率を、Brinkmanの粘度式における懸濁粒子の体積分率として使用することにより、同式を用いて懸濁液の粘度を正確に予測することが可能となり、(1)と同様に粘度の監視及びこの監視に基づく調製が容易になされるとともに、この拘束水量の測定を懸濁液、エマルション類の試料の一部を分取することなく、試料を保存又は搬送途中において行うので前述の作用を奏すると共に測定場所に限定されることなく簡単に粘度、等の性状を正確に推定することができる。
【0017】
又、(3)懸濁液、エマルション類中の懸濁粒子、即ち、油滴粒子周囲の拘束水量は、核磁気緩和(NMR)法、誘電緩和法、超音波緩和法、赤外・ラマン・可視の分光などの手法で、測定することが可能である。この測定された拘束水量から表面積との相関関係より懸濁粒子の表面積を推定し、それにより懸濁液、エマルション類の粒度、等の性状を推定し、これを監視し、調製することを可能とする。固体表面の性質や界面活性剤濃度などが変化しない場合には、拘束水量と懸濁粒子の表面積には相関が有ることは実験結果として得られている。従って、この性状を監視しておけば、使用目的に応じて懸濁液、エマルションの粒度、等の調製が容易に可能となるとともに、この拘束水量の測定を少量の試料を分取してうので簡単に粘度、等の性状を正確に推定することができる。
【0018】
更に、(4)この測定された拘束水量の体積を求め、この拘束水の体積を懸濁粒子の体積に含めることにより、懸濁液中の実効的な懸濁粒子の体積分率である有効体積分率を求めることができる。この有効体積分率を、 Brinkman の粘度式における懸濁粒子の体積分率として使用することにより、同式を用いて懸濁液の粘度を正確に予測することが可能となり、(3)と同様に粘度の監視及びこの監視に基づく調製が容易になされるとともに、この拘束水量の測定を少量の試料を分取して行うので簡単に粘度、等の性状を正確に推定することができる。
【0019】
上記(1)〜(4)の作用における拘束水量について更に詳細に説明する。凝集による粗粒分の発生は、懸濁粒子の比表面積の減少に帰結する。その結果、懸濁液、エマルション類の中の、粒子表面の拘束水の量は減少し、粗粒分の沈降を生じた場合、さらに、拘束水量は著しく減少する。反対に、過度の微粒子の生成は、懸濁粒子の比表面積の増大に帰結し、粒子表面に拘束される水の量も増大する。従って、懸濁液、エマルション類の拘束水量には、燃料として用いるための最適範囲が存在し、その拘束水量を上記の方法で測定すれば、その状態を推定することができるものである。
【0020】
又、懸濁液、エマルションの性状について図1により説明する。図1は、エマルション中の粒子の平均粒径と核磁気緩和時間の関係を示す。平均粒径はエマルションの物性を表す最も基本的な物理量の一つであり、応用面でも重要な指標の一つである。ここで核磁気緩和時間というのは、水分子を構成する水素原子の核磁気緩和時間を意味する。磁場中では、原子核のスピンはいくつかのエネルギーの異なる状態に分裂する。平衡状態では、スピンはある状態にいるが、マイクロ波を照射して外部からエネルギーを与えると、よりエネルギーの高い状態に励起される。マイクロ波の照射を止めると、自然に平衡状態に復帰するが、この過程を核磁気緩和といい、そのために要する時間を緩和時間という。
【0021】
核磁気緩和時間は拘束水量と関係づけることができ、拘束水量が多いほど緩和時間は短くなる。この図は、エマルションの物性と拘束水量に密接な関係が有ることを示している。従って、拘束水量を測定することにより、エマルションの性状をモニターすることが可能である。
【0022】
次に、有効体積分率について更に詳細に説明する。Brinkmanの粘度式の懸濁粒子の体積分率を、懸濁粒子の体積に拘束水の体積を加算した有効体積分率で置換することにより、懸濁液のレオロジー特性を、ニュートン流動の範囲では、高濃度側まで非常によく記述することができる。Brinkmanの粘度式は、希薄懸濁液中の懸濁粒子の周りの分散媒の運動を流体力学的に取り扱うことにより得られたEinsteinの粘度式を、数学的に高濃度域に拡張したものであり、これまで提唱されている多くの粘度式の中で物理的根拠が最も確かなものの一つである。しかし、これまでの実験結果では、他の多くの粘度式と同様に、Brinkmanの粘度式も実際の懸濁液の濃度と粘度の関係を、高濃度側では説明し得なかった。
【0023】
この拘束水は、懸濁粒子の周囲にある粒子と強く相互作用しており、粒子に束縛されて粒子とともに運動するため、実質的に懸濁粒子の一部と見なし得、流動性には寄与しない。従って、Brinkmanの粘度式中の懸濁粒子の体積分率を評価する際には、この拘束水の体積を含めて、有効体積分率として取り扱うことが妥当である。
【0024】
【実施例】
以下に本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。なお、本発明で対象とする超重質油は下記のようなものである。
【0025】
(1)石油系アスファルト類及びその油の混合物。
【0026】
(2)石油系アスファルト各処理物、その中間製品、残さ及びそれらの油混合物。
【0027】
(3)高温で流動しない高流動点油あるいは原油。
【0028】
(4)石油系タールピッチ及びその油混合物。
【0029】
(5)ビチューメン類(オリノコタール、アサバスカビチューメン)。
【0030】
また、石炭は褐炭から無煙炭までの微粉砕した石炭を高濃度に水スラリー化したものの他、石炭と類似の石油コークスやカーボンブラック等の水スラリーも同様に取り扱える。さらにセメント、ゼオライト、シリカ、アルミナや粘土化合物(スメクタイト、カオリンなど)、金属微粒子、金属酸化物微粒子などの各種粉体の水懸濁液にも適用可能であり、懸濁粒子は一種類に限らない。
【0031】
またCOM(coal oil mixture)など、他の媒体を用いた懸濁液にも有効である。
【0032】
まず、本発明の懸濁液、エマルション類の調整および品質管理方法に係る第1実施例について説明する。800mlのSUS容器に所定量の超重質油を採取し、加熱浴中に浸し60℃に加温する。所定の濃度になるように、所定量の界面活性剤(ポリオキシエチレンノニルフェニルエーテル)を混合した水を加えた。一定温度(80℃)に達した後、パドル型攪拌機で300rpm で5分間攪拌した後、TKホモミクサー(特殊機化工業(株)製)で8000rpm で2分間高せん断攪拌を行い乳化させることでO/W型エマルション燃料を調整した。調整したエマルション燃料は25℃で保温し、粘度、度分布などの植物値を測定すると共に、水の運動状態、構造に関する測定を実施した。
【0033】
エマルション燃料の一般的な性状値として、重質油濃度は乾燥法、粘度はハーケ(株)の二重円筒型ビスメトロン粘度計、粒度分布はシーラス(株)の粒度分布計HR850Bで測定した。また、粗粒量は100メッシュのふるいの通過量を測定した。
【0034】
エマルション燃料中の水の運動状態を測定する方法として、日本電子(株)の核磁気共鳴装置を用いCPMG(Carr−Purcell −Meiboom −Gill)法によって横緩和時間の測定を実施した。観測された緩和時間Tobs から次式を用いて重質油表面の拘束水の量を求めた。
【0035】
【数1】

Figure 0003835832
【0036】
ここで、Tf 、Tb は自由水と拘束水の緩和時間、Pf 、Pb は自由水と拘束水のモル分率である。同式は緩和時間の異なる2成分が試料中に存在し、かつ、それらの交換が充分速い場合に、観測される緩和時間と成分の分率の関係を表す式として成立することが知られている。ここで、自由水の緩和時間Tf はイオン交換水を測定した値3.6sを用いた。拘束水の緩和時間は観測される緩和時間を重質油の高濃度側に外挿して推定した。
【0037】
f 、Pb は水全体のうち、自由水と拘束水の占める割合であり、Pf +Pb =1の関係が成り立つ。エマルションの緩和時間Tobs を測定すると、Tf 、Tb が既知ならば、上式と上記の関係式から、Pf 、Pb が得られる。
【0038】
この結果、(拘束水量)={1−(体積分率)}×Pb ;の関係より懸濁粒子の体積分率(懸濁粒子の体積/懸濁液全体の体積)が分かっていれば拘束水量が求まる。
【0039】
拘束水を含めた重質油の体積分率と相対粘度の関係は、Brinkmanの粘度式と非常によい一致を示した。結果を図2に示す。
【0040】
図2はこの第1実施例におけるO/Wエマルションの相対粘度と体積分率の関係を示したもので、符号3で示す図中の白丸は、拘束水量を考慮せずアスファルトのみの体積から求めた体積分率に対して相対粘度を表示したものである。同じく3で示す黒丸は、核磁気緩和測定から求めた油分+拘束水として拘束水量も含めて求めた有効体積分率に対して相対粘度を表したものである。実線1は次に示すBrinkmanの粘度式から予測される粘度曲線だが、前者の3とは一致しないが後者の2とは、87%以上の極めて高濃度の領域を除けば非常によい一致が見られる。この高濃度域での、粘度の理論式からのずれは、懸濁アスファルト粒子間の相互作用のためと考えられ、その結果を補正すればこの領域での粘度も体積分率から予測可能である。
【0041】
【数2】
Figure 0003835832
【0042】
次に、本発明に係る第2実施例について説明する。800mlのSUS容器に所定量の界面活性剤を混合した水を採取し、パドル型攪拌機で低速で攪拌しながら、所定量のカーボンブラックを、かたまらないように少量づつ添加した。さらに、パドル型攪拌機で200rpm で20分間攪拌した後、TKホモミクサーで4000rpm で10分間高せん断攪拌を行いカーボンブラック水懸濁液を調製した。カーボンブラックは三菱化成(株)のMA−100、#5を、界面活性剤はナフタレンスルフォン酸ホルマリン縮合物(界面活性材1)、ポリオレフィンスルフォン酸(界面活性材2)を使用した。
【0043】
調製した懸濁液は25℃で、粘度、粒度分布などの物性値を測定すると共に、各種の水の運動状態、構造に関する測定を実施した。それらの測定から拘束水量を求めて、カーボンブラックの有効体積分率を求めBrinkmanの粘度式を用いると粘度特性をよく記述できた。
【0044】
懸濁液の固形分濃度は乾燥法、粘度はハーケ(株)の二重円筒型ビスメトロン粘度計で測定した。
【0045】
(1)核磁気共鳴装置を用いる方法;
核磁気共鳴装置を用いて得られた懸濁液試料の緩和時間を測定し、実施例1と同様の手続きを用いて拘束水量を求めた。
【0046】
(2)誘電的な方法;
カーボンブラック水懸濁液の誘電特性の測定結果の一例を図3に示す。図の横軸は周波数、縦軸は誘電率の虚部である。100kHz付近にピークを持つ信号は拘束水によるものと考えられ、信号強度は拘束水量に比例すると考えられるので、これより拘束水量を推定した。またピークの中心周波数は水分子の運動と関係するので、その変化からも拘束水量の変化を追跡できる。この方法ではDCから300GHzの範囲で誘電緩和の測定を行い得ることを確認した。
【0047】
(3)赤外吸収法・ラマン散乱法;
水に赤外光を照射しても、水分子の振動や回転によって分子内の双極子モーメントが変化する際に吸収が起こり、その吸収波長が水の構造や結合の状態で変化することもよく知られた事実である。その事実に基づき、波長6.25μmの赤外光を用いた吸収法による水分子の運動を測定した。この水分子の運動は分子内平均周期(τvib )として求めることができたが、これを純水で得られている経験式τc =τvib /0.0005208で相関時間に換算した。この相関時間から、拘束水量を推定した。この赤外光を用いる吸収方式では、原理的に見ても波長0.8〜100μmの利用が可能である。
【0048】
水に紫外、可視光を照射した際に、水分子の振動・回転に伴って水分子の分極率の変化に応じて散乱される光に変化が生じることも知られている。この事実に基づいて波長514nmの可視レーザーを懸濁液に照射して、散乱光を観察し分子内振動の平均周期(τvib )を求めた。先の経験式を使って相関時間を推定し、拘束水量を求めた。この方法もその原理から波長0.1〜0.8μmの紫外、可視光の利用が可能である。
【0049】
(4)超音波吸収法;
水に超音波を照射したときに超音波のエネルギーが水分子の並進運動エネルギーとして伝えられ、それが振動運動エネルギーへと転化していく過程を観測すれば水分子の運動を測定することができる。これに対しては周波数6.3MHzの超音波を懸濁液に照射してその吸収、反射の特性を測定することで構造緩和時間(τstruct)を測定した。純水で得られている経験式τc =τstruct/2.86を使って相関時間に換算し、拘束水量を求めた。原理的にこの方法は数10kHzから数MHzの範囲の超音波を用いることができる。
【0050】
以上(1)から(4)で得られた各方法による懸濁液中の拘束水量は相互によく一致しており、(1)から(4)の方法はいずれも使用できることが確認された。
【0051】
カーボンブラック水懸濁液の相対粘度と有効体積分率の関係を図4に示す。
【0052】
次に、本発明に係る第3実施例について説明する。500mlのポリ瓶で、300mlのイオン交換水または界面活性剤水溶液中に、所定の各濃度比になるようにNa−モンモリロナイト(クニミネ工業製、クニピアF)を添加し、軽く攪拌して均一にする。SUSピーカーに中身を移した後で、TKホモミクサーで4000rpm で5分間、予備的な攪拌を行い、その後、7000rpm で20分間高せん断攪拌を行い、均質な懸濁液を調製する。界面活性剤はナフタレンスルフォン酸ホルマリン縮合物(界面活性材1)、ポリオレフィンスルフォン酸(界面活性材2)を使用した。調製した試料は25℃で、各種の測定を行った。
【0053】
固形分濃度は乾燥法、粘度はハーケ(株)の二重円筒型ビスメトロン粘度計で測定した。核磁気緩和法を用いて評価した拘束水量を含めて固形分の有効体積分率を求め、Brinkmanの粘度式を用いると、粘度特性をよく記述できた。モンモリロナイト水懸濁液の相対粘度と有効体積分率の関係を図5に示す。
【0054】
但し、この場合、同式中の指数kは、Brinkmanが導出したもともとの値2.5よりも1桁程度大きな値を取る必要がある。この数値は懸濁粒子の形状を反映していることが経験的に分かっている。
【0055】
【発明の効果】
以上、具体的に説明したように、本発明によれば、ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の懸濁液の表面の拘束水量を測定し、懸濁粒子の表面積を求め、その結果より懸濁液、エマルションの性状を推定し、同性状の監視、調製を可能とする方法とし、あるいは、懸濁液、エマルション類中の水の構造の状態を測定し、その結果より粘度を推定して懸濁液の粘度を監視し、調製可能とし且つ、これらの測定を試料の分取をすることなしに、または、少量の試料を分取して行う方提供したので次のような効果を奏するものである。
【0056】
(1)拘束水量の測定を懸濁液、エマルション類の試料の一部を分取することなく、試料を保存又は搬送途中において行うので測定場所に限定されることなく簡単に粘度、等の性状を正確に推定することができ、あるいは、拘束水量の測定を少量の試料を分取して行うので簡単に粘度、等の性状を正確に推定することができるため、懸濁液、エマルション類の状態を簡単に計測し、使用目的への適合性などを容易に調べることが可能になる。
【0057】
(2)また、目的とする粘度特性を有する懸濁液、エマルション類などを容易に調製できる。保存、輸送中の懸濁液の粘度を簡便に推定することができる。
【0058】
(3)即ち、各種の懸濁液、エマルション類の粘度を固形分と水分の分率のみから予測し、目的の粘度特性を得るように容易に調製することを可能とし、エマルション燃料の使用の利便性を増すものである。また、調製後、使用するまでの間の保存期間中の粘度の変化を簡便にモニターする手法としても有効である。すなわち、直接粘度を測定することなく、試料中に電磁波や超音波などを利用する測定プローブを導入することにより粘度の推定が可能となる。
【図面の簡単な説明】
【図1】本発明の懸濁液、エマルション類の調製および品質管理方法に係るO/Wエマルションの平均粒径と核磁気緩和時間との関係を示す図である。
【図2】本発明の第1実施例に係るO/Wエマルションの相対粘度と体積分率の関係を示す図である。
【図3】本発明の第2実施例に係るカーボンブラック水懸濁液の誘電特性を示す図である。
【図4】本発明の第2実施例に係るカーボンブラック水懸濁液の相対粘度と有効体積分率の関係を示す図である。
【図5】本発明の第3実施例に係るモンモリロナイト水懸濁液の相対粘度と有効体積分率の関係を示す図である。
【符号の説明】
1 Brinkmanの粘度式
2 油分+拘束水
3 油分のみ[0001]
[Industrial application fields]
The present invention is an O / W emulsion developed as a fuel in which heavy oils such as residues obtained from Orinoco Bitumen and residues from petroleum refining are dispersed in water at a high concentration, and coal is finely divided into water. In addition, the present invention relates to a method for estimating and preparing the viscosity and controlling the quality of the liquid fuel CWM (coal water mixture) suspended and the like.
[0002]
[Prior art]
Currently used orimulsions, emulsions, CWMs, and the like are required to maintain the state of suspensions and emulsions properly when used. Coarse particles caused by agglomeration of suspended particles and deterioration such as sedimentation of solutes are inappropriate as fuel due to increase in viscosity, decrease in heat, etc., and cause hysteresis in viscosity characteristics with respect to shear rate, etc. There are cases where the properties are unstable and handling is difficult. If extremely fine particles are produced at the time of preparation, it becomes difficult to increase the solid content concentration, and the amount of heat at the time of combustion is insufficient, which is also inappropriate as a fuel.
[0003]
In order to monitor these conditions, it is very important to know the viscosity characteristics of suspensions and emulsions and to prepare these viscosities in order to obtain the desired particle size characteristics. Therefore, it is desired to develop a method capable of determining the viscosity of suspensions and emulsions by simple measurement without directly measuring the viscosity and monitoring these states.
[0004]
Conventionally, a suspension, a method of monitoring the status of the emulsions is was collected a portion of the sample amount, viscosity, and direct particle size distribution, there is no means only measures, it requires a lot of time and labor did. Due to the nature of the measurement, it was necessary to take a considerable amount of sample, and it was difficult to automate the measurement.
[0005]
Regarding the viscosity characteristics, there has never been a viscosity formula that can correctly describe the viscosity characteristics of a high-concentration suspension, and there has been no technique that can estimate the viscosity by a simple method. Attempts to rheologically handle O / W emulsions, which are suspensions with a high concentration and a particle size distribution, have been proposed with a number of viscosity formulas based on the experimental results of Eilers asphalt emulsions. Many of these viscosity formulas assume the maximum volume value Φ VC of the particles and show good agreement with experimental values at heavy oil concentrations of 40% or less, but sufficiently describe rheological properties at higher concentrations. Not done.
[0006]
In addition, according to the conventional technique, a high-concentration emulsion or suspension having a heavy oil concentration of 70 to 80% by weight could not be prepared. Therefore, rheological properties in such areas have not been investigated.
[0007]
Therefore, in order to prepare an O / W emulsion, CWM, etc. having a viscosity suitable as a fuel, there is only a method for determining a suitable concentration composition by changing the concentration and repeating trial and error. Needed.
[0008]
[Problems to be solved by the invention]
When using heavy oil emulsions, CWM, etc., deterioration due to changes over time such as generation of coarse particles due to aggregation of suspended particles and sedimentation of combustible components is a serious problem. Generation of coarse particles due to aggregation increases the viscosity and impairs the fluidity of suspensions and emulsions. A decrease in the concentration of combustible components in suspensions and emulsions due to coagulation sedimentation leads to a decrease in the amount of heat, which significantly impairs the properties as a fuel. Precipitation may damage boilers and transport pipes. Accordingly, it is necessary to constantly monitor properties such as particle size distribution and viscosity characteristics, but it has been difficult to measure these physical property values online.
[0009]
Considering the calorific value as a fuel, it is desirable that these heavy oil emulsions and flammable components such as CWM (heavy oil, pulverized coal, etc.) have a high concentration. On the other hand, if the concentration is adjusted too high, the viscosity becomes high, and pumping becomes difficult, it becomes a practical obstacle. If the viscosity characteristic can be predicted from the solid content concentration, it is industrially effective because it can be used as an index for adjusting the heavy oil concentration to the maximum extent that it can be handled as a fluid liquid. Thus, particle size distribution, to grasp the characteristics such as viscosity properties, must be constantly monitored, without measuring directly viscosity, electromagnetic waves, the development of ultrasound, a method of estimating light, easily viscosity with like Was desired.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention uses a technique using radio waves, electromagnetic waves including microwaves, light in the infrared, visible, ultraviolet region, and ultrasonic waves, ie, nuclear magnetic relaxation (NMR) method, dielectric The surface area of the suspended particles is determined by measuring the amount of restrained water by any of the relaxation method, ultrasonic relaxation method, infrared, Raman, and visible spectroscopy, thereby determining the particle size of the suspension and emulsions. Properties such as viscosity can be estimated, and these can be monitored and prepared. It has been experimentally obtained that there is a correlation between the amount of restrained water and the surface area of suspended particles when the properties of the solid surface and the surfactant concentration do not change. And it is set as the structure applied as the method of performing these measurements, without fractionating a sample, or the method of fractionating a small sample.
[0011]
That is, the present invention is (1) suspended in suspensions and emulsions by a measurement method using any one of radio waves, electromagnetic waves including microwaves, infrared light, visible light, ultraviolet light, and ultrasonic waves. Measure the amount of restrained water on the surface of the turbid particles, determine the surface area of the suspended particles of the same suspension and emulsion based on the correlation between the amount of restrained water and the surface area of the suspended particles, and use the results in various composition ranges. It is possible to prepare the same properties by estimating and monitoring the properties of the suspensions and emulsions, and the suspensions and emulsions can be measured without separating a part of the sample. Provided is a suspension and emulsion preparation and quality control method characterized by being carried out during storage or transportation .
[0012]
In addition, (2) the state of the water structure in suspensions and emulsions can be determined by measurement using any of radio waves, electromagnetic waves including microwaves, infrared, visible, ultraviolet light, and ultrasonic waves. By measuring the volume fraction of restrained water including the volume of suspended particles, and using the results to estimate and monitor the viscosity of the same suspension and emulsions in various composition ranges from the prescribed viscosity equation, It is possible to prepare the same viscosity, and the measurement of the suspension and emulsion is carried out in the middle of storing or transporting the sample without separating a part of the sample . Preparation and quality control methods are also provided.
[0013]
In addition, (3) the surface of suspended particles in suspensions and emulsions by measurement using any one of radio waves, electromagnetic waves including microwaves, light in the infrared, visible, ultraviolet region, and ultrasonic waves. The surface area of suspended particles of the same suspension and emulsions was determined based on the correlation between the amount of restrained water and the surface area of suspended particles, and the results were used to determine the same suspension in various composition ranges. By estimating and monitoring the properties of liquids and emulsions, the same properties can be prepared. The suspensions and emulsions are measured by collecting a small amount of sample that cannot be directly measured for viscosity. Also provided are suspension and emulsion preparations and quality control methods.
[0014]
Furthermore, (4) the state of the water structure in suspensions and emulsions is measured by using a measurement method using any one of radio waves, electromagnetic waves including microwaves, light in the infrared, visible, ultraviolet region, and ultrasonic waves. By measuring the volume fraction of restrained water including the volume of suspended particles, and using the results to estimate and monitor the viscosity of the same suspension and emulsions in various composition ranges from the prescribed viscosity equation, Preparation and quality of suspensions and emulsions characterized in that the same viscosity can be prepared , and the measurement of the suspensions and emulsions is carried out by collecting a small amount of sample so that direct viscosity measurement is not possible. A management method is also provided.
[0015]
[Action]
According to the present invention, (1) suspended particles in suspensions and emulsions, that is, the amount of restrained water around oil droplet particles is determined by nuclear magnetic relaxation (NMR) method, dielectric relaxation method, ultrasonic relaxation method. It can be measured by techniques such as infrared, Raman, and visible spectroscopy. It is possible to estimate the surface area of suspended particles from the measured amount of restrained water based on the correlation with the surface area, thereby estimating the properties of suspensions, emulsion particle sizes, etc., and monitoring and preparing them. And It has been experimentally obtained that there is a correlation between the amount of restrained water and the surface area of suspended particles when the properties of the solid surface and the surfactant concentration do not change. Therefore, if this property is monitored, the suspension, emulsion particle size, etc. can be easily prepared according to the purpose of use . Since the sample is stored or transported in the middle without separating a part, the above-described effects can be obtained, and properties such as viscosity can be easily estimated accurately without being limited to the measurement location.
[0016]
In addition, (2) the effective volume fraction of the suspended particles in the suspension is obtained by obtaining the volume of the measured restrained water volume and including the volume of the restrained water in the volume of the suspended particles. Volume fraction can be obtained. By using this effective volume fraction as the volume fraction of suspended particles in the Brinkman viscosity formula, it becomes possible to accurately predict the viscosity of the suspension using the formula, as in (1). Viscosity monitoring and preparation based on this monitoring are facilitated, and the amount of restrained water is measured in the middle of storage or transportation without separating a part of the suspension or emulsion sample. While exhibiting the above-mentioned action, properties such as viscosity can be easily estimated accurately without being limited to the measurement location.
[0017]
(3) Suspension particles, suspended particles in emulsions, that is, the amount of restrained water around the oil droplet particles is determined by nuclear magnetic relaxation (NMR) method, dielectric relaxation method, ultrasonic relaxation method, infrared, Raman, It can be measured by a technique such as visible spectroscopy. It is possible to estimate the surface area of suspended particles from the measured amount of restrained water based on the correlation with the surface area, thereby estimating the properties of suspensions, emulsion particle sizes, etc., and monitoring and preparing them. And It has been experimentally obtained that there is a correlation between the amount of restrained water and the surface area of suspended particles when the properties of the solid surface and the surfactant concentration do not change. Thus, if monitor this property, suspension depending on the intended use, the emulsion particle size, together is readily prepared equal, the measurement of the restraining water a small amount of sample was fractionated line Thus , properties such as viscosity can be accurately estimated easily.
[0018]
Further, (4) determine the volume of the measured constrained water this, by including the volume of the constraining water to a volume of suspended particles, is the volume fraction of the effective suspended particles in the suspension The effective volume fraction can be obtained. By using this effective volume fraction as the volume fraction of suspended particles in the Brinkman viscosity formula, it becomes possible to accurately predict the viscosity of the suspension using the formula, as in (3) in conjunction with the monitoring and preparation based on this monitoring the viscosity is facilitated, viscosity row Unode easily by preparative small sample amount measured this constraint water, the property etc. can be accurately estimated.
[0019]
The restraint water amount in the operations (1) to (4) will be described in more detail. The generation of coarse particles due to aggregation results in a decrease in the specific surface area of the suspended particles. As a result, the amount of water restrained on the surface of particles in suspensions and emulsions is reduced, and when sedimentation of coarse particles occurs, the amount of water restrained further decreases. On the contrary, the generation of excessive fine particles results in an increase in the specific surface area of the suspended particles, and the amount of water confined on the particle surface also increases. Accordingly, there is an optimum range for use as a fuel in the amount of restraint water of suspensions and emulsions, and the state can be estimated by measuring the amount of restraint water by the above method.
[0020]
The properties of the suspension and emulsion will be described with reference to FIG. FIG. 1 shows the relationship between the average particle size of the particles in the emulsion and the nuclear magnetic relaxation time. The average particle size is one of the most basic physical quantities representing the physical properties of an emulsion, and is also an important indicator in terms of application. Here, the nuclear magnetic relaxation time means the nuclear magnetic relaxation time of hydrogen atoms constituting water molecules. In a magnetic field, nuclear spins split into several different states of energy. In the equilibrium state, the spin is in a certain state, but when energy is applied from outside by irradiating the microwave, it is excited to a higher energy state. When microwave irradiation is stopped, it automatically returns to an equilibrium state. This process is called nuclear magnetic relaxation, and the time required for this is called relaxation time.
[0021]
Nuclear magnetic relaxation time can be related to the amount of restraint water, and the greater the amount of restraint water, the shorter the relaxation time. This figure shows that there is a close relationship between the physical properties of the emulsion and the amount of bound water. Therefore, it is possible to monitor the properties of the emulsion by measuring the amount of water restrained.
[0022]
Next, the effective volume fraction will be described in more detail. By substituting the volume fraction of suspended particles in the Brinkman viscosity formula with the volume of suspended particles plus the volume of constrained water, the rheological properties of the suspension are changed in the Newtonian flow range. Can be described very well up to the high concentration side. Brinkman's viscosity equation is a mathematical extension of Einstein's viscosity equation obtained by hydrodynamically handling the motion of a dispersion medium around suspended particles in a dilute suspension to a high concentration range. Yes, the physical basis is one of the most certain of the many viscosity formulas proposed so far. However, in the experimental results so far, like many other viscosity equations, the Brinkman viscosity equation cannot explain the relationship between the actual suspension concentration and viscosity on the high concentration side.
[0023]
This constrained water interacts strongly with the particles around the suspended particles and is constrained by the particles and moves with the particles, so it can be regarded as part of the suspended particles and contributes to fluidity do not do. Therefore, when evaluating the volume fraction of suspended particles in the Brinkman viscosity equation, it is appropriate to handle the volume fraction of the confined water as an effective volume fraction.
[0024]
【Example】
Examples of the present invention are shown below, but the present invention is not limited to these Examples. The super heavy oil targeted in the present invention is as follows.
[0025]
(1) Petroleum-based asphalts and their oil mixtures.
[0026]
(2) Petroleum-based asphalt processed products, intermediate products, residues and oil mixtures thereof.
[0027]
(3) High pour point oil or crude oil that does not flow at high temperatures.
[0028]
(4) Petroleum tar pitch and its oil mixture.
[0029]
(5) Bitumens (Olinocotar, Athabasca bitumen).
[0030]
In addition, coal is obtained by pulverizing coal from lignite to anthracite into a high-concentration water slurry, as well as water slurry such as petroleum coke and carbon black similar to coal. It can also be applied to water suspensions of various powders such as cement, zeolite, silica, alumina, clay compounds (such as smectite, kaolin, etc.), metal fine particles, metal oxide fine particles, etc. Absent.
[0031]
It is also effective for suspensions using other media such as COM (coal oil mixture).
[0032]
First, a description will be given of a first embodiment according to the suspension and emulsion preparation and quality control method of the present invention. A predetermined amount of superheavy oil is collected in an 800 ml SUS container, immersed in a heating bath and heated to 60 ° C. Water mixed with a predetermined amount of a surfactant (polyoxyethylene nonylphenyl ether) was added so as to obtain a predetermined concentration. After reaching a certain temperature (80 ° C.), the mixture is stirred for 5 minutes at 300 rpm with a paddle type stirrer, and then emulsified by high shear stirring for 2 minutes at 8000 rpm with a TK homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.). / W emulsion fuel was adjusted. Adjusted emulsion fuel is kept at 25 ° C., the viscosity, the measured plant values, such as particle size distribution, water motion state, the measurement about the structure was carried out.
[0033]
As general properties of the emulsion fuel, the heavy oil concentration was measured with a drying method, the viscosity was measured with a double-cylinder bismetholone viscometer manufactured by Harke, and the particle size distribution was measured with a particle size distribution meter HR850B manufactured by Cirrus. Moreover, the coarse particle quantity measured the passing quantity of the sieve of 100 mesh.
[0034]
As a method for measuring the motion state of water in the emulsion fuel, transverse relaxation time was measured by a CPMG (Carr-Purcell-Meiboom-Gill) method using a nuclear magnetic resonance apparatus manufactured by JEOL. The amount of restraint water on the heavy oil surface was determined from the observed relaxation time T obs using the following equation.
[0035]
[Expression 1]
Figure 0003835832
[0036]
Here, T f and T b are relaxation times of free water and restraint water, and P f and P b are mole fractions of free water and restraint water. This equation is known to hold as a formula representing the relationship between the observed relaxation time and the fraction of components when two components with different relaxation times exist in the sample and their exchange is sufficiently fast. Yes. Here, the value 3.6 s obtained by measuring ion-exchanged water was used as the free water relaxation time Tf . The relaxation time of restraint water was estimated by extrapolating the observed relaxation time to the heavy oil high concentration side.
[0037]
P f and P b are the proportions of free water and restrained water in the total water, and the relationship P f + P b = 1 holds. When the relaxation time T obs of the emulsion is measured, if T f and T b are known, P f and P b can be obtained from the above equation and the above relational expression.
[0038]
As a result, if the volume fraction of suspended particles (volume of suspended particles / volume of the entire suspension) is known from the relationship of (restraint water amount) = {1− (volume fraction)} × P b ; The amount of restraint water is obtained.
[0039]
The relationship between the volume fraction of heavy oil including restrained water and the relative viscosity was in good agreement with Brinkman's viscosity equation. The results are shown in FIG.
[0040]
Figure 2 shows the relationship between relative viscosity and volume fraction of the O / W emulsion in the first embodiment, the white circle in the drawing indicated by the reference numeral 3, without considering the constraint water, from the volume of the asphalt only The relative viscosity is displayed with respect to the obtained volume fraction. Similarly, a black circle indicated by 3 represents the relative viscosity with respect to the effective volume fraction obtained by including the amount of restrained water as the oil content + restrained water obtained from the nuclear magnetic relaxation measurement. The solid line 1 is the viscosity curve predicted from the following Brinkman viscosity formula, but it does not agree with the former 3, but the latter 2 shows a very good agreement except for an extremely high concentration area of 87% or more. It is done. The deviation from the theoretical formula of viscosity in this high concentration range is thought to be due to the interaction between suspended asphalt particles, and if this result is corrected, the viscosity in this range can also be predicted from the volume fraction. .
[0041]
[Expression 2]
Figure 0003835832
[0042]
Next, a second embodiment according to the present invention will be described. Water containing a predetermined amount of surfactant mixed in an 800 ml SUS container was collected, and a predetermined amount of carbon black was added little by little while stirring at low speed with a paddle type stirrer. Furthermore, after stirring for 20 minutes at 200 rpm with a paddle type stirrer, high shear stirring was performed for 10 minutes at 4000 rpm with a TK homomixer to prepare a carbon black water suspension. The carbon black used was MA-100, # 5 manufactured by Mitsubishi Kasei Co., Ltd., and the surfactant used was naphthalene sulfonic acid formalin condensate (surfactant 1) and polyolefin sulfonic acid (surfactant 2).
[0043]
The prepared suspension was measured at 25 ° C. for physical properties such as viscosity and particle size distribution, and various water motion states and structures were measured. The amount of restraint water was calculated from these measurements, the effective volume fraction of carbon black was determined, and the viscosity characteristics could be well described by using the Brinkman viscosity equation.
[0044]
The solid content concentration of the suspension was measured by a drying method, and the viscosity was measured by a double-cylinder bismetholone viscometer manufactured by Haake Co., Ltd.
[0045]
(1) A method using a nuclear magnetic resonance apparatus;
The relaxation time of the suspension sample obtained using a nuclear magnetic resonance apparatus was measured, and the amount of restrained water was determined using the same procedure as in Example 1.
[0046]
(2) dielectric method;
An example of the measurement result of the dielectric properties of the carbon black water suspension is shown in FIG. In the figure, the horizontal axis represents the frequency, and the vertical axis represents the imaginary part of the dielectric constant. A signal having a peak in the vicinity of 100 kHz is considered to be due to restricted water, and the signal intensity is considered to be proportional to the amount of restricted water. In addition, since the peak center frequency is related to the movement of water molecules, the change in the amount of restraint water can be traced from the change. It was confirmed that this method can measure dielectric relaxation in the range of DC to 300 GHz.
[0047]
(3) Infrared absorption method / Raman scattering method;
Even when water is irradiated with infrared light, absorption occurs when the dipole moment in the molecule changes due to vibration and rotation of the water molecule, and the absorption wavelength often changes depending on the structure and bonding state of the water. It is a known fact. Based on this fact, the movement of water molecules was measured by an absorption method using infrared light having a wavelength of 6.25 μm. This motion of water molecules could be obtained as an intramolecular average period (τ vib ), which was converted into a correlation time by the empirical formula τ c = τ vib /0.0005208 obtained with pure water. From this correlation time, the amount of restraint water was estimated. In this absorption method using infrared light, the wavelength of 0.8 to 100 μm can be used even in principle.
[0048]
It is also known that when water is irradiated with ultraviolet or visible light, the scattered light changes according to the change in the polarizability of the water molecules as the water molecules vibrate and rotate. Based on this fact, the suspension was irradiated with a visible laser having a wavelength of 514 nm, and the scattered light was observed to determine the average period (τ vib ) of intramolecular vibration. The correlation time was estimated using the previous empirical formula, and the amount of restraint water was obtained. This method can also use ultraviolet and visible light having a wavelength of 0.1 to 0.8 μm from the principle.
[0049]
(4) Ultrasonic absorption method;
When water is irradiated with ultrasonic waves, the energy of ultrasonic waves is transmitted as the translational kinetic energy of water molecules, and the movement of water molecules can be measured by observing the process of conversion into vibrational kinetic energy. . In response to this, the structure relaxation time (τ struct ) was measured by irradiating the suspension with ultrasonic waves having a frequency of 6.3 MHz and measuring the absorption and reflection characteristics. Using the empirical formula τ c = τ struct /2.86 obtained with pure water, it was converted into correlation time, and the amount of restrained water was determined. In principle, this method can use ultrasonic waves in the range of several tens of kHz to several MHz.
[0050]
From the above (1) to (4), the amount of restrained water in the suspension obtained by each method was in good agreement with each other, and it was confirmed that any of the methods (1) to (4) can be used.
[0051]
FIG. 4 shows the relationship between the relative viscosity of the carbon black water suspension and the effective volume fraction.
[0052]
Next, a third embodiment according to the present invention will be described. In a 500 ml plastic bottle, Na-montmorillonite (Kunimine Industries, Kunipia F) is added to 300 ml of ion-exchanged water or surfactant aqueous solution so as to have a predetermined concentration ratio, and lightly stirred to make it uniform. . After transferring the contents to a SUS speaker, preliminary stirring is performed with a TK homomixer at 4000 rpm for 5 minutes, and then high shear stirring is performed at 7000 rpm for 20 minutes to prepare a homogeneous suspension. As the surfactant, naphthalene sulfonic acid formalin condensate (surfactant 1) and polyolefin sulfonic acid (surfactant 2) were used. The prepared sample was subjected to various measurements at 25 ° C.
[0053]
The solid content concentration was measured by a drying method, and the viscosity was measured by a double-cylinder bismetholone viscometer manufactured by HAAKE. Using the Brinkman viscosity equation, the viscosity characteristics could be well described by obtaining the effective volume fraction of solids, including the amount of restricted water evaluated using the nuclear magnetic relaxation method. FIG. 5 shows the relationship between the relative viscosity and the effective volume fraction of the montmorillonite aqueous suspension.
[0054]
However, in this case, the index k in the equation needs to be about one digit larger than the original value 2.5 derived by Brinkman. It has been empirically found that this number reflects the shape of suspended particles.
[0055]
【The invention's effect】
As specifically described above, according to the present invention, a suspension is obtained by a measurement method using any one of radio waves, electromagnetic waves including microwaves, light in the infrared, visible, ultraviolet region, and ultrasonic waves. Measure the amount of water restrained on the surface of suspensions in liquids and emulsions, determine the surface area of suspended particles, and estimate the properties of suspensions and emulsions from the results, enabling monitoring and preparation of the same properties and the method, or a suspension, to measure the state of the structure of water in emulsions, the viscosity of the suspension is monitored by estimating the viscosity from the result, and can be prepared, and a sample of these measurements without the preparative minute, or one in which the following effects since provide line earthenware pots way method was collected a small amount of sample min.
[0056]
(1) Since the sample is stored or transported in the middle of the suspension or emulsion measurement without separating a part of the suspension or emulsion sample, properties such as viscosity are easily determined. Since it is possible to accurately estimate properties such as viscosity, etc., since the amount of restrained water is measured by collecting a small amount of sample, it is possible to accurately estimate the properties of suspensions and emulsions. It is possible to easily measure the state and easily check the suitability for the intended use.
[0057]
(2) In addition, suspensions and emulsions having the desired viscosity characteristics can be easily prepared. The viscosity of the suspension during storage and transportation can be easily estimated.
[0058]
(3) That is, it is possible to predict the viscosity of various suspensions and emulsions from only the solids and moisture fractions and easily prepare them to obtain the desired viscosity characteristics. It increases convenience. Further, it is also effective as a method for simply monitoring the change in viscosity during the storage period from preparation to use. That is, the viscosity can be estimated by introducing a measurement probe using electromagnetic waves or ultrasonic waves into the sample without directly measuring the viscosity.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the relationship between the average particle size of an O / W emulsion and the nuclear magnetic relaxation time according to the suspension and emulsion preparation and quality control methods of the present invention.
FIG. 2 is a graph showing the relationship between the relative viscosity and the volume fraction of the O / W emulsion according to the first example of the present invention.
FIG. 3 is a graph showing dielectric characteristics of a carbon black water suspension according to a second embodiment of the present invention.
FIG. 4 is a graph showing the relationship between the relative viscosity and the effective volume fraction of the carbon black water suspension according to the second embodiment of the present invention.
FIG. 5 is a graph showing the relationship between the relative viscosity and the effective volume fraction of a montmorillonite aqueous suspension according to a third embodiment of the present invention.
[Explanation of symbols]
1 Brinkman viscosity formula 2 Oil + Restraint water 3 Oil only

Claims (4)

ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の懸濁粒子の表面の拘束水量を測定し、拘束水量と懸濁粒子表面積との相関関係に基づいて同懸濁液、エマルション類の懸濁粒子の表面積を求め、その結果を用いて各種組成範囲での同懸濁液、エマルション類の性状を推定し、監視することにより、同性状を調製可能とし、前記懸濁液、エマルション類の測定は試料の一部を分取することなく、試料を保存または搬送する途中で行うことを特徴とする懸濁液、エマルション類の調製及び品質管理方法。Measures the amount of restrained water on the surface of suspended particles in suspensions and emulsions by measurement methods using radio waves, electromagnetic waves including microwaves, infrared light, visible light, ultraviolet light, and ultrasonic waves. And determining the surface area of the suspension particles of the suspension and emulsion based on the correlation between the amount of restrained water and the surface area of the suspension particles, and using the results, By estimating and monitoring the properties, it is possible to prepare the same properties , and the measurement of the suspension and emulsion should be performed in the middle of storing or transporting the sample without separating a part of the sample. Preparation of suspensions and emulsions and a method for quality control. ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の水構造の状態を懸濁粒子の体積を含む拘束水の体積分率として測定し、その結果を用いて所定の粘度式より各種組成範囲での同懸濁液、エマルション類の粘度を推定し、監視することにより、同粘度を調製可能とし、前記懸濁液、エマルション類の測定は試料の一部を分取することなく、試料を保存または搬送する途中で行うことを特徴とする懸濁液、エマルション類の調製及び品質管理方法。The state of the water structure in suspensions and emulsions is measured by the measurement method using radio waves, electromagnetic waves including microwaves, infrared light, visible light, ultraviolet light, and ultrasonic waves. The viscosity can be adjusted by estimating the viscosity of the suspensions and emulsions in various composition ranges from the prescribed viscosity formula and monitoring them using the results. The method for preparing suspensions and emulsions and quality control is characterized in that the measurement of the suspensions and emulsions is performed in the middle of storing or transporting the sample without separating a part of the sample . ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の懸濁粒子の表面の拘束水量を測定し、拘束水量と懸濁粒子表面積との相関関係に基づいて同懸濁液、エマルション類の懸濁粒子の表面積を求め、その結果を用いて各種組成範囲での同懸濁液、エマルション類の性状を推定し、監視することにより、同性状を調製可能とし、前記懸濁液、エマルション類の測定は直接粘度測定が不可能な程度の少量の試料を分取して行うことを特徴とする懸濁液、エマルション類の調製及び品質管理方法。 Measures the amount of restrained water on the surface of suspended particles in suspensions and emulsions by measurement methods using radio waves, electromagnetic waves including microwaves, infrared light, visible light, ultraviolet light, and ultrasonic waves. And determining the surface area of the suspension particles of the suspension and emulsion based on the correlation between the amount of restrained water and the surface area of the suspension particles, and using the results, It is possible to prepare the same property by estimating and monitoring the property , and measuring the suspension and emulsion is performed by collecting a small amount of sample that cannot directly measure the viscosity . that suspension Nigoeki, a process for the preparation and quality control of emulsions. ラジオ波、マイクロ波を含む電磁波、赤外、可視、紫外領域の光及び超音波などのいずれかを用いた測定法により、懸濁液、エマルション類中の水構造の状態を懸濁粒子の体積を含む拘束水の体積分率として測定し、その結果を用いて所定の粘度式より各種組成範囲での同懸濁液、エマルション類の粘度を推定し、監視することにより、同粘度を調製可能とし、前記懸濁液、エマルション類の測定は直接粘度測定が不可能な程度の少量の試料を分取して行うことを特徴とする懸濁液、エマルション類の調製及び品質管理方法。 The state of the water structure in suspensions and emulsions is measured by the measurement method using radio waves, electromagnetic waves including microwaves, infrared light, visible light, ultraviolet light, and ultrasonic waves. The viscosity can be adjusted by estimating the viscosity of the suspensions and emulsions in various composition ranges from the prescribed viscosity formula and monitoring them using the results. and then, the suspension, the measurement of the emulsions are you and performing by preparative small sample of the degree that can not be directly viscometry minute suspension Nigoeki, preparation method and quality control of emulsions.
JP22006694A 1994-09-14 1994-09-14 Preparation of suspensions and emulsions and quality control method Expired - Lifetime JP3835832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22006694A JP3835832B2 (en) 1994-09-14 1994-09-14 Preparation of suspensions and emulsions and quality control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22006694A JP3835832B2 (en) 1994-09-14 1994-09-14 Preparation of suspensions and emulsions and quality control method

Publications (2)

Publication Number Publication Date
JPH0881688A JPH0881688A (en) 1996-03-26
JP3835832B2 true JP3835832B2 (en) 2006-10-18

Family

ID=16745412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22006694A Expired - Lifetime JP3835832B2 (en) 1994-09-14 1994-09-14 Preparation of suspensions and emulsions and quality control method

Country Status (1)

Country Link
JP (1) JP3835832B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750239B2 (en) * 1999-08-02 2011-08-17 九州電力株式会社 Management method of coal-water fuel slurry by ultrafiltration using pressure breathing equipment
EP1999493B1 (en) * 2006-03-11 2014-05-07 Xigo Nanotools LLC Compact and portable low-field pulsed nmr dispersion analyzer
JP2007326977A (en) * 2006-06-08 2007-12-20 Nippon Oil Corp A-type heavy oil
JP5188425B2 (en) * 2009-03-09 2013-04-24 日本碍子株式会社 Method for evaluating dredged soil and method for producing dredged soil

Also Published As

Publication number Publication date
JPH0881688A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
Malkin et al. Effect of droplet size on the rheological properties of highly-concentrated w/o emulsions
Eyssautier et al. Organization of asphaltenes in a vacuum residue: a small-angle X-ray scattering (SAXS)–viscosity approach at high temperatures
Shah et al. Viscoelasticity and rheology of depletion flocculated gels and fluids
Clausse et al. A method for the characterization of emulsions, thermogranulometry: Application to water-in-crude oil emulsion
Rashin et al. A novel ultrasonic approach to determine thermal conductivity in CuO–ethylene glycol nanofluids
Leon et al. Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles
Kanti et al. The effect of pH on stability and thermal performance of graphene oxide and copper oxide hybrid nanofluids for heat transfer applications: application of novel machine learning technique
Duran et al. Nature of asphaltene aggregates
Bulavchenko et al. Electrokinetic potential of nanoparticles in reverse AOT micelles: photometric determination and role in the processes of heterocoagulation, separation, and concentration
Rahmani et al. Characterization of asphaltenes aggregation and fragmentation in a shear field
Marti et al. Rheology of concentrated suspensions containing mixtures of spheres and fibres
Demoz et al. Role of mixing energy in the flocculation of mature fine tailings
Amundaraín Hurtado et al. Characterization of physically and chemically separated Athabasca asphaltenes using small-angle X-ray scattering
Haj-Shafiei et al. In-situ monitoring of paraffin wax crystal formation and growth
JP3835832B2 (en) Preparation of suspensions and emulsions and quality control method
Miknis et al. Use of NMR imaging to measure interfacial properties of asphalts
Ayyer et al. Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates
Al-Mohammedawi et al. Current research and challenges in bitumen emulsion manufacturing and its properties
Zhou et al. Viscoelastic properties of a thioether-based heliconical twist–bend nematogen
Di et al. Probing the state of water in oil-based drilling fluids
Wang et al. Role of a nanocomposite pour point depressant on wax deposition in different flow patterns from the perspective of crystallization kinetics
Zhou et al. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers
TWI238188B (en) Disaggregation of asphaltenes in incompatible petroleum oil mixtures
Reinhardt et al. Rheo‐optical characterization (flow‐birefringence and flow‐dichroism) of the Tobacco Mosaic Virus
Innocenzi et al. Measuring the Sol to Gel Transition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

EXPY Cancellation because of completion of term