JP3834748B2 - Structure analysis method of semiconductor single crystal - Google Patents

Structure analysis method of semiconductor single crystal Download PDF

Info

Publication number
JP3834748B2
JP3834748B2 JP2001317897A JP2001317897A JP3834748B2 JP 3834748 B2 JP3834748 B2 JP 3834748B2 JP 2001317897 A JP2001317897 A JP 2001317897A JP 2001317897 A JP2001317897 A JP 2001317897A JP 3834748 B2 JP3834748 B2 JP 3834748B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
quantum well
multiple quantum
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001317897A
Other languages
Japanese (ja)
Other versions
JP2003121391A (en
Inventor
修仁 牧野
学 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001317897A priority Critical patent/JP3834748B2/en
Publication of JP2003121391A publication Critical patent/JP2003121391A/en
Application granted granted Critical
Publication of JP3834748B2 publication Critical patent/JP3834748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多重量子井戸層(MQW:Multi-Quantum Well)を有する半導体単結晶の構造解析方法に関し、特に、多重量子井戸層を構成する2つの半導体層の成長速度および格子定数を、X線回折による測定結果を利用して求める方法に関する。
【0002】
【従来の技術】
従来、光通信用の発光デバイスまたは受光デバイスとして、III−V族化合物半導体単結晶を用いた光半導体素子が開発されている。この光半導体素子は、一般に基板上にバッファ層や活性層、コンタクト層等が積層して構成され、所望の発光特性や電気的特性が得られるように各層の層厚や格子定数等が設計されている。
【0003】
ところで、従来は、作製された光半導体素子について、X線回折装置(XRD:X-ray diffractometry)や透過型電子顕微鏡(TEM:Transmission Electron Microscopy)を用いて構造解析をすることにより、設計通りに各層が形成されているかを検査していた。
【0004】
ここで、X線回折およびTEMについて簡単に説明する。
【0005】
X線回折は、結晶などの原子配列に関する情報を得る基本的な分析法であり、有機、無機、金属材料の合成、物性、結晶構造などの分野で利用されている。
【0006】
例えば、原子が規則的に配置されている結晶に単色(波長λ)の細いX線束をあてると、結晶中の電子によって入射X線が散乱され、散乱したX線が干渉することにより特定方向の強度が強くなり、X線回折像が得られる。このX線回折像は結晶中の原子配置の規則性を反映しているので、これをもとに結晶構造を知ることができる。
【0007】
また、結晶中の原子配置によって決まる結晶格子面の間隔をd、X線の波長をλ、格子面への入射角度をθとすると、「λ=2d・sinθ」という関係が成り立つ場合に、格子面でX線がブラッグ反射してX線回折がおきることが知られている。
【0008】
これより、波長λと回折角2θを測定すると、上述した関係から格子面の間隔dがわかる。さらに、結晶中の多くの格子面とそれらからの回折強度、およびそれらの間の角度を測定すると、結晶内の各原子の配置を決めることができるのでその物質を同定することができる。また、現在利用されている一般的なX線測定装置では、上述した演算がソフトウェア処理により容易に得ることができるようになっている。
【0009】
このように、X線回折法は、積層構造をした半導体層のそれぞれの層について格子定数と層厚の両方の情報を得ることができるうえに、非破壊でかつ比較的短い時間で結晶構造を解析できるという長所があるので、この方法により日常的に光半導体素子の検査が行われていた。
一方、TEMは、試料に大きな電圧を印加することにより電子を注入して、試料の内部を素通りしてきた電子の投影像をみて、試料内部の構造を調べる装置であり、1nmの大きさまでが見える高分解能を一般に有している。したがって、試料内部の原子1つ1つの並び方を観察することが可能であり、結晶中の原子構造を直接視覚的に観察できるという長所を有する。
【0010】
従来は、これらの方法により光半導体素子の構造解析を行って、各層が設計通りに形成されているかを検査するようにしていた。
【0011】
【発明が解決しようとする課題】
ところで、最近では固体中における電子の波長と同じ程度の厚さ(10〜100nm)の中に二次元的に電子を閉じこめた単一量子井戸構造(SQW:Single-Quantum Well)が開発され、さらに、この単一量子井戸構造を多数重ね合わせて層中の電子や正孔および光の閉じこめ効率を向上させた多重量子井戸構造(MQW:Multi-Quantum Well)を利用した光半導体素子が開発されている。
【0012】
具体的には、光半導体素子の活性層を多重量子井戸構造として、活性層中の電子等の振る舞いを制御することにより半導体の持つ光学的な性質や電子的な性質を向上させている。例えば、多重量子井戸層の中では電子や正孔の厚さ方向の運動が制限され、各々のエネルギーがそろいやすくなるという性質を利用して、少ない電流値で半導体レーザの発振を実現している。
しかし、多重量子井戸層は、構成する各半導体層の厚さや格子定数によって層中での電子や正孔の厚さ方向の運動が変化しやすいという欠点を有する。このため、多重量子井戸層からなる活性層を有する光半導体素子は、多重量子井戸層を構成する各半導体層の厚さや格子定数が変わると一定の発光特性を得ることはできない。
【0013】
そこで、所望の発光特性を有する光半導体素子を安定して製造するために、多重量子井戸層の各層の厚さや格子定数の設計を行い、製造された光半導体素子の多重量子井戸構造が設計通りに形成されているかの検査が重要となる。
【0014】
しかしながら、上述したX線回折およびTEMを用いた構造解析方法では、多重量子井戸層を各層ごとに詳細に解析することは困難であった。
【0015】
すなわち、X線回折法で格子定数の異なる薄層が周期的に積層された構造をした多重量子井戸層を測定すると、1周期の厚さ(周期層厚)が擬似的に1単位格子と見なされてしまうために、多重量子井戸層を構成するそれぞれの半導体層に分離して層厚や格子定数を得ることは困難であった。
【0016】
例えば、多重量子井戸層の第1層および第2層の厚さをt、t、成長時間をT、T、成長速度をv、vとすると、X線回折結果からは、
【数1】

Figure 0003834748
で表される周期層厚tしか算出できなかった。
【0017】
また、第1層の基板との格子定数差をΔa、第2層の基板との格子定数差をΔaとすると、X線回折結果からは、
【数2】
Figure 0003834748
で表される平均格子定数差Δa/aしか算出できなかった。
【0018】
一方、TEMによる構造解析は、破壊検査であるうえに測定に長時間を要するため、製品としての光半導体素子を日常的に検査することは困難であるという問題があった。また、TEMによる格子定数差の測定は困難であった。
【0019】
本発明は、第1の半導体層および第2の半導体層が交互に積層されてなる多重量子井戸層を有する半導体単結晶について、各半導体層の層厚に関する情報およびそれぞれの格子定数に関する情報を容易に求めることができる半導体単結晶の構造解析方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明は、基板の組成と異なる組成を有する第1の半導体層と、基板の組成および前記第1の半導体層の組成と異なる組成を有する第2の半導体層とが、交互に積層されてなる多重量子井戸層を有する半導体単結晶において、前記第1の半導体層と前記第2の半導体層の少なくとも一方の成長時間を変更して2以上の半導体単結晶を作製し、作製した2以上の半導体単結晶についてX線回折による測定を行い、前記X線回折の測定結果に基づいて、前記第1の半導体層および第2の半導体層の層厚に関する情報および格子定数に関する情報を算出するようにした半導体単結晶の構造解析方法である。
【0021】
具体的には、前記2以上の半導体単結晶について行ったX線回折測定により得られる前記多重量子井戸層の周期層厚tと、前記第1および第2の半導体層の成長時間に基づいて、前記第1および第2の半導体層の成長速度を算出し、前記X線回折測定により得られる前記多重量子井戸層の基板との格子定数差と、前記成長時間と前記成長速度により求まる前記第1および第2の半導体層の層厚に基づいて、前記第1および第2の半導体層の基板との格子定数差を算出するようにした。
【0022】
より具体的には、前記第1および第2の半導体層の成長速度v、vは、異なる2つの半導体単結晶についてX線回折測定により得られる前記多重量子井戸層の周期層厚tと、前記第1および第2の半導体層の成長時間T、Tを、式▲1▼に代入して連立方程式を解くことにより算出できる。
【0023】
また、前記第1および第2の半導体層の基板との格子定数差Δa/a、Δa/aは、異なる2つの半導体単結晶についてX線回折測定により得られる前記多重量子井戸層の基板との平均格子定数差Δa/aと、前記成長時間T、Tと前記成長速度v、vにより求まる前記第1および第2の半導体層の層厚t(=v)、t(=v)を、式▲2▼に代入して連立方程式を解くことにより算出できる。
【0024】
なお、市販のX線測定装置が備えた演算処理機能により、X線回折結果から前記多重量子井戸層の周期層厚および基板との格子定数差は容易に求めることができる。
【0025】
これより、多重量子井戸層を構成する各半導体層の層厚および基板との格子定数差が設計通りになっているか調査できる。また、設計通りの層厚で各半導体層を形成するための成長時間に関する最適条件を容易に求めることができる。また、算出された基板との格子定数差が設計値と乖離していた場合には、原料元素の供給量を調整することにより組成を変更し、格子定数を調整すればよい。したがって、所望の構造(設計)をした多重量子井戸層を比較的容易に形成することができる。
【0026】
なお、本発明の構造解析方法は、多重量子井戸層を形成するにあたり成長条件(例えば成長時間)を決定する際に利用することもできるし、半導体単結晶の生産工程における日常的な検査に利用することもできる。
【0027】
また、多重量子井戸層を構成する半導体の種類は特に制限されず、一般的な半導体層が交互に積層されて構成された多重量子井戸層の構造解析に適用することができる。
【0028】
【発明の実施の形態】
以下、本発明の好適な実施の形態として、多重量子井戸構造をした活性層有する半導体単結晶について、前記活性層の各半導体層の成長速度および格子定数を算出する方法について説明する。
【0029】
図1は、本実施形態の構造解析に使用した半導体レーザ用の半導体単結晶の構造を示す概略図である。半導体単結晶100は、InP基板10上に、InPバッファ層20、InGaAsPクラッド層30、多重量子井戸(MQW)層40、InGaAsPクラッド層50、InPコンタクト層60が順次積層された構成となっている。この半導体単結晶100は、例えば分子線エピタキシャル成長法(MBE)等により作製することができる。
【0030】
また、多重量子井戸層40は、組成の異なる第1のInGaAsP層41と、第2のInGaAsP層42が交互に計11層積み重なって構成されている。なお、第1のInGaAsP層41およびInGaAsP層42と、InGaAsPクラッド層20、50との組成も異なる。
【0031】
ここで、図1に示した半導体単結晶100の多重量子井戸層40の設計値を表1に示す。表1より、第1のInGaAsP層41は、層厚が10nmで、基板との格子定数差(Δa/a)が−0.3%、第2のInGaAsP層42は、層厚が6nmで、基板との格子定数差Δa/aが+1.0%と設計されている。ここで、格子定数に関しては、各層の格子定数を直接用いて表すこともできる。
【0032】
【表1】
Figure 0003834748
【0033】
従来のX線回折による解析方法では、各層毎に層厚および基板との格子定数差を算出することはできないので、作製された半導体単結晶100の多重量子井戸層40が設計通りに形成されているか検査することはできなかった。これに対して、本発明では、異なる成長時間で第1のInGaAsP層41および第2のInGaAsP層42を成長させた2つの半導体単結晶についてX線回折による構造解析を行うことにより、各半導体層毎に層厚および基板との格子定数差を算出可能としている。
【0034】
以下に、表2に示す成長時間で多重量子井戸層40の各半導体層41、42を成長させて2つの試料1、2を作製し、この試料1、2についてX線回折を行うことにより各半導体層41、42の層厚および基板との格子定数差を求める方法について説明する。
【0035】
まず、設計による各半導体層の層厚(表1)とInGaAsPの概ね成長速度(1000nm/hr(0.278nm/sec))から試料1の各半導体層41、42の成長時間を決定した。そして、試料2の各半導体層41、42の成長時間は試料1のそれよりも6秒長くした。このように各半導体層41、42の成長時間のみを変えて、他の条件はすべて同一として図1に示す構造をした半導体単結晶の試料1、2を作製した。
【0036】
【表2】
Figure 0003834748
【0037】
次に、作製した試料1、2について、X線回折法により多重量子井戸層40の周期層厚tおよび基板との平均格子定数差Δa/aを測定した。ここで、周期層厚tおよび基板との平均格子定数差Δa/aは、一般的なX線測定装置を用いてX線回折結果をソフトウェア処理することにより容易に算出することができる。
【0038】
X線測定装置による演算結果を表3に示す。試料1については、周期層厚tが15.1nm、基板との格子定数差Δa/aが0.092%であり、試料2については、周期層厚tが18.1nm、基板との格子定数差Δa/aが0.117%であった。
【0039】
【表3】
Figure 0003834748
【0040】
第1のInGaAsP層41の成長速度をv、第2のInGaAsP層42の成長速度をvとして、表3に示した周期層厚tの測定結果および成長時間を式▲1▼に代入すると、
【数3】
Figure 0003834748
が成り立つ。そして、▲3▼、▲4▼式よりvは0.293nm/sec(=1.054nm/hr)、vは0.207nm/sec(=746nm/hr)となり、各半導体層41、42の実際の成長速度が求まる。これより、試料1、2の多重量子井戸層40の各層41、42の層厚を求めると表4のようになる。表4から、試料1の第1のInGaAsP層41は設計値よりも0.548nm厚く、第2のInGaAsP層42は設計値よりも0.446nm薄く形成されていることが分かる。また、試料2の第1のInGaAsP層41は設計値よりも2.306nm厚く、第2のInGaAsP層42は設計値よりも0.204nm薄く形成されていることが分かる。
【0041】
このように、試料1および試料2は、設計値の層厚よりも若干ずれているが、表5のように各半導体層の設計層厚と算出された成長速度から成長時間の最適値を算出することにより、理想の多重量子井戸層40を形成することができる。すなわち、本実施形態の多重量子井戸層40の場合、第1のInGaAsP層41の成長時間を34.1秒とし、第2のInGaAsP層42の成長時間を29.0秒とすることにより設計通りの層厚で各半導体層を形成することができる。
【0042】
【表4】
Figure 0003834748
【0043】
【表5】
Figure 0003834748
【0044】
また、表3に示した基板との平均格子定数差Δa/aの測定結果、および各半導体層41、42の層厚を上記▲2▼式に代入すると
【数4】
Figure 0003834748
が成り立つ。そして、▲5▼、▲6▼式よりΔa/aは−0.313%、Δa/aは+1.029%となり、各半導体層41、42の基板との格子定数差が求まる。
【0045】
これより、本実施形態の多重量子井戸層40の場合、第1のInGaAsP層41および第2のInGaAsP層42の格子定数は、ほぼ設計通りであると判断することができる。なお、算出された基板との格子定数差が設計値と乖離していた場合には、原料元素の供給量を調整することにより組成を変更し、各半導体層の格子定数を調整すればよい。
【0046】
本実施形態で説明したようにして多重量子井戸層の構造解析を行えば、多重量子井戸層40の各半導体層41、42が設計通りに形成されているか調査できるとともに、設計通りに形成するための成長時間に関する最適条件を求めることができるので、所望の構造をした多重量子井戸層を比較的容易に形成することができる。
【0047】
以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記実施例に限定されるものではない。
【0048】
例えば、上記実施形態ではわかりやすくするために、試料1と試料2において、第1のInGaAsP層41の成長時間と第2のInGaAsP層42の成長時間の両方とも異なるようにしたが、少なくともどちらか一方の成長時間が異なるようにすれば成長速度および基板との格子定数差を算出することができる。
【0049】
また、多重量子井戸層を構成する半導体の種類はInGaAsPに制限されず、一般的な半導体層が交互に積層されて構成された多重量子井戸層の構造解析に適用することができる。
【0050】
また、本発明の構造解析方法は、多重量子井戸層を形成するにあたり成長条件を決定する際に利用することもできるし、半導体単結晶の生産工程における日常的な検査に利用することもできる。
【0051】
【発明の効果】
本発明によれば、基板の組成と異なる組成を有する第1の半導体層と、基板の組成および前記第1の半導体層の組成と異なる組成を有する第2の半導体層とが、交互に積層されてなる多重量子井戸層を有する半導体単結晶において、前記第1の半導体層と前記第2の半導体層の少なくとも一方の成長時間を変更して2以上の半導体単結晶を作製し、作製した2以上の半導体単結晶についてX線回折による測定を行い、前記X線回折の測定結果に基づいて、前記第1の半導体層および第2の半導体層の層厚に関する情報および格子定数に関する情報を算出するようにしたので、多重量子井戸層を構成する各半導体層の各層厚および各層の基板との格子定数差が設計通りになっているか調査できるとともに、設計通りの層厚で各半導体層を形成するための成長時間に関する最適条件を求めることができる。したがって、所望の構造(設計)をした多重量子井戸層を比較的容易に形成することができるという効果を奏する。
【図面の簡単な説明】
【図1】 本実施形態の構造解析に使用した半導体レーザ用の半導体単結晶の構造を示す概略図である。
【符号の説明】
100 半導体単結晶
10 InP基板
20 InPバッファ層
30 InGaAsPクラッド層
40 多重量子井戸(MQW)層
41 第1のInGaAsP層
42 第2のInGaAsP層
50 InGaAsPクラッド層
60 InPコンタクト層60[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for analyzing the structure of a semiconductor single crystal having a multi-quantum well layer (MQW), and in particular, the growth rate and lattice constant of two semiconductor layers constituting the multi-quantum well layer are expressed by X-rays. The present invention relates to a method of obtaining using measurement results by diffraction.
[0002]
[Prior art]
Conventionally, an optical semiconductor element using a III-V compound semiconductor single crystal has been developed as a light emitting device or a light receiving device for optical communication. This opto-semiconductor element is generally constructed by laminating a buffer layer, active layer, contact layer, etc. on a substrate, and the layer thickness, lattice constant, etc. of each layer are designed so as to obtain desired light emission characteristics and electrical characteristics. ing.
[0003]
By the way, conventionally, the manufactured optical semiconductor element is subjected to structural analysis using an X-ray diffractometer (XRD) or a transmission electron microscope (TEM) as designed. It was inspected whether each layer was formed.
[0004]
Here, X-ray diffraction and TEM will be briefly described.
[0005]
X-ray diffraction is a basic analysis method for obtaining information on atomic arrangement of crystals and the like, and is used in the fields of synthesis, physical properties, crystal structures of organic, inorganic, and metal materials.
[0006]
For example, when a monochromatic (wavelength λ) thin X-ray bundle is applied to a crystal in which atoms are regularly arranged, incident X-rays are scattered by electrons in the crystal, and the scattered X-rays interfere with each other to cause a specific direction. The intensity increases and an X-ray diffraction image is obtained. Since this X-ray diffraction image reflects the regularity of atomic arrangement in the crystal, the crystal structure can be known based on this.
[0007]
When the relationship of “λ = 2d · sin θ” holds, where d is the interval between crystal lattice planes determined by the atomic arrangement in the crystal, λ is the wavelength of X-rays, and θ is the incident angle to the lattice plane, It is known that X-ray diffraction occurs due to Bragg reflection of X-rays on the surface.
[0008]
Thus, when the wavelength λ and the diffraction angle 2θ are measured, the distance d between the lattice planes can be determined from the above-described relationship. Furthermore, by measuring the number of lattice planes in the crystal, the diffraction intensity from them, and the angle between them, the arrangement of each atom in the crystal can be determined, so that the substance can be identified. Moreover, in the general X-ray measuring apparatus currently utilized, the above-described calculation can be easily obtained by software processing.
[0009]
As described above, the X-ray diffraction method can obtain information on both the lattice constant and the layer thickness for each layer of the semiconductor layer having a laminated structure, and can also obtain a crystal structure in a non-destructive manner in a relatively short time. Since there is an advantage that it can be analyzed, the optical semiconductor element is regularly inspected by this method.
On the other hand, a TEM is a device that injects electrons by applying a large voltage to a sample and looks at the projected image of the electrons passing through the sample to examine the structure inside the sample. Generally has high resolution. Therefore, it is possible to observe the arrangement of individual atoms in the sample, and it has the advantage that the atomic structure in the crystal can be directly visually observed.
[0010]
Conventionally, structural analysis of an optical semiconductor element is performed by these methods to inspect whether each layer is formed as designed.
[0011]
[Problems to be solved by the invention]
By the way, recently, a single-quantum well (SQW) structure in which electrons are two-dimensionally confined within the same thickness (10 to 100 nm) as the wavelength of electrons in a solid has been developed. An optical semiconductor device using a multi-quantum well (MQW) structure has been developed in which a large number of single quantum well structures are stacked to improve the confinement efficiency of electrons, holes and light in the layer. Yes.
[0012]
Specifically, the active layer of the optical semiconductor element has a multiple quantum well structure, and the behavior of electrons and the like in the active layer is controlled to improve the optical and electronic properties of the semiconductor. For example, in the multi-quantum well layer, the movement of electrons and holes in the thickness direction is limited, making it easy to align the energy of each, realizing semiconductor laser oscillation with a small current value. .
However, the multiple quantum well layer has a drawback that the movement of electrons and holes in the layer in the thickness direction is likely to change depending on the thickness and lattice constant of each semiconductor layer. For this reason, an optical semiconductor element having an active layer composed of a multiple quantum well layer cannot obtain constant light emission characteristics when the thickness or lattice constant of each semiconductor layer constituting the multiple quantum well layer changes.
[0013]
Therefore, in order to stably manufacture an optical semiconductor device having desired emission characteristics, the thickness and lattice constant of each of the multiple quantum well layers are designed, and the multiple quantum well structure of the manufactured optical semiconductor device is as designed. It is important to check whether or not it is formed.
[0014]
However, with the above-described structural analysis method using X-ray diffraction and TEM, it is difficult to analyze the multiple quantum well layer in detail for each layer.
[0015]
That is, when a multiple quantum well layer having a structure in which thin layers having different lattice constants are periodically stacked is measured by an X-ray diffraction method, the thickness of one cycle (periodic layer thickness) is regarded as one unit lattice in a pseudo manner. Therefore, it is difficult to obtain the layer thickness and lattice constant by separating the semiconductor layers constituting the multiple quantum well layer.
[0016]
For example, if the thicknesses of the first and second layers of the multi-quantum well layer are t 1 and t 2 , the growth times are T 1 and T 2 , and the growth rates are v 1 and v 2 , ,
[Expression 1]
Figure 0003834748
Only the periodic layer thickness t expressed by
[0017]
If the difference in lattice constant with the first layer substrate is Δa 1 and the difference in lattice constant with the second layer substrate is Δa 2 ,
[Expression 2]
Figure 0003834748
Only the average lattice constant difference Δa / a represented by
[0018]
On the other hand, the structural analysis by TEM is a destructive inspection and requires a long time for measurement. Therefore, there is a problem that it is difficult to inspect an optical semiconductor element as a product on a daily basis. Moreover, it was difficult to measure the lattice constant difference by TEM.
[0019]
The present invention facilitates information on the thickness of each semiconductor layer and information on the lattice constant of a semiconductor single crystal having a multiple quantum well layer in which first semiconductor layers and second semiconductor layers are alternately stacked. It is an object of the present invention to provide a structure analysis method of a semiconductor single crystal that can be obtained in the following manner.
[0020]
[Means for Solving the Problems]
In the present invention, the first semiconductor layer having a composition different from the composition of the substrate and the second semiconductor layer having a composition different from the composition of the substrate and the composition of the first semiconductor layer are alternately stacked. In a semiconductor single crystal having a multiple quantum well layer, two or more semiconductor single crystals are manufactured by changing the growth time of at least one of the first semiconductor layer and the second semiconductor layer, and manufacturing the two or more semiconductors Measurement by X-ray diffraction was performed on the single crystal, and information on the layer thickness of the first semiconductor layer and the second semiconductor layer and information on the lattice constant were calculated based on the measurement result of the X-ray diffraction. This is a method for analyzing the structure of a semiconductor single crystal.
[0021]
Specifically, based on the periodic layer thickness t of the multiple quantum well layer obtained by X-ray diffraction measurement performed on the two or more semiconductor single crystals, and the growth times of the first and second semiconductor layers, The growth rates of the first and second semiconductor layers are calculated, and the first constant obtained from the lattice constant difference with the substrate of the multiple quantum well layer obtained by the X-ray diffraction measurement, the growth time, and the growth rate. The lattice constant difference between the first and second semiconductor layers and the substrate is calculated based on the thickness of the second semiconductor layer.
[0022]
More specifically, the growth rates v 1 and v 2 of the first and second semiconductor layers are different from the periodic layer thickness t of the multiple quantum well layer obtained by X-ray diffraction measurement for two different semiconductor single crystals. The growth times T 1 and T 2 of the first and second semiconductor layers can be calculated by substituting the equations (1) into the simultaneous equations.
[0023]
Also, the lattice constant differences Δa 1 / a and Δa 2 / a from the substrates of the first and second semiconductor layers are the substrates of the multiple quantum well layer obtained by X-ray diffraction measurement for two different semiconductor single crystals. Layer thickness t 1 (= v 1 T 1) of the first and second semiconductor layers determined by the average lattice constant difference Δa / a between the first and second semiconductor layers, and the growth times T 1 and T 2 and the growth rates v 1 and v 2. ), T 2 (= v 2 T 2 ) is substituted into the equation ( 2 ) to solve the simultaneous equations.
[0024]
In addition, the periodic processing layer thickness of the said multiple quantum well layer and a lattice constant difference with a board | substrate can be easily calculated | required from the X-ray-diffraction result by the arithmetic processing function with which the commercially available X-ray measuring apparatus was equipped.
[0025]
From this, it is possible to investigate whether the thickness of each semiconductor layer constituting the multiple quantum well layer and the lattice constant difference with the substrate are as designed. In addition, it is possible to easily obtain the optimum condition regarding the growth time for forming each semiconductor layer with the layer thickness as designed. If the calculated lattice constant difference from the substrate deviates from the design value, the composition may be changed by adjusting the supply amount of the raw material element to adjust the lattice constant. Therefore, a multiple quantum well layer having a desired structure (design) can be formed relatively easily.
[0026]
The structural analysis method of the present invention can be used for determining growth conditions (for example, growth time) in forming a multi-quantum well layer, and can also be used for daily inspection in the production process of a semiconductor single crystal. You can also
[0027]
Further, the type of semiconductor constituting the multiple quantum well layer is not particularly limited, and can be applied to the structural analysis of the multiple quantum well layer formed by alternately laminating general semiconductor layers.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, as a preferred embodiment of the present invention, a method for calculating the growth rate and lattice constant of each semiconductor layer of the active layer will be described for a semiconductor single crystal having an active layer having a multiple quantum well structure.
[0029]
FIG. 1 is a schematic view showing the structure of a semiconductor single crystal for a semiconductor laser used in the structural analysis of this embodiment. The semiconductor single crystal 100 has a configuration in which an InP buffer layer 20, an InGaAsP cladding layer 30, a multiple quantum well (MQW) layer 40, an InGaAsP cladding layer 50, and an InP contact layer 60 are sequentially stacked on an InP substrate 10. . The semiconductor single crystal 100 can be produced by, for example, molecular beam epitaxial growth (MBE).
[0030]
The multi-quantum well layer 40 is formed by alternately stacking a total of 11 layers of first InGaAsP layers 41 and second InGaAsP layers 42 having different compositions. The compositions of the first InGaAsP layer 41 and the InGaAsP layer 42 and the InGaAsP cladding layers 20 and 50 are also different.
[0031]
Here, Table 1 shows design values of the multiple quantum well layer 40 of the semiconductor single crystal 100 shown in FIG. From Table 1, the first InGaAsP layer 41 has a layer thickness of 10 nm, the lattice constant difference (Δa 1 / a) with the substrate is −0.3%, and the second InGaAsP layer 42 has a layer thickness of 6 nm. The lattice constant difference Δa 2 / a from the substrate is designed to be + 1.0%. Here, the lattice constant can be expressed by directly using the lattice constant of each layer.
[0032]
[Table 1]
Figure 0003834748
[0033]
Since the conventional X-ray diffraction analysis method cannot calculate the layer thickness and the lattice constant difference from the substrate for each layer, the multiple quantum well layer 40 of the manufactured semiconductor single crystal 100 is formed as designed. I couldn't check it. On the other hand, in the present invention, each semiconductor layer is analyzed by performing structural analysis by X-ray diffraction on two semiconductor single crystals on which the first InGaAsP layer 41 and the second InGaAsP layer 42 are grown at different growth times. The layer thickness and the lattice constant difference with the substrate can be calculated for each time.
[0034]
In the following, two samples 1 and 2 are prepared by growing the semiconductor layers 41 and 42 of the multiple quantum well layer 40 with the growth time shown in Table 2, and each of the samples 1 and 2 is subjected to X-ray diffraction. A method for determining the layer thickness of the semiconductor layers 41 and 42 and the difference in lattice constant from the substrate will be described.
[0035]
First, the growth time of each of the semiconductor layers 41 and 42 of the sample 1 was determined from the layer thickness (Table 1) of each semiconductor layer by design and the approximate growth rate (1000 nm / hr (0.278 nm / sec)) of InGaAsP. The growth time of each of the semiconductor layers 41 and 42 of the sample 2 was 6 seconds longer than that of the sample 1. In this way, samples 1 and 2 of a semiconductor single crystal having the structure shown in FIG. 1 were prepared by changing only the growth time of each of the semiconductor layers 41 and 42 and all other conditions being the same.
[0036]
[Table 2]
Figure 0003834748
[0037]
Next, with respect to the fabricated samples 1 and 2, the periodic layer thickness t of the multiple quantum well layer 40 and the average lattice constant difference Δa / a from the substrate were measured by the X-ray diffraction method. Here, the average lattice constant difference Δa / a between the periodic layer thickness t and the substrate can be easily calculated by processing the X-ray diffraction result with software using a general X-ray measurement apparatus.
[0038]
Table 3 shows the calculation results obtained by the X-ray measurement apparatus. For sample 1, the periodic layer thickness t is 15.1 nm and the lattice constant difference Δa / a with the substrate is 0.092%. For sample 2, the periodic layer thickness t is 18.1 nm and the lattice constant with the substrate. The difference Δa / a was 0.117%.
[0039]
[Table 3]
Figure 0003834748
[0040]
When the growth rate of the first InGaAsP layer 41 is v 1 and the growth rate of the second InGaAsP layer 42 is v 2 , the measurement result of the periodic layer thickness t and the growth time shown in Table 3 are substituted into the equation (1). ,
[Equation 3]
Figure 0003834748
Holds. From the formulas (3) and (4), v 1 is 0.293 nm / sec (= 1.504 nm / hr) and v 2 is 0.207 nm / sec (= 746 nm / hr). The actual growth rate is determined. From this, the thicknesses of the layers 41 and 42 of the multiple quantum well layers 40 of Samples 1 and 2 are obtained as shown in Table 4. From Table 4, it can be seen that the first InGaAsP layer 41 of the sample 1 is 0.548 nm thicker than the design value, and the second InGaAsP layer 42 is 0.446 nm thinner than the design value. It can also be seen that the first InGaAsP layer 41 of sample 2 is 2.306 nm thicker than the design value, and the second InGaAsP layer 42 is 0.204 nm thinner than the design value.
[0041]
Thus, Sample 1 and Sample 2 are slightly deviated from the design layer thickness, but the optimum growth time value is calculated from the design layer thickness of each semiconductor layer and the calculated growth rate as shown in Table 5. By doing so, an ideal multiple quantum well layer 40 can be formed. That is, in the case of the multiple quantum well layer 40 of the present embodiment, the growth time of the first InGaAsP layer 41 is 34.1 seconds and the growth time of the second InGaAsP layer 42 is 29.0 seconds as designed. Each semiconductor layer can be formed with the layer thickness.
[0042]
[Table 4]
Figure 0003834748
[0043]
[Table 5]
Figure 0003834748
[0044]
Further, when the measurement result of the average lattice constant difference Δa / a with the substrate shown in Table 3 and the layer thicknesses of the semiconductor layers 41 and 42 are substituted into the above equation (2),
Figure 0003834748
Holds. From the formulas (5) and (6), Δa 1 / a is −0.313%, Δa 2 / a is + 1.029%, and the lattice constant difference between the semiconductor layers 41 and 42 and the substrate can be obtained.
[0045]
Accordingly, in the multiple quantum well layer 40 of the present embodiment, it can be determined that the lattice constants of the first InGaAsP layer 41 and the second InGaAsP layer 42 are substantially as designed. Note that in the case where the calculated lattice constant difference from the substrate deviates from the design value, the composition may be changed by adjusting the supply amount of the raw material element, and the lattice constant of each semiconductor layer may be adjusted.
[0046]
If structural analysis of the multiple quantum well layer is performed as described in the present embodiment, it is possible to investigate whether or not the semiconductor layers 41 and 42 of the multiple quantum well layer 40 are formed as designed and to form as designed. Therefore, the multiple quantum well layer having a desired structure can be formed relatively easily.
[0047]
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments.
[0048]
For example, for the sake of clarity in the above embodiment, the growth time of the first InGaAsP layer 41 and the growth time of the second InGaAsP layer 42 are different in the sample 1 and the sample 2, but at least either If one growth time is made different, the growth rate and the difference in lattice constant from the substrate can be calculated.
[0049]
Further, the type of semiconductor constituting the multiple quantum well layer is not limited to InGaAsP, and can be applied to the structural analysis of a multiple quantum well layer formed by alternately stacking general semiconductor layers.
[0050]
Moreover, the structural analysis method of the present invention can be used when determining the growth conditions in forming the multiple quantum well layer, and can also be used for daily inspection in the production process of a semiconductor single crystal.
[0051]
【The invention's effect】
According to the present invention, the first semiconductor layer having a composition different from the composition of the substrate and the second semiconductor layer having a composition different from the composition of the substrate and the composition of the first semiconductor layer are alternately stacked. In the semiconductor single crystal having a multiple quantum well layer, two or more semiconductor single crystals are manufactured by changing the growth time of at least one of the first semiconductor layer and the second semiconductor layer. The semiconductor single crystal is measured by X-ray diffraction, and information on the thicknesses of the first semiconductor layer and the second semiconductor layer and information on the lattice constant are calculated based on the measurement result of the X-ray diffraction. Therefore, it is possible to investigate whether each layer thickness of each semiconductor layer constituting the multiple quantum well layer and the lattice constant difference between each layer and the substrate are as designed, and to form each semiconductor layer with the designed layer thickness. It is possible to obtain an optimum condition relating to the growth time for. Therefore, there is an effect that a multiple quantum well layer having a desired structure (design) can be formed relatively easily.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the structure of a semiconductor single crystal for a semiconductor laser used in the structural analysis of this embodiment.
[Explanation of symbols]
100 Semiconductor single crystal 10 InP substrate 20 InP buffer layer 30 InGaAsP cladding layer 40 Multiple quantum well (MQW) layer 41 First InGaAsP layer 42 Second InGaAsP layer 50 InGaAsP cladding layer 60 InP contact layer 60

Claims (1)

基板の組成と異なる組成を有する第1の半導体層と、
基板の組成および前記第1の半導体層の組成と異なる組成を有する第2の半導体層とが、交互に積層されてなる多重量子井戸層を有する半導体単結晶の構造解析方法であって、
前記第1の半導体層と前記第2の半導体層の成長時間を変更して2以上の半導体単結晶を作製し、
作製した2以上の半導体単結晶についてX線回折による測定を行い、
前記2以上の半導体単結晶について行ったX線回折測定により得られる前記多重量子井戸層の周期層厚tと、前記第1および第2の半導体層の成長時間T1,T2を、
t=t1+t2
=v1・T1+v2・T2・・・(1)
に代入して連立方程式を解くことにより、前記第1および第2の半導体層の成長速度v1,v2を算出し、
前記成長時間T1,T2と前記成長速度v1,v2により求まる前記第1および第2の半導体層の層厚t1,t2と、前記X線回折測定により得られる前記多重量子井戸層の基板との格子定数差Δa/aを、
Δa/a={(t1×Δa1/a)+(t2×Δa2/a)}/t・・・(2)
に代入して連立方程式を解くことにより、前記第1および第2の半導体層の基板との格子定数差Δa1/a,Δa2/aを算出することを特徴とする半導体単結晶の構造解析方法。
A first semiconductor layer having a composition different from the composition of the substrate;
A structure analysis method for a semiconductor single crystal having a multiple quantum well layer in which a composition of a substrate and a second semiconductor layer having a composition different from the composition of the first semiconductor layer are alternately stacked ,
Change the formed long in the second semiconductor layer and the first semiconductor layer to produce at least two semiconductor single crystal,
The two or more produced semiconductor single crystals are measured by X-ray diffraction,
The periodic layer thickness t of the multiple quantum well layer obtained by X-ray diffraction measurement performed on the two or more semiconductor single crystals, and the growth times T1 and T2 of the first and second semiconductor layers,
t = t1 + t2
= V1 · T1 + v2 · T2 (1)
By substituting into and solving the simultaneous equations, the growth rates v1 and v2 of the first and second semiconductor layers are calculated,
Lattice between the layer thicknesses t1 and t2 of the first and second semiconductor layers determined by the growth times T1 and T2 and the growth rates v1 and v2, and the substrate of the multiple quantum well layer obtained by the X-ray diffraction measurement The constant difference Δa / a is
Δa / a = {(t1 × Δa1 / a) + (t2 × Δa2 / a)} / t (2)
A structural analysis method for a semiconductor single crystal, wherein lattice constant differences Δa1 / a and Δa2 / a with respect to the substrates of the first and second semiconductor layers are calculated by substituting into and solving simultaneous equations .
JP2001317897A 2001-10-16 2001-10-16 Structure analysis method of semiconductor single crystal Expired - Fee Related JP3834748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317897A JP3834748B2 (en) 2001-10-16 2001-10-16 Structure analysis method of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317897A JP3834748B2 (en) 2001-10-16 2001-10-16 Structure analysis method of semiconductor single crystal

Publications (2)

Publication Number Publication Date
JP2003121391A JP2003121391A (en) 2003-04-23
JP3834748B2 true JP3834748B2 (en) 2006-10-18

Family

ID=19135694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317897A Expired - Fee Related JP3834748B2 (en) 2001-10-16 2001-10-16 Structure analysis method of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP3834748B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133709B2 (en) * 2003-09-19 2008-08-13 シャープ株式会社 Lattice constant measurement method
RU2498277C1 (en) * 2012-05-14 2013-11-10 Открытое акционерное общество "Научно-производственное предприятие "Пульсар"" (ОАО "НПП "Пульсар") Method of diagnosing semiconductor epitaxial heterostructures
RU2559799C1 (en) * 2014-04-18 2015-08-10 Открытое акционерное общество "Научно-производственное предприятие "Пульсар" Display method of crystallographic planes of single-crystal plates and heterostructures
WO2019188318A1 (en) * 2018-03-26 2019-10-03 パナソニック株式会社 Semiconductor light emitting element
JP7129359B2 (en) 2019-02-27 2022-09-01 株式会社東芝 Semiconductor laser wafers and semiconductor lasers

Also Published As

Publication number Publication date
JP2003121391A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
Barker Jr et al. Study of zone-folding effects on phonons in alternating monolayers of GaAs-AlAs
Liu et al. Effect of strain on structure and morphology of ultrathin Ge films on Si (001)
Labat et al. Inversion domain boundaries in GaN wires revealed by coherent Bragg imaging
Ozaki et al. Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source
Morelhao et al. Nanoscale characterization of bismuth telluride epitaxial layers by advanced X-ray analysis
Nosho et al. Interpreting interfacial structure in cross-sectional STM images of III–V semiconductor heterostructures
Twesten et al. Characterizing composition modulations in InAs/AlAs short-period superlattices
JP3834748B2 (en) Structure analysis method of semiconductor single crystal
Johnson et al. Effect of gallium nitride template layer strain on the growth of InxGa1-xN∕ GaN multiple quantum well light emitting diodes
Lee et al. Optical Inspection of 2D Materials: From Mechanical Exfoliation to Wafer‐Scale Growth and Beyond
US6231668B1 (en) Method for manufacturing a calibrated scale in the nanometer range for technical devices used for the high resolution or ultrahigh-resolution imaging of structures and such scale
Efros et al. Effect of a random adiabatic potential on the optical properties of two-dimensional excitons
Grenier et al. Grazing-incidence diffraction anomalous fine structure of InAs/InP (001) self-assembled quantum wires
Dimkou et al. InGaN quantum dots studied by correlative microscopy techniques for enhanced light-emitting diodes
JP3627381B2 (en) Single crystal thin film evaluation method
Migliorato et al. Influence of composition on the piezoelectric effect and on the conduction band energy levels of InxGa1− xAs∕ GaAs quantum dots
Ritz et al. Ordering of nanostressors on free-standing silicon nanomembranes and nanoribbons
Di Russo et al. Detecting dissociation dynamics of phosphorus molecular ions by atom probe tomography
Krost et al. Evaluation of strain and In content in (InGaN/GaN) multiquantum wells by x-ray analysis
Darhuber et al. Elastic relaxation of dry-etched Si/SiGe quantum dots
Rigutti et al. Surface microscopy of atomic and molecular hydrogen from field-evaporating semiconductors
Stangl et al. Strain-induced self-organized growth of nanostructures: From step bunching to ordering in quantum dot superlattices
Limame et al. Epitaxial growth and characterization of multi-layer site-controlled InGaAs quantum dots based on the buried stressor method
Lee et al. Exciton-phonon coupling channels in a ‘strain-free’GaAs droplet epitaxy single quantum dot
Alonso et al. Raman-scattering study of GaP/InP strained-layer superlattices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees