JP3835592B2 - Optical wavelength division multiplexing transmitter - Google Patents

Optical wavelength division multiplexing transmitter Download PDF

Info

Publication number
JP3835592B2
JP3835592B2 JP2001179167A JP2001179167A JP3835592B2 JP 3835592 B2 JP3835592 B2 JP 3835592B2 JP 2001179167 A JP2001179167 A JP 2001179167A JP 2001179167 A JP2001179167 A JP 2001179167A JP 3835592 B2 JP3835592 B2 JP 3835592B2
Authority
JP
Japan
Prior art keywords
wavelength
light
optical
modulation
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001179167A
Other languages
Japanese (ja)
Other versions
JP2002374207A (en
Inventor
昇 高知尾
克寛 荒谷
淳一 可児
勝美 岩月
光啓 手島
正満 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001179167A priority Critical patent/JP3835592B2/en
Priority to US10/163,849 priority patent/US7127168B2/en
Priority to CA002389974A priority patent/CA2389974C/en
Priority to EP02291444A priority patent/EP1267510B1/en
Priority to DE60222719T priority patent/DE60222719T2/en
Publication of JP2002374207A publication Critical patent/JP2002374207A/en
Application granted granted Critical
Publication of JP3835592B2 publication Critical patent/JP3835592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多波長一括発生光源から出力される多波長光を分波し、その各波長光を複数の光変調器でそれぞれ変調し、その変調信号光を波長多重して送信する光波長多重送信器に関する。特に、多波長一括発生光源の信頼性向上を図った光波長多重送信器に関する。
【0002】
【従来の技術】
近年の伝送容量増大の要求に応えるために、1本の光ファイバ伝送路で異なる波長を有する複数の光信号を伝送する波長分割多重(WDM)伝送システムの開発が進められている。最近では、多重数が数百チャネル以上といったWDM伝送システムが報告されており、商用レベルでは160 チャネルのWDM伝送システムが製品化されている。
【0003】
図7は、従来の光波長多重送信器の構成例を示す。図において、光波長多重送信器は、それぞれ異なる波長を有する半導体レーザ(LD)51−1〜51−nと、各半導体レーザの出力光を送信信号により変調する光変調器52−1〜52−nと、各変調信号光を波長多重して出力する合波器53により構成される。
【0004】
ここで、半導体レーザは、温度変化および注入電流変化により発振波長シフトが生じ、また経時変化に伴って発振波長が変化する性質を有することから、伝送仕様上の波長精度を維持するには波長安定化回路が必要になる。この波長安定化は、個々の半導体レーザに対して実施する必要があるので、波長多重数の増加および波長多重間隔の高密度化に比例して、半導体レーザおよび波長安定化回路が増加し、光波長多重送信器の回路規模が増大する。
【0005】
これに対して、単一の中心波長を有する光を特定の繰り返し周期を有する電気信号(例えば正弦波)を用いて位相変調および振幅変調を行い、側帯波を発生させることにより複数の中心波長を有する多波長光を一括して発生させる多波長一括発生光源((特願2000−207494)、以下「先願」という。)が出願されている。
【0006】
図8は、先願の多波長一括発生光源を用いた光波長多重送信器の構成例を示す。図9は、先願の多波長一括発生光源における多波長光発生原理を示す。
【0007】
図8において、多波長一括発生光源1は、光発生部10および多波長化変調部20により構成される。光発生部10は、単一の中心波長の光を発生する半導体レーザ(LD)11を有する。多波長化変調部20は、光発生部10の出力光を振幅変調する強度変調器21および位相変調する位相変調器22と(各変調器の順番は任意)、各変調器に印加する所定の周期信号(正弦波)を発生する周期信号発生器23と、周期信号の印加電圧およびバイアス電圧を調整する電圧調整部24,25から構成される。なお、多波長化変調部20は、例えばマッハツェンダ強度変調器を用いて分岐されたパスで位相変調を行い、全体として振幅変調動作させる構成としてもよい。
【0008】
強度変調器21および位相変調器22では、光発生部10の出力光(連続光)の時間波形の振幅または位相を変調することにより、その出力光の離散光スペクトルの各モードの位相に一定の相関を与える(図9(a))。さらに、その変調波の振幅または位相を変調することにより、離散光スペクトルを周波数軸上で上下側波帯に偏移させる(図9(b))。ここで、周波数偏移量を調節することにより、離散光スペクトルが重なって各モードのパワーレベル偏差を一定に制御することができる(図9(c))。
【0009】
なお、光発生部10は、図10に示すように、互いに異なる中心波長の光を発生するn個の半導体レーザ(LD)11−1〜11−nを備え、合波器12で各レーザ光を合波して出力光とする構成としてもよい。この場合には、多波長化変調部20で各中心波長に対して側帯波が発生し、さらに広帯域にわたって多波長光を一括発生させることができる。
【0010】
このような先願の多波長一括発生光源を用いて光波長多重送信器を構成する場合には、図8に示すように、多波長光を各波長にスペクトルスライスする分波器31を有する光変調部3を用いる。光変調部3では、分波器31で分波された各波長光を光変調器32−1〜32−nで送信信号により変調し、合波器33で各変調信号光を波長多重して出力する。
【0011】
【発明が解決しようとする課題】
先願の多波長一括発生光源1を用いる図8の光波長多重送信器は、単体の半導体レーザをチャネル数分だけ用意する図7の光波長多重送信器の構成に比べて、装置規模の縮小とともにチャネル当たりの光源コストの低減が可能である。しかし、1つの多波長一括発生光源1から多波長光を一括発生させる構成であるために、その元となる1つの多波長一括発生光源1が故障すると、多波長光のすべてが停止することになる。例えば、多波長一括発生光源1の多波長化変調部20が故障すると、一括発生する各チャネル対応の多波長光が同時に停止し、それを用いて伝送される莫大な情報がすべて伝送できなくなる。
【0012】
本発明は、先願の多波長一括発生光源を用いて多波長光を発生させ、その多波長光を分波し、その各波長光を複数の光変調器でそれぞれ変調し、その変調信号光を波長多重して出力する光波長多重送信器において、多波長一括発生光源の冗長構成により信頼性向上を図ることができる光波長多重送信器を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の光波長多重送信器は、先願の多波長一括発生光源1(光発生部10および多波長化変調部20)を複数備え、その1つを選択して光変調部3に接続する構成(請求項1)と、先願の多波長一括発生光源1の多波長化変調部20を複数備え、その1つを選択して光変調部3に接続する構成(請求項4)に大きく分けられる。
【0014】
さらに、本発明の光波長多重送信器では、請求項1の冗長構成によって多波長一括発生光源1の信頼性が向上したことにより、複数の光変調部3を備え、多波長一括発生光源1から出力される多波長光を各光変調部3に分配する構成とし、多波長一括発生光源1を複数のWDM伝送システムで共有することを可能とする(請求項2)。
【0015】
また、本発明の光波長多重送信器では、請求項4の冗長構成により多波長一括発生光源1の多波長化変調部20の信頼性が向上したことにより、複数の光変調部3を備え、多波長化変調部20から出力される多波長光を各光変調部3に分配する構成とし、多波長化変調部20を複数のWDM伝送システムで共有することを可能とする(請求項5)。
【0016】
さらに、本発明の光波長多重送信器は、複数M個の光変調部3に対してそれより多い複数N個(N>M)の多波長一括発生光源1または多波長光化変調部20を備え、N×M光スイッチを用いて多波長一括発生光源1または多波長化変調部20と光変調部3をそれぞれ1対1に接続するとともに、いずれかの多波長一括発生光源1または多波長化変調部20に故障が発生したときに、予備の多波長一括発生光源1または多波長化変調部20への切り換えが可能な構成とする(請求項3、請求項6)。
【0017】
【発明の実施の形態】
<第1の実施形態:請求項1>
図1は、本発明の光波長多重送信器の第1の実施形態を示す。
【0018】
図において、本実施形態の光波長多重送信器は、2つの多波長一括発生光源1−1,1−2を備え、光スイッチ41でその一方の多波長光を選択して光変調部3に接続する。多波長一括発生光源1−1,1−2は、図8または図10に示す先願の多波長一括発生光源1と同様の構成であり、光発生部10および多波長化変調部20から構成される。光変調部3も図8に示すものと同様の構成である。
【0019】
光スイッチ41は、選択している一方の多波長一括発生光源から出力される多波長光に異常が発生した場合に、自動または手動で他方の多波長一括発生光源の方へ切り換える。これにより、光変調部3に対する多波長光の安定的な供給が実現する。
【0020】
<第2の実施形態:請求項2>
図2は、本発明の光波長多重送信器の第2の実施形態を示す。
図において、本実施形態の光波長多重送信器は、第1の実施形態と同様に多波長一括発生光源1−1,1−2の二重化により多波長光の安定供給を実現させ、その多波長光を光スターカプラ42を介して複数M個の光変調部3−1〜3−Mに分配する。これにより、複数M個の光波長多重送信器を備えたことと実質的に等価になる。すなわち、複数M個のWDM伝送システムの各光多波長光源送信器として、二重化された多波長一括発生光源1−1,1−2を共有することができ、より経済的なシステム構成が可能となる。
【0021】
<第3の実施形態:請求項3>
図3は、本発明の光波長多重送信器の第3の実施形態を示す。
図において、本実施形態の光波長多重送信器は、複数M個の光変調部3−1〜3−Mに対して、それより多い複数N個(N>M)の多波長一括発生光源1−1〜1−Nを備える。M個の多波長一括発生光源1−1〜1−Mと光変調部3−1〜3−Mは、N×M光スイッチ43を介してそれぞれ1対1に接続される。多波長一括発生光源1−1〜1−Nは、図8または図10に示す先願の多波長一括発生光源1と同様の構成であり、光発生部10および多波長化変調部20から構成される。光変調部3−1〜3−Mも図8に示すものと同様の構成である。これにより、複数M個の光波長多重送信器を備えたことと実質的に等価になる。
【0022】
N×M光スイッチ43は、例えば多波長一括発生光源1−1に故障が発生したときに、予備の多波長一括発生光源1−Nと光変調部3−1との接続に切り換える。N×M光スイッチ43は任意の接続が可能であり、例えばN=M+2の場合には、任意の2つの多波長一括発生光源の故障に対して予備に切り換えることができ、多波長光の安定的な供給を実現することができる。
【0023】
<第4の実施形態:請求項4>
図4は、本発明の光波長多重送信器の第4の実施形態を示す。
図において、本実施形態の光波長多重送信器は、多波長一括発生光源1として1つの光発生部10と2つの多波長化変調部20−1,20−2を備え、光カプラ44を介して光発生部10の出力光を多波長化変調部20−1,20−2に分配する。多波長化変調部20−1,20−2から出力される多波長光は、光スイッチ45でその一方が選択されて光変調部3に入力する。光発生部10および多波長化変調部20−1,20−2は、図8または図10に示す先願の多波長一括発生光源1における光発生部10および多波長化変調部20と同様の構成である。光変調部3も図8に示すものと同様の構成である。
【0024】
光スイッチ45は、選択している一方の多波長化変調部から出力される多波長光に異常が発生した場合に、自動または手動で他方の多波長化変調部の方へ切り換える。これにより、光変調部3に対して多波長光の安定的な供給が実現する。
【0025】
<第5の実施形態:請求項5>
図5は、本発明の光波長多重送信器の第5の実施形態を示す。
図において、本実施形態の光波長多重送信器は、第4の実施形態と同様に多波長化変調部20−1,20−2の二重化により多波長光の安定供給を実現させ、その多波長光を光スターカプラ46を介して複数M個の光変調部3−1〜3−Mに分配する。これにより、複数M個の光波長多重送信器を備えたことと実質的に等価になる。すなわち、複数M個のWDM伝送システムの各光多波長光源送信器として、二重化された多波長化変調部20−1,20−2を共有することができ、より経済的なシステム構成が可能となる。
【0026】
<第6の実施形態:請求項6>
図6は、本発明の光波長多重送信器の第6の実施形態を示す。
図において、本実施形態の光波長多重送信器は、複数M個の光変調部3−1〜3−Mに対して、それより多い複数N個(N>M)の多波長化変調部20−1〜20−Nを備える。多波長化変調部20−1〜20−Nには、光スターカプラ47を介して光発生部10の出力光が分配される。M個の多波長化変調部20−1〜20−Mと光変調部3−1〜3−Mは、N×M光スイッチ48を介してそれぞれ1対1に接続される。光発生部10および多波長化変調部20−1〜20−Nは、図8または図10に示す先願の多波長一括発生光源1の光発生部10および多波長化変調部20と同様の構成である。光変調部3−1〜3−Mも図8に示すものと同様の構成である。これにより、複数M個の光波長多重送信器を備えたことと実質的に等価になる。
【0027】
N×M光スイッチ48は、例えば多波長化変調部20−1に故障が発生したときに、予備の多波長化変調部20−Nと光変調部3−1との接続に切り換える。N×M光スイッチ48は任意の接続が可能であり、例えばN=M+2の場合には、任意の2つの多波長化変調部の故障に対して予備に切り換えることができ、多波長光の安定的な供給を実現することができる。
【0028】
なお、ここでは光発生部10を1つとしているが、同様の構成を有する複数m個の光発生部10−1〜10−mを備え、各光発生部ごとにN/m個(N/mは整数)の多波長化発生部に対して出力光を分配し、全体でN個の多波長化変調部20−1〜20−Nに光発生部10−1〜10−mの出力光を分配するようにしてもよい(図6(b))。
【0029】
また、上記の第1,第2,第4,第5の実施形態では二重化構成を例としたが、三重化以上の冗長構成をとってもよい。また、上記の第2、第4〜第6の実施形態おいて、光スターカプラまたは光カプラによる分岐損失が大きくなる場合には、光増幅器を用いて光パワーを増幅する構成としてもよい。
【0030】
【発明の効果】
以上説明したように、本発明は、多波長光を一括発生させる多波長一括発生光源の信頼性を向上させることができるので、多波長一括発生光源の低コスト化の利点を活かした低コストかつ高信頼の光波長多重送信器を実現することができる。
【図面の簡単な説明】
【図1】本発明の光波長多重送信器の第1の実施形態を示す図。
【図2】本発明の光波長多重送信器の第2の実施形態を示す図。
【図3】本発明の光波長多重送信器の第3の実施形態を示す図。
【図4】本発明の光波長多重送信器の第4の実施形態を示す図。
【図5】本発明の光波長多重送信器の第5の実施形態を示す図。
【図6】本発明の光波長多重送信器の第6の実施形態を示す図。
【図7】従来の光波長多重送信器の構成例を示す図。
【図8】先願の多波長一括発生光源を用いた光波長多重送信器の構成例を示す図。
【図9】先願の多波長一括発生光源における多波長光発生原理を示す図。
【図10】先願の多波長一括発生光源における光発生部10の他の構成例を示す図。
【符号の説明】
1 多波長一括発生光源
10 光発生部
11 半導体レーザ(LD)
12 合波器
20 多波長化変調部
21 強度変調器
22 位相変調器
23 周期信号発生器
24,25 電圧調整部
3 光変調部
31 分波器
32 光変調器
33 合波器
41,45 光スイッチ
42,46,47 光スターカプラ
43,48 N×M光スイッチ
44 光カプラ
51 半導体レーザ(LD)
52 光変調器
53 合波器
[0001]
BACKGROUND OF THE INVENTION
The present invention demultiplexes multi-wavelength light output from a multi-wavelength collective light source, modulates each wavelength light with a plurality of optical modulators, and wavelength-multiplexes and transmits the modulated signal light. Regarding the transmitter. In particular, the present invention relates to an optical wavelength division multiplex transmitter for improving the reliability of a multi-wavelength collective light source.
[0002]
[Prior art]
In order to meet the demand for an increase in transmission capacity in recent years, development of a wavelength division multiplexing (WDM) transmission system that transmits a plurality of optical signals having different wavelengths through a single optical fiber transmission line is underway. Recently, a WDM transmission system having a multiplexing number of several hundred channels or more has been reported, and a 160-channel WDM transmission system has been commercialized at a commercial level.
[0003]
FIG. 7 shows a configuration example of a conventional optical wavelength division multiplexing transmitter. In the figure, the optical wavelength multiplexing transmitters include semiconductor lasers (LD) 51-1 to 51-n having different wavelengths, and optical modulators 52-1 to 52- for modulating the output light of each semiconductor laser with a transmission signal. n and a multiplexer 53 for wavelength-multiplexing and outputting each modulated signal light.
[0004]
Here, the semiconductor laser has the property that the oscillation wavelength shifts due to changes in temperature and injection current, and the oscillation wavelength changes with time. Circuit is required. Since this wavelength stabilization needs to be performed for each semiconductor laser, the number of semiconductor lasers and wavelength stabilization circuits increases in proportion to the increase in the number of wavelength multiplexing and the increase in the density of wavelength multiplexing intervals. The circuit scale of the wavelength multiplexing transmitter increases.
[0005]
On the other hand, phase modulation and amplitude modulation of light having a single center wavelength using an electrical signal having a specific repetition period (for example, a sine wave), and generating sideband waves, thereby generating a plurality of center wavelengths. A multi-wavelength collective light source (Japanese Patent Application No. 2000-207494, hereinafter referred to as “prior application”) that collectively generates multi-wavelength light has been filed.
[0006]
FIG. 8 shows a configuration example of an optical wavelength division multiplex transmitter using the multi-wavelength collective light source of the prior application. FIG. 9 shows the principle of multi-wavelength light generation in the prior application multi-wavelength collective light source.
[0007]
In FIG. 8, the multi-wavelength collective light source 1 includes a light generation unit 10 and a multi-wavelength modulation unit 20. The light generation unit 10 includes a semiconductor laser (LD) 11 that generates light having a single center wavelength. The multi-wavelength modulation unit 20 includes an intensity modulator 21 that amplitude-modulates the output light of the light generation unit 10 and a phase modulator 22 that performs phase modulation (the order of each modulator is arbitrary), and a predetermined application applied to each modulator. It comprises a periodic signal generator 23 that generates a periodic signal (sine wave), and voltage adjustment units 24 and 25 that adjust the applied voltage and bias voltage of the periodic signal. Note that the multi-wavelength modulation unit 20 may be configured to perform amplitude modulation operation as a whole by performing phase modulation in a path branched using, for example, a Mach-Zehnder intensity modulator.
[0008]
In the intensity modulator 21 and the phase modulator 22, by modulating the amplitude or phase of the time waveform of the output light (continuous light) of the light generator 10, the phase of each mode of the discrete light spectrum of the output light is constant. Correlation is given (FIG. 9 (a)). Further, by modulating the amplitude or phase of the modulated wave, the discrete light spectrum is shifted to the upper and lower sidebands on the frequency axis (FIG. 9 (b)). Here, by adjusting the frequency shift amount, the discrete light spectra can be overlapped to control the power level deviation of each mode to be constant (FIG. 9 (c)).
[0009]
As shown in FIG. 10, the light generation unit 10 includes n semiconductor lasers (LDs) 11-1 to 11-n that generate lights having different center wavelengths, and each of the laser beams is coupled by the multiplexer 12. May be combined to produce output light. In this case, the multi-wavelength modulation unit 20 can generate sidebands for the respective center wavelengths, and can further generate multi-wavelength light over a wide band.
[0010]
When an optical wavelength multiplex transmitter is configured using such a multi-wavelength collective light source of the prior application, as shown in FIG. 8, light having a demultiplexer 31 that spectrally slices multi-wavelength light into each wavelength. The modulation unit 3 is used. In the optical modulation unit 3, each wavelength light demultiplexed by the demultiplexer 31 is modulated by the transmission signal by the optical modulators 32-1 to 32 -n, and each modulated signal light is wavelength-multiplexed by the multiplexer 33. Output.
[0011]
[Problems to be solved by the invention]
The optical wavelength multiplex transmitter of FIG. 8 using the multi-wavelength collective light source 1 of the prior application is reduced in apparatus scale as compared with the configuration of the optical wavelength multiplex transmitter of FIG. 7 in which a single semiconductor laser is prepared for the number of channels. In addition, the light source cost per channel can be reduced. However, since the multi-wavelength light is generated collectively from one multi-wavelength collective light source 1, if one multi-wavelength collective light source 1 as the source fails, all of the multi-wavelength light is stopped. Become. For example, when the multi-wavelength modulation unit 20 of the multi-wavelength collective light source 1 breaks down, multi-wavelength light corresponding to each channel that is generated all at once stops at the same time, and it is impossible to transmit all of the enormous information that is transmitted using it.
[0012]
The present invention generates multi-wavelength light using a multi-wavelength collective light source of the prior application, demultiplexes the multi-wavelength light, modulates each wavelength light with a plurality of optical modulators, and modulates the signal light. An object of the present invention is to provide an optical wavelength multiplex transmitter that can improve reliability by a redundant configuration of a multi-wavelength simultaneous generation light source.
[0013]
[Means for Solving the Problems]
The optical wavelength division multiplex transmitter of the present invention includes a plurality of multi-wavelength collective light sources 1 (the light generation unit 10 and the multi-wavelength modulation unit 20) of the prior application, and one of them is selected and connected to the optical modulation unit 3. A configuration (Claim 1) and a configuration in which a plurality of multi-wavelength modulation units 20 of the multi-wavelength collective light source 1 of the prior application are provided, and one of them is selected and connected to the light modulation unit 3 (Claim 4). Divided.
[0014]
Furthermore, in the optical wavelength division multiplex transmitter of the present invention, the reliability of the multi-wavelength collective light source 1 is improved by the redundant configuration of claim 1. The multi-wavelength light to be output is distributed to each optical modulation section 3, and the multi-wavelength collective light source 1 can be shared by a plurality of WDM transmission systems.
[0015]
Further, in the optical wavelength division multiplex transmitter of the present invention, the reliability of the multi-wavelength modulation unit 20 of the multi-wavelength simultaneous generation light source 1 is improved by the redundant configuration of claim 4, thereby including a plurality of optical modulation units 3, The multi-wavelength light output from the multi-wavelength modulation section 20 is configured to be distributed to each optical modulation section 3, and the multi-wavelength modulation section 20 can be shared by a plurality of WDM transmission systems. .
[0016]
Furthermore, the optical wavelength division multiplex transmitter of the present invention includes a plurality of N (N> M) multi-wavelength collective light sources 1 or multi-wavelength optical modulation units 20 with respect to a plurality of M optical modulation units 3. The multi-wavelength collective light source 1 or the multi-wavelength modulation unit 20 and the optical modulator 3 are connected one-to-one using an N × M optical switch, and any multi-wavelength collective light source 1 or multi-wavelength is connected. When a failure occurs in the optical modulation unit 20, the configuration can be switched to the spare multi-wavelength collective light source 1 or the multi-wavelength modulation unit 20 (claims 3 and 6).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment: Claim 1>
FIG. 1 shows a first embodiment of an optical wavelength division multiplex transmitter of the present invention.
[0018]
In the figure, the optical wavelength division multiplex transmitter of the present embodiment includes two multi-wavelength collective light sources 1-1 and 1-2, and selects one of the multi-wavelength light by the optical switch 41 and supplies it to the optical modulation unit 3. Connecting. The multi-wavelength collective light sources 1-1 and 1-2 have the same configuration as the multi-wavelength collective light source 1 of the prior application shown in FIG. Is done. The light modulator 3 has the same configuration as that shown in FIG.
[0019]
When an abnormality occurs in the multi-wavelength light output from one of the selected multi-wavelength collective light sources, the optical switch 41 automatically or manually switches to the other multi-wavelength collective light source. Thereby, stable supply of multi-wavelength light to the light modulation unit 3 is realized.
[0020]
<Second Embodiment: Claim 2>
FIG. 2 shows a second embodiment of the optical wavelength division multiplex transmitter of the present invention.
In the figure, the optical wavelength division multiplex transmitter of the present embodiment realizes stable supply of multi-wavelength light by duplicating the multi-wavelength collective light sources 1-1 and 1-2 as in the first embodiment. The light is distributed to a plurality of M light modulation units 3-1 to 3 -M through the light star coupler 42. This is substantially equivalent to having a plurality of M optical wavelength multiplex transmitters. That is, as each optical multi-wavelength light source transmitter of a plurality of M WDM transmission systems, the duplexed multi-wavelength collective light sources 1-1 and 1-2 can be shared, and a more economical system configuration is possible. Become.
[0021]
<Third Embodiment: Claim 3>
FIG. 3 shows a third embodiment of the optical wavelength division multiplexing transmitter of the present invention.
In the figure, the optical wavelength division multiplex transmitter of the present embodiment includes a plurality of N (N> M) multi-wavelength collective light sources 1 for a plurality of M optical modulation units 3-1 to 3 -M. -1 to 1-N. The M multi-wavelength collective light sources 1-1 to 1 -M and the light modulators 3-1 to 3 -M are connected one-to-one via the N × M optical switch 43. The multi-wavelength collective light sources 1-1 to 1-N have the same configuration as the multi-wavelength collective light source 1 of the prior application shown in FIG. Is done. The light modulators 3-1 to 3-M have the same configuration as that shown in FIG. This is substantially equivalent to having a plurality of M optical wavelength multiplex transmitters.
[0022]
For example, when a failure occurs in the multi-wavelength collective light source 1-1, the N × M optical switch 43 switches to a connection between the standby multi-wavelength collective light source 1-N and the optical modulation unit 3-1. The N × M optical switch 43 can be arbitrarily connected. For example, in the case of N = M + 2, it can be switched to a spare for the failure of any two multi-wavelength light sources, and the stability of the multi-wavelength light can be improved. Supply can be realized.
[0023]
<Fourth Embodiment: Claim 4>
FIG. 4 shows a fourth embodiment of the optical wavelength division multiplex transmitter of the present invention.
In the figure, the optical wavelength division multiplex transmitter of this embodiment includes one light generation unit 10 and two multi-wavelength modulation units 20-1 and 20-2 as the multi-wavelength collective light source 1, via an optical coupler 44. Thus, the output light of the light generation unit 10 is distributed to the multi-wavelength modulation units 20-1 and 20-2. One of the multi-wavelength lights output from the multi-wavelength modulation units 20-1 and 20-2 is selected by the optical switch 45 and input to the optical modulation unit 3. The light generation unit 10 and the multi-wavelength modulation units 20-1 and 20-2 are the same as the light generation unit 10 and the multi-wavelength modulation unit 20 in the multi-wavelength collective light source 1 of the prior application shown in FIG. It is a configuration. The light modulator 3 has the same configuration as that shown in FIG.
[0024]
The optical switch 45 automatically or manually switches to the other multi-wavelength modulation section when an abnormality occurs in the multi-wavelength light output from the selected one multi-wavelength modulation section. As a result, stable supply of multi-wavelength light to the light modulation unit 3 is realized.
[0025]
<Fifth Embodiment: Claim 5>
FIG. 5 shows a fifth embodiment of the optical wavelength division multiplex transmitter of the present invention.
In the figure, the optical wavelength division multiplex transmitter of this embodiment realizes stable supply of multi-wavelength light by duplexing the multi-wavelength modulation units 20-1 and 20-2 as in the fourth embodiment. The light is distributed to a plurality of M light modulation units 3-1 to 3 -M through the light star coupler 46. This is substantially equivalent to having a plurality of M optical wavelength multiplex transmitters. That is, as each optical multi-wavelength light source transmitter of a plurality of M WDM transmission systems, the duplexed multi-wavelength modulation units 20-1 and 20-2 can be shared, and a more economical system configuration is possible. Become.
[0026]
<Sixth Embodiment: Claim 6>
FIG. 6 shows a sixth embodiment of the optical wavelength division multiplex transmitter of the present invention.
In the figure, the optical wavelength division multiplex transmitter of the present embodiment includes a plurality of N (N> M) multi-wavelength modulation units 20 with respect to a plurality of M optical modulation units 3-1 to 3 -M. -1 to 20-N. The output light of the light generation unit 10 is distributed to the multi-wavelength modulation units 20-1 to 20 -N via the optical star coupler 47. The M multi-wavelength modulation units 20-1 to 20 -M and the light modulation units 3-1 to 3 -M are connected one-to-one via the N × M optical switch 48. The light generation unit 10 and the multi-wavelength modulation units 20-1 to 20-N are the same as the light generation unit 10 and the multi-wavelength modulation unit 20 of the multi-wavelength collective light source 1 of the prior application shown in FIG. It is a configuration. The light modulators 3-1 to 3-M have the same configuration as that shown in FIG. This is substantially equivalent to having a plurality of M optical wavelength multiplex transmitters.
[0027]
For example, when a failure occurs in the multi-wavelength modulation unit 20-1, the N × M optical switch 48 switches to a connection between the standby multi-wavelength modulation unit 20-N and the optical modulation unit 3-1. The N × M optical switch 48 can be arbitrarily connected. For example, when N = M + 2, the N × M optical switch 48 can be switched to a spare for the failure of any two multi-wavelength modulation units, thereby stabilizing the multi-wavelength light. Supply can be realized.
[0028]
Here, although one light generating unit 10 is provided, a plurality of m light generating units 10-1 to 10-m having the same configuration are provided, and N / m (N / m) are provided for each light generating unit. m is an integer), the output light is distributed to the multi-wavelength generating units, and the output light of the light generating units 10-1 to 10-m is distributed to N multi-wavelength modulating units 20-1 to 20-N as a whole. May be distributed (FIG. 6B).
[0029]
In the first, second, fourth, and fifth embodiments, the duplex configuration is taken as an example. However, a redundancy configuration that is more than triple is possible. In the second and fourth to sixth embodiments, when the branch loss due to the optical star coupler or the optical coupler increases, the optical power may be amplified using an optical amplifier.
[0030]
【The invention's effect】
As described above, the present invention can improve the reliability of a multi-wavelength collective light source that collectively generates multi-wavelength light. A highly reliable optical wavelength division multiplex transmitter can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of an optical wavelength division multiplex transmitter according to the present invention.
FIG. 2 is a diagram showing a second embodiment of the optical wavelength division multiplex transmitter of the present invention.
FIG. 3 is a diagram showing a third embodiment of the optical wavelength division multiplex transmitter of the present invention.
FIG. 4 is a diagram showing a fourth embodiment of the optical wavelength division multiplex transmitter of the present invention.
FIG. 5 is a diagram showing a fifth embodiment of the optical wavelength division multiplex transmitter of the present invention.
FIG. 6 is a diagram showing a sixth embodiment of the optical wavelength division multiplex transmitter of the present invention.
FIG. 7 is a diagram showing a configuration example of a conventional optical wavelength division multiplex transmitter.
FIG. 8 is a diagram showing a configuration example of an optical wavelength multiplexing transmitter using a multi-wavelength collective light source of a prior application.
FIG. 9 is a diagram showing the principle of multi-wavelength light generation in the multi-wavelength collective light source of the prior application.
FIG. 10 is a diagram showing another configuration example of the light generation unit 10 in the multi-wavelength collective light source of the prior application.
[Explanation of symbols]
1 Multi-wavelength collective light source 10 Light generator 11 Semiconductor laser (LD)
12 multiplexer 20 multi-wavelength modulation unit 21 intensity modulator 22 phase modulator 23 periodic signal generators 24 and 25 voltage adjustment unit 3 optical modulator 31 demultiplexer 32 optical modulator 33 multiplexers 41 and 45 optical switch 42, 46, 47 Optical star couplers 43, 48 N × M optical switch 44 Optical coupler 51 Semiconductor laser (LD)
52 optical modulator 53 multiplexer

Claims (6)

単一または複数の中心波長を有する連続光を発生する光発生部と、前記連続光を振幅変調する強度変調器および位相変調する位相変調器と、前記強度変調器および前記位相変調器に印加する所定の周期信号を発生する周期信号発生器を有し、前記連続光を所定の周期信号で振幅変調および位相変調し、前記連続光の離散光スペクトルを周波数軸上で上下側波帯に偏移させ、前記中心波長および前記側帯波からなる多波長光を発生させる多波長化変調部と構成される多波長一括発生光源と、
前記多波長一括発生光源から出力された多波長光を入力して各波長に分波する分波器と、分波された各波長光を送信信号により変調する複数の光変調器と、各変調信号光を波長多重して出力する合波器とにより構成される光変調部とを備えた光波長多重送信器において、
前記多波長一括発生光源を複数備え、
前記複数の多波長一括発生光源の1つを選択して前記光変調部に接続するとともに、選択された多波長一括発生光源に異常が発生したときに他の多波長一括発生光源に切り換えて前記光変調部に接続する光スイッチを備えたことを特徴とする光波長多重送信器。
A light generator for generating a continuous light having a single or plurality of center wavelengths, applying said continuous light and a phase modulator for intensity modulator and phase modulation to amplitude modulation, the intensity modulator and said phase modulator It has a periodic signal generator for generating a predetermined periodic signal, the continuous light amplitude-modulated and phase-modulated in a predetermined cycle signal, shift the upper and lower sidebands of the discrete spectrum of the continuous light on the frequency axis is allowed, and the multi-wavelength generation light source composed of a multi-wavelength modulating section for generating multi-wavelength light consisting of the center wavelength and said sidebands,
A demultiplexer that receives the multi-wavelength light output from the multi-wavelength collective light source and demultiplexes it into each wavelength, a plurality of optical modulators that modulate each demultiplexed light with a transmission signal, and each modulation In an optical wavelength division multiplex transmitter including an optical modulator configured by a multiplexer that wavelength-multiplexes and outputs signal light,
A plurality of the multi-wavelength collective light sources are provided,
One of the plurality of multi-wavelength collective light sources is selected and connected to the light modulation unit, and when an abnormality occurs in the selected multi-wavelength collective light source, the other multi-wavelength collective light source is switched to An optical wavelength division multiplex transmitter comprising an optical switch connected to an optical modulator.
請求項1に記載の光波長多重送信器において、
前記光変調部を複数備え、
前記光スイッチで選択された多波長一括発生光源からの多波長光を複数に分岐して前記複数の光変調部にそれぞれ供給する手段を備えたことを特徴とする光波長多重送信器。
The optical wavelength division multiplexing transmitter according to claim 1,
Comprising a plurality of the light modulators;
An optical wavelength division multiplex transmitter comprising means for branching multi-wavelength light from a multi-wavelength collective light source selected by the optical switch into a plurality of light sources and supplying them to the plurality of optical modulators, respectively.
単一または複数の中心波長を有する連続光を発生する光発生部と、前記連続光を振幅変調する強度変調器および位相変調する位相変調器と、前記強度変調器および前記位相変調器に印加する所定の周期信号を発生する周期信号発生器を有し、前記連続光を所定の周期信号で振幅変調および位相変調し、前記連続光の離散光スペクトルを周波数軸上で上下側波帯に偏移させ、前記中心波長および前記側帯波からなる多波長光を発生させる多波長化変調部と構成される多波長一括発生光源と、
前記多波長一括発生光源から出力された多波長光を入力して各波長に分波する分波器と、分波された各波長光を送信信号により変調する複数の光変調器と、各変調信号光を波長多重して出力する合波器とにより構成される光変調部とを備えた光波長多重送信器において、
前記多波長一括発生光源を複数N個と、前記光変調部を複数M個(M<N)とを備え、
前記M個の多波長一括発生光源と、前記M個の光変調部をそれぞれ1対1に接続するとともに、いずれかの多波長一括発生光源に故障が発生したときに、(N−M)個ある予備の多波長一括発生光源に切り換えて対応する光変調部に接続するN×M光スイッチを備えたことを特徴とする光波長多重送信器。
A light generator for generating a continuous light having a single or plurality of center wavelengths, applying said continuous light and a phase modulator for intensity modulator and phase modulation to amplitude modulation, the intensity modulator and said phase modulator It has a periodic signal generator for generating a predetermined periodic signal, the continuous light amplitude-modulated and phase-modulated in a predetermined cycle signal, shift the upper and lower sidebands of the discrete spectrum of the continuous light on the frequency axis is allowed, and the multi-wavelength generation light source composed of a multi-wavelength modulating section for generating multi-wavelength light consisting of the center wavelength and said sidebands,
A demultiplexer that receives the multi-wavelength light output from the multi-wavelength collective light source and demultiplexes it into each wavelength, a plurality of optical modulators that modulate each demultiplexed light with a transmission signal, and each modulation In an optical wavelength division multiplex transmitter including an optical modulator configured by a multiplexer that wavelength-multiplexes and outputs signal light,
A plurality of N multi-wavelength light sources, and a plurality of M light modulators (M <N),
When the M multi-wavelength collective light sources and the M light modulators are connected in a one-to-one relationship and one of the multi-wavelength collective light sources fails, (N−M) An optical wavelength division multiplex transmitter comprising an N × M optical switch connected to a corresponding optical modulation unit by switching to a spare multi-wavelength collective light source.
単一または複数の中心波長を有する連続光を発生する光発生部と、前記連続光を振幅変調する強度変調器および位相変調する位相変調器と、前記強度変調器および前記位相変調器に印加する所定の周期信号を発生する周期信号発生器を有し、前記連続光を所定の周期信号で振幅変調および位相変調し、前記連続光の離散光スペクトルを周波数軸上で上下側波帯に偏移させ、前記中心波長および前記側帯波からなる多波長光を発生させる多波長化変調部と構成される多波長一括発生光源と、
前記多波長一括発生光源から出力された多波長光を入力して各波長に分波する分波器と、分波された各波長光を送信信号により変調する複数の光変調器と、各変調信号光を波長多重して出力する合波器とにより構成される光変調部とを備えた光波長多重送信器において、
前記多波長一括発生光源は、複数の多波長化変調部と、光発生部の出力光を分岐して各多波長化変調部に供給する手段とを備え、
前記多波長化変調部の1つを選択して前記光変調部に接続するとともに、選択された多波長化変調部に異常が発生したときに他の多波長化変調部に切り換えて前記光変調部に接続する光スイッチを備えたことを特徴とする光波長多重送信器。
A light generator for generating a continuous light having a single or plurality of center wavelengths, applying said continuous light and a phase modulator for intensity modulator and phase modulation to amplitude modulation, the intensity modulator and said phase modulator It has a periodic signal generator for generating a predetermined periodic signal, the continuous light amplitude-modulated and phase-modulated in a predetermined cycle signal, shift the upper and lower sidebands of the discrete spectrum of the continuous light on the frequency axis is allowed, and the multi-wavelength generation light source composed of a multi-wavelength modulating section for generating multi-wavelength light consisting of the center wavelength and said sidebands,
A demultiplexer that receives the multi-wavelength light output from the multi-wavelength collective light source and demultiplexes it into each wavelength, a plurality of optical modulators that modulate each demultiplexed light with a transmission signal, and each modulation In an optical wavelength division multiplex transmitter including an optical modulator configured by a multiplexer that wavelength-multiplexes and outputs signal light,
The multi-wavelength batch generation light source includes a plurality of multi-wavelength modulation units, and means for branching the output light of the light generation unit and supplying each of the multi-wavelength modulation units,
One of the multi-wavelength modulation units is selected and connected to the optical modulation unit, and when an abnormality occurs in the selected multi-wavelength modulation unit, the optical modulation is switched to another multi-wavelength modulation unit An optical wavelength division multiplex transmitter comprising an optical switch connected to the unit.
請求項4に記載の光波長多重送信器において、
前記光変調部を複数備え、
前記光スイッチで選択された多波長化変調部からの多波長光を複数に分岐して前記複数の光変調部にそれぞれ供給する手段を備えたことを特徴とする光波長多重送信器。
The optical wavelength division multiplexing transmitter according to claim 4,
Comprising a plurality of the light modulators;
An optical wavelength division multiplex transmitter comprising means for branching multi-wavelength light from a multi-wavelength modulation unit selected by the optical switch into a plurality of light and supplying the light to each of the plurality of optical modulation units.
単一または複数の中心波長を有する連続光を発生する光発生部と、前記連続光を振幅変調する強度変調器および位相変調する位相変調器と、前記強度変調器および前記位相変調器に印加する所定の周期信号を発生する周期信号発生器を有し、前記連続光を所定の周期信号で振幅変調および位相変調し、前記連続光の離散光スペクトルを周波数軸上で上下側波帯に偏移させ、前記中心波長および前記側帯波からなる多波長光を発生させる多波長化変調部と構成される多波長一括発生光源と、
前記多波長一括発生光源から出力された多波長光を入力して各波長に分波する分波器と、分波された各波長光を送信信号により変調する複数の光変調器と、各変調信号光を波長多重して出力する合波器とにより構成される光変調部とを備えた光波長多重送信器において、
前記多波長一括発生光源は、複数N個の多波長化変調部と、1または複数の光発生部の出力光を分岐して各多波長化変調部に供給する手段とを備え、
前記光変調部を複数M個(M<N)備え、
前記M個の多波長化変調部と、前記M個の光変調部をそれぞれ1対1に接続するとともに、いずれかの多波長化変調部に故障が発生したときに、(N−M)個ある予備の多波長化変調部に切り換えて対応する光変調部に接続するN×M光スイッチを備えたことを特徴とする光波長多重送信器。
A light generator for generating a continuous light having a single or plurality of center wavelengths, applying said continuous light and a phase modulator for intensity modulator and phase modulation to amplitude modulation, the intensity modulator and said phase modulator It has a periodic signal generator for generating a predetermined periodic signal, the continuous light amplitude-modulated and phase-modulated in a predetermined cycle signal, shift the upper and lower sidebands of the discrete spectrum of the continuous light on the frequency axis is allowed, and the multi-wavelength generation light source composed of a multi-wavelength modulating section for generating multi-wavelength light consisting of the center wavelength and said sidebands,
A demultiplexer that receives the multi-wavelength light output from the multi-wavelength collective light source and demultiplexes it into each wavelength, a plurality of optical modulators that modulate each demultiplexed light with a transmission signal, and each modulation In an optical wavelength division multiplex transmitter including an optical modulator configured by a multiplexer that wavelength-multiplexes and outputs signal light,
The multi-wavelength collective light source includes a plurality of N multi-wavelength modulation units and means for branching the output light of one or a plurality of light generation units and supplying the branched light to each multi-wavelength modulation unit,
A plurality of M light modulation units (M <N),
The M number of multi-wavelength modulation units and the M number of optical modulation units are connected one-to-one, and when a failure occurs in any of the multi-wavelength modulation units, (N−M) An optical wavelength division multiplex transmitter comprising an N × M optical switch connected to a corresponding optical modulation unit by switching to a spare multi-wavelength modulation unit.
JP2001179167A 2001-06-13 2001-06-13 Optical wavelength division multiplexing transmitter Expired - Fee Related JP3835592B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001179167A JP3835592B2 (en) 2001-06-13 2001-06-13 Optical wavelength division multiplexing transmitter
US10/163,849 US7127168B2 (en) 2001-06-13 2002-06-05 Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter
CA002389974A CA2389974C (en) 2001-06-13 2002-06-10 Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter
EP02291444A EP1267510B1 (en) 2001-06-13 2002-06-11 Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter
DE60222719T DE60222719T2 (en) 2001-06-13 2002-06-11 Multi-wavelength optical modulation device and wavelength-multiplexed optical signal transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179167A JP3835592B2 (en) 2001-06-13 2001-06-13 Optical wavelength division multiplexing transmitter

Publications (2)

Publication Number Publication Date
JP2002374207A JP2002374207A (en) 2002-12-26
JP3835592B2 true JP3835592B2 (en) 2006-10-18

Family

ID=19019769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179167A Expired - Fee Related JP3835592B2 (en) 2001-06-13 2001-06-13 Optical wavelength division multiplexing transmitter

Country Status (1)

Country Link
JP (1) JP3835592B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325687B1 (en) 1999-12-21 2002-02-25 윤덕용 A low-cost WDM source with an incoherent light injected Fabry-Perot semiconductor laser diode
KR100955129B1 (en) 2003-05-30 2010-04-28 정보통신연구진흥원 wavelength-division multiple access passive optical network using the incoherent broadband light source
KR100698766B1 (en) 2005-09-07 2007-03-23 한국과학기술원 Apparatus for Monitoring Failure Positions in Wavelength Division Multiplexing-Passive Optical Networks and Wavelength Division Multiplexing-Passive Optical Network Systems Having the Apparatus
KR100785436B1 (en) 2005-09-20 2007-12-13 한국과학기술원 Wavelength division multiplexing passive optical network for convergence broadcasting service and communication service
US8571410B2 (en) 2006-10-11 2013-10-29 Novera Optics, Inc. Mutual wavelength locking in WDM-PONS
US8170418B2 (en) * 2008-03-28 2012-05-01 Nortel Networks Limited Protected light source for multiple wavelength division multiplexed passive optical networks (WDM-PONS)
JP2011135497A (en) * 2009-12-25 2011-07-07 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
WO2014021258A1 (en) * 2012-07-30 2014-02-06 日本電気株式会社 Optical transmitter, and optical communication device
CN113746558B (en) * 2020-05-29 2023-07-11 华为技术有限公司 Cluster light source and method for producing a cluster light source

Also Published As

Publication number Publication date
JP2002374207A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
US6285479B1 (en) Optical cross connect unit, optical add-drop multiplexer, light source unit, and adding unit
EP1267510B1 (en) Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter
JP3732804B2 (en) Multi-wavelength optical modulation circuit and wavelength-multiplexed optical signal transmitter
EP2157722B1 (en) WDM PON RF overlay architecture based on quantum dot multi-wavelength laser source
US8699871B2 (en) Optical network with shared laser array
JP5479447B2 (en) Protected light source for multiple wavelength division multiplexed passive optical networks (WDM-PONS)
US20030165173A1 (en) Multiple modulated wavelengths in a compact laser
JP3835592B2 (en) Optical wavelength division multiplexing transmitter
US8285147B2 (en) Bulk modulation of multiple wavelengths for generation of CATV optical comb
US20170244510A1 (en) Multi-wavelength balanced optical transmission networks
JP2013051541A (en) Optical multiplex device and optical network system
JP3258596B2 (en) Tracking method
US7206510B2 (en) Ring network using multi-wavelength generator
US9148228B2 (en) Optical signal transmitting device, optical signal transmitting method, frequency fluctuation suppressing device and frequency fluctuation suppressing system
JP4417208B2 (en) Optical access system, optical service unit and optical network unit
JPH09233052A (en) Optical wavelength multiplexer
US7174104B2 (en) Transmitting apparatus using multiple lambda source in WDM network
JP3447664B2 (en) Optical transmitter and optical transmitter control method
JP4996587B2 (en) Optical transceiver and optical transmission system using the same
WO2002073857A1 (en) High data rate multiple wavelength encoding
JP3860760B2 (en) Optical wavelength division multiplexing ring network
JP2005505985A (en) Optical signal transmission
JP3860759B2 (en) Optical wavelength division multiplexing ring network
JP2003124911A (en) Optical communication system
JP2007124019A (en) Optical transmitter and optical transmission method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060131

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees