JP3834567B2 - Carbon dioxide gas supply system combined with exhaust heat recovery in greenhouse for horticulture - Google Patents

Carbon dioxide gas supply system combined with exhaust heat recovery in greenhouse for horticulture Download PDF

Info

Publication number
JP3834567B2
JP3834567B2 JP2003183561A JP2003183561A JP3834567B2 JP 3834567 B2 JP3834567 B2 JP 3834567B2 JP 2003183561 A JP2003183561 A JP 2003183561A JP 2003183561 A JP2003183561 A JP 2003183561A JP 3834567 B2 JP3834567 B2 JP 3834567B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature side
flow path
side heat
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003183561A
Other languages
Japanese (ja)
Other versions
JP2004344154A (en
Inventor
淳浩 川村
勝 馬場
三千郎 番
Original Assignee
ネポン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネポン株式会社 filed Critical ネポン株式会社
Priority to JP2003183561A priority Critical patent/JP3834567B2/en
Publication of JP2004344154A publication Critical patent/JP2004344154A/en
Application granted granted Critical
Publication of JP3834567B2 publication Critical patent/JP3834567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Greenhouses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、施設園芸用温室(以下、温室という)、特に面積が広い大型温室において、植物の生育を促進するための炭酸ガスの供給と排ガスの排熱回収をおこなうシステムとその運転方法とに関する。
また、本発明は、炭化水素系燃料を燃焼する温湯加温(暖房)用熱源の排ガスを炭酸ガス源として利用し、炭酸ガスを供給しない暖房単独時には排熱回収をおこなうシステムとその運転方法とに関する。
【0002】
【従来の技術】
排熱回収兼用炭酸ガス供給システムに関する先願技術として特開平10−229763号に開示の発明が存在する。炭酸ガス源となる燃焼熱源にボイラとエンジンの違いがあるが、特開平10−229763号も施設園芸用温室における排熱回収兼用炭酸ガス供給システムの実施と考えることができる。
しかし、特開平10−229763号は原理的にシステム循環熱媒流体の温度領域を自由勝手に変更することができず、排ガス熱交換器入口では常時高温のままである。炭酸ガス供給時は、低温の熱媒流体で熱交換する必要があるが、特開平10−229763号は排ガスを充分に冷却・凝縮することができない。冷却が不充分な排ガスは高温すぎるため、植物や配風管の高温障害が起こる。このため、熱交換後の排ガスを必ず外気で希釈する必要が生じるが、排ガスが高温であるために容積が大きく、希釈後の温度を下げるためにはかなり多くの外気を導入する必要があり、炭酸ガス供給用送風機容量やその運転費(電気代)が大きい。また、凝縮が充分でないため、ポリエチレンフィルム製配風管(ポリダクト)の結露閉塞が心配される。この結果、温室への炭酸ガス供給ムラによる成長バラツキや、結露水の滴下による農作物商品価値の喪失などがある。これは特開平10−229763号が、単一の熱交換器と常時高温の熱媒流体を使用するためであり、本出願とは実際上の効果が大きく異なる。
【0003】
【発明が解決しようとする課題】
炭酸ガス供給のためには排ガス温度をその凝縮点(温度)以下にすることが求められるため、炭酸ガス供給時には排ガス冷却・凝縮装置に必ず冷水を流す必要がある。一方、炭酸ガス供給をしない暖房だけの場合は、排ガスを冷却・凝縮させる必要はない。そこで、炭酸ガス供給に応じて排ガスの流路を切り替えることが考えられるが、排ガスは高温であるため、技術的に困難であるばかりでなく、設備費用面やスペース面から非現実的である。その結果、炭酸ガス供給をしない場合でも排ガス冷却・凝縮装置に排ガスを通すことになるが、排ガス冷却・凝縮装置の空焚きを避けるために何らかの熱媒流体を通す必要がある。その場合、炭酸ガス供給時同様の冷水を熱媒流体として用いることは、無駄に熱を捨てることになってしまう。その行為自体が経済的損失であるばかりでなく、冷水を製造している場合は、それに費やしたエネルギーまで無駄に捨てることになってしまう。
また、炭酸ガス供給時の排ガス冷却・凝縮装置から出る熱媒流体の温度は低すぎるため、これを通常暖房用に供することはできない。
本発明は、炭酸ガス供給時にはボイラ等が排出する排ガスを熱交換器(排ガス冷却・凝縮装置)により冷却・減湿して温室に供給し、炭酸ガスを供給しないときは、同一装置を用いて温室の暖房に寄与させるように排ガスの熱を回収するシステムの提供を目的とする。
【0004】
【課題を解決するための手段】
上記課題は、請求項1記載の発明によれば、施設園芸用の温室に適用される排熱回収兼用炭酸ガス供給システムであって、温室に炭酸ガスを供給するためのボイラ等の排ガス出口に高温側熱交換器を取付け、該熱交換器は熱媒流体の流路により熱媒流路切替用自動弁セットおよび熱媒流体用循環ポンプを介して低温側熱交換器へ連結され、該低温側熱交換器は熱媒流体の流路により高温側熱交換器へ連結され、また高温側熱交換器は熱媒流体の流路により熱媒流路切替用自動弁セットを介して温室の暖房用温湯回路還湯管へ連結され、該還湯管は熱媒流路切替用自動弁セットと熱媒流体用循環ポンプの間で熱媒流体の流路に連結され、また低温側熱交換器は冷水の流路により冷水用冷却塔へ連結され、該冷却塔は冷水の流路により冷却用循環ポンプを介して低温側熱交換器へ連結されることを特徴とする排熱回収兼用炭酸ガス供給システムを提供することにより解決される。
【0005】
上記課題はまた、請求項2記載の発明によれば、施設園芸用の温室に適用される排熱回収兼用炭酸ガス供給システムであって、温室に炭酸ガスを供給するためのボイラ等の排ガス出口に高温側熱交換器を取付け、該熱交換器は熱媒流体の流路により三方自動弁および熱媒流体用循環ポンプを介して低温側熱交換器へ連結され、該低温側熱交換器は熱媒流体の流路により高温側熱交換器へ連結され、また高温側熱交換器は熱媒流体の流路により三方自動弁を介して温室の暖房用温湯回路還湯管へ連結され、該還湯管は三方自動弁と熱媒流体用循環ポンプの間で熱媒流体の流路に連結され、また低温側熱交換器は冷水の流路により冷水用冷却塔へ連結され、該冷却塔は冷水の流路により冷却用循環ポンプを介して低温側熱交換器へ連結されることを特徴とする排熱回収兼用炭酸ガス供給システムを提供することにより解決される。
【0006】
上記課題はまた、請求項3記載の発明によれば、冷水注入口から冷水注入用自動弁を経る流路低温側熱交換器に連結され、さらに該低温側熱交換器から排水溝に至る流路へと連結される構成を更に備えることを特徴とする請求項1または2記載の排熱回収兼用炭酸ガス供給システムを提供することにより解決される。
【0007】
上記課題はさらに、請求項4記載の発明によれば、温室に炭酸ガス供給するには、高温側熱交換器と低温側熱交換器との間を熱媒流体の流路と熱媒流体用循環ポンプを介して連結される循環流路を形成すると共に、低温側熱交換器と冷水用冷却塔との間を冷水の流路と冷却用循環ポンプを介して連結される循環流路を形成し、ボイラ等から排出される高温・高湿の排ガスから高温側熱交換器により熱を奪った熱媒流体を低温側熱交換器に導き、冷水に熱を与えて高温側熱交換器に戻すことを特徴とする請求項1乃至3のいずれか1項に記載の排熱回収兼用炭酸ガス供給システムを提供することにより解決される。
【0008】
上記課題はさらに、請求項5記載の発明によれば、排ガスの排熱回収するには、暖房用温湯回路還湯管の途中に熱媒流体の流路を連結し、暖房用温湯回路還湯管から熱媒流体の流路によって熱媒流体用循環ポンプ、低温側熱交換器、高温側熱交換器の循環流路を通り暖房用温湯回路還湯管へと戻るバイパス流路を形成し、暖房用温湯回路還湯管内を流れる暖房用温湯の一部を前記バイパス流路に導き、ボイラ等から排出される高温・高湿の排ガスから高温側熱交換器により熱を奪った熱媒流体を暖房用温湯回路還湯管に戻すことを特徴とする請求項1乃至3のいずれか1項に記載の排熱回収兼用炭酸ガス供給システムを提供することにより解決される。
【0009】
【作用】
熱媒流体が排ガスから熱を奪う高温側熱交換器11と、その熱媒流体を冷水で冷やす低温側熱交換器12を図1に示すようにカスケード接続して二元配置する。冷水は冷却源から供給する。
炭酸ガス供給時、2つの熱交換器11と12とを結ぶ閉じた流路に熱媒流体を循環させ、高温側熱交換器11は排ガス冷却・凝縮装置として作動させる。
暖房だけの場合、2つの熱交換器11と12とを結ぶ流路を、ボイラ等の温湯暖房用熱源で温められる暖房用温湯回路に組み込む。暖房用温湯を熱媒流体とし、低温側熱交換器12は熱の授受をさせない(冷水を流さない)。温室に熱を与えて温度の下がった還湯を、ボイラ等の温湯暖房用熱源に戻る前に高温側熱交換器11を通すことで排ガスの排熱回収が可能になり、高温側熱交換器11は排熱回収装置として作動させて省エネルギー化を図れる。
すなわち、熱媒流体は暖房用温湯そのものである。炭酸ガス供給の要否に応じて自動弁による熱媒流体の流路切替と冷却源の作動を連動させる。
【0010】
【実施例】
図1は、本発明にかかる排熱回収兼用炭酸ガス供給システムの全容を表すものである。図中、白抜きの矢印10は排ガスの流れ方向、11は高温側熱交換器、12は低温側熱交換器、13は冷水用冷却塔、14aは熱媒流体用循環ポンプ、14bは冷水用循環ポンプ、151,152,153,154は手動弁、15aは熱媒流路切替用自動弁セット、15bは冷水注入用自動弁、16は逆止弁、17は排水溝、18は冷水注入口、19は熱媒流体の流路、20は暖房用温湯回路還湯管、21は冷水の流路、黒塗りの矢印は暖房用温湯・熱媒流体・冷水の流れ方向を示す。
【0011】
本発明にかかる排熱回収兼用炭酸ガス供給システムの構成は、ボイラ等の排ガス出口に高温側熱交換11を取付け、該熱交換器11は熱媒流体の流路19により熱媒流路切替用自動弁セット15aおよび熱媒流体用循環ポンプ14aを介して低温側熱交換器12へ連結され、該低温側熱交換器12は熱媒流体の流路19により高温側熱交換器11へ連結され、また高温側熱交換器11は熱媒流体の流路19により熱媒流路切替用自動弁セット15aを介して暖房用温湯回路還湯管20へ連結され、該還湯管20は逆止弁16を介して熱媒流路切替用自動弁セット15aと熱媒流体用循環ポンプ14aの間で熱媒流体の流路19に連結され、また低温側熱交換器12は冷水の流路21により手動弁151を介して冷水用冷却13へ連結され、該冷却13は冷水の流路21により冷水用循環ポンプ14b、手動弁152を介して低温側熱交換器12へ連結される。
【0012】
さらに別系統の冷却源として、冷水注入口18から手動弁153と冷水注入用自動弁15bを経る経路は、手動弁152と低温側熱交換器12との間の冷水の流路21に連結され、また手動弁154を経て排水溝17に至る流路は、低温側熱交換器12と手動弁151との間に連結される。
冷水注入口18へは地下水または農業用水を冷却用冷水として用いる。
【0013】
炭酸ガス供給時の図2をみると、熱媒流路切替用自動弁セット15aにより、暖房用温湯回路還湯管20への接続が閉じられ、同時に高温側熱交換器11と低温側熱交換器12の間で循環流路が形成される。熱媒体の流路19内に満たされた熱媒流体は熱媒流体用循環ポンプ14aによって、高温側熱交換器11、熱媒流路切替用自動弁セット15a、熱媒流体用循環ポンプ14a、低温側熱交換器12、高温側熱交換器11へと循環する。ボイラ等から排出される高温・高湿の排ガスは、高温側熱交換器11で熱媒流体に熱を奪われて一部が凝縮し、炭酸ガス供給に供される。高温側熱交換器11で排ガスから熱を奪った熱媒流体は、熱媒流体用循環ポンプ14aによって低温側熱交換器12に導かれ、冷水に熱を与えて高温側熱交換器11に戻る。熱媒流体は、高温側熱交換器11で排ガスを十分に冷却・凝縮させられるように、低温側熱交換器12で温度が下げられる。低温側熱交換器12で熱媒流体から熱を得た冷水は、冷水用冷却塔13で元の温度まで冷やされて、冷水用循環ポンプ14bによって低温側熱交換器12に戻る。このようにして、高温・高湿の排ガスを炭酸ガス供給に適した状態に変えることができる。
【0014】
暖房だけの場合(図3)、熱媒流路切替用自動弁セット15aにより、高温側熱交換器11から熱媒流体用循環ポンプ14aへの循環流路が閉じられると同時に暖房用温湯回路還湯管20への流路が開く。これによって、暖房用温湯回路還湯管20から逆止弁16、熱媒流体用循環ポンプ14a、低温側熱交換器12、高温側熱交換器11そして暖房用温湯回路還湯管20へのバイパス流路が形成され、両熱交換器11、12間に封じ込められていた熱媒流体が、再び暖房用温湯として暖房用温湯回路を巡る。熱媒流体用循環ポンプ14aによって暖房用温湯回路還湯管20内を流れてくる暖房用温湯の一部が流路内に導かれ、逆止弁16、熱媒流体用循環ポンプ14a、低温側熱交換器12を通って高温側熱交換器11に入り、ボイラ等から排出される高温・高湿の排ガスから熱を奪って暖房用温湯回路還湯管20に戻る。暖房用温湯は、その後、ボイラ等の暖房用熱源で昇温され、温室で熱を消費されて再び暖房用温湯回路還湯管20の上流に戻る回路を循環する。このようにして、本格的な炭酸ガス供給システムでありながら、同一設備で排熱回収も可能な省エネルギー効果を実現することができる。一方、通常暖房用の温湯は60〜80℃で運転されるが、排ガスを冷却・凝縮させるには温度が高すぎるため、この場合に高温側熱交換器11から出る排ガスは炭酸ガス供給に適さない。
【0015】
炭酸ガス供給と暖房だけの運転は、本システムの上位システムからの指示によって切り替わるが、熱媒流路切替用自動弁セット15aの流路切替が、熱媒流体用循環ポンプ14aの運転を停止せずにおこなうことができるため、運転切替がスムーズである。熱媒流体が常に流れているため、運転切替時に高温側熱交換器11の過熱を危惧して、ボイラ等の熱源の運転を一旦停止させる必要がない。したがって、制御性が良い。また、運転切替時に、暖房用温湯の温湯回路外への排出や、冷却源冷水の温湯回内への混入が発生しないため、暖房用温湯の水質管理を阻害しない。適正な水質管理が保たれない場合、ボイラ等の温湯加温(暖房)用熱源や暖房用温湯回路が腐食・損傷の危険にさらされる。
【0016】
冷却源として、冷却塔の他、地下水または農業用水(別系統の冷却源)が使用可能である。地下水や農業用水の場合、冷水注入自動弁15bを作動させて低温側熱交換器12の冷水側を機能させるが、冷水注入口18の手動弁153を開け、冷水の流路21の2つの手動弁151、152を閉めて、冷水注入口18から低温側熱交換器12、排水溝17へ至る流路を形成することによって、冷水用冷却塔13を利用しない冷却源を確保することができる。したがって図のように2系統の冷却源を備えることによって、冷却塔と併設して、他方をバックアップとして位置づけることができる。
また、熱媒流路切替用自動弁セット15aは、図4のような三方自動弁22とすることもある。逆止弁16は、省略する場合もある。
【0017】
【発明の効果】
以上に説明したように、本発明によると、1基の排熱回収兼用炭酸ガス供給システムを設置し、炭酸ガス供給時には、2台の熱交換器11、12を結ぶ閉じた流路に熱媒流体を循環させ、高温側熱交換器11は、排ガス冷却・凝縮装置として作動させるので、低温で除湿された炭酸ガスが得られ、ポリダクト等によって温室内の離れた適所に炭酸ガスを供給することができる。暖房だけの場合は、2つの熱交換器11、12を結ぶ流路を暖房用温湯回路に組み込み、温室に熱を与えて温度の下がった還湯を、ボイラ等の熱源に戻る前に高温側熱交換器11を通すことで排ガスの排熱回収が可能になり省エネルギー化が実現される。
【図面の簡単な説明】
【図1】本発明の実施例を示す概要構成図である。
【図2】本発明の炭酸ガス供給時の運転状態を示すシステム説明図である。
【図3】本発明の排熱回収時の運転状態を示すシステム説明図である。
【図4】本発明の他の実施例を示す概要構成図である。
【符号の説明】
10 排ガスの流れ方向を示す矢印
11 高温側熱交換器
12 低温側熱交換器
13 冷水用冷却塔
14a 熱媒流体用循環ポンプ
14b 冷水用循環ポンプ
151,152,153,154 手動弁
15a 熱媒流路切替用自動弁セット
15b 冷水注入用自動弁
16 逆止弁
17 排水溝
18 冷水注入口
19 熱媒流体の流路
20 暖房用温湯回路還湯管
21 冷水の流路
22 三方自動弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for performing supply of carbon dioxide gas for promoting the growth of plants and exhaust heat recovery of exhaust gas in a greenhouse for horticulture (hereinafter referred to as a greenhouse), particularly a large greenhouse having a large area, and an operation method thereof. .
The present invention also provides a system that uses exhaust gas from a hot water heating (heating) heat source that burns hydrocarbon fuel as a carbon dioxide gas source, and performs exhaust heat recovery when heating alone without supplying carbon dioxide, and an operating method thereof. About.
[0002]
[Prior art]
An invention disclosed in Japanese Patent Application Laid-Open No. 10-229763 exists as a prior application technique related to a carbon dioxide gas supply system for exhaust heat recovery. Although there is a difference between a boiler and an engine in a combustion heat source serving as a carbon dioxide gas source, Japanese Patent Laid-Open No. 10-229763 can also be considered as an implementation of a carbon dioxide gas supply system combined with exhaust heat recovery in a greenhouse for horticulture.
However, in Japanese Patent Laid-Open No. 10-229763, in principle, the temperature range of the system circulating heat transfer fluid cannot be freely changed, and the temperature at the exhaust gas heat exchanger inlet always remains high. When carbon dioxide gas is supplied, it is necessary to exchange heat with a low-temperature heat transfer fluid, but JP-A-10-229763 cannot sufficiently cool and condense exhaust gas. Exhaust gas with insufficient cooling is too hot, causing high temperature damage to plants and air distribution pipes. For this reason, it is necessary to dilute the exhaust gas after heat exchange with outside air, but since the exhaust gas is hot, the volume is large, and in order to lower the temperature after dilution, it is necessary to introduce a considerable amount of outside air, The capacity of the carbon dioxide supply fan and its operating cost (electricity cost) are large. Moreover, since the condensation is not sufficient, there is a concern about condensation blockage of the polyethylene film distribution pipe (polyduct). As a result, there are growth variations due to uneven carbon dioxide supply to the greenhouse, and loss of crop product value due to dripping of condensed water. This is because Japanese Patent Application Laid-Open No. 10-229763 uses a single heat exchanger and a high-temperature heat transfer fluid at all times, and the actual effect is greatly different from the present application.
[0003]
[Problems to be solved by the invention]
In order to supply carbon dioxide, the exhaust gas temperature is required to be equal to or lower than its condensation point (temperature). Therefore, when supplying carbon dioxide, it is necessary to flow cold water through the exhaust gas cooling / condensing device. On the other hand, in the case of only heating without carbon dioxide supply, it is not necessary to cool and condense the exhaust gas. Therefore, it is conceivable to switch the flow path of the exhaust gas according to the supply of carbon dioxide gas. However, since the exhaust gas is high temperature, it is not only technically difficult but also unrealistic from the viewpoint of equipment cost and space. As a result, the exhaust gas is passed through the exhaust gas cooling / condensing device even when the carbon dioxide gas is not supplied, but it is necessary to pass some heat transfer fluid in order to avoid emptying of the exhaust gas cooling / condensing device. In that case, using the same cold water at the time of carbon dioxide supply as a heat transfer fluid will waste heat wastefully. Not only is the act itself an economic loss, but if cold water is produced, the energy spent on it is wasted.
Moreover, since the temperature of the heat transfer fluid exiting from the exhaust gas cooling / condensing device when supplying carbon dioxide is too low, it cannot be used for normal heating.
In the present invention, when carbon dioxide gas is supplied, the exhaust gas discharged from the boiler or the like is cooled and dehumidified by a heat exchanger (exhaust gas cooling / condensing device) and supplied to the greenhouse. When carbon dioxide is not supplied, the same apparatus is used. It aims at providing the system which collects the heat of exhaust gas so that it may contribute to the heating of a greenhouse.
[0004]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided an exhaust heat recovery and combined carbon dioxide supply system applied to a greenhouse for facility horticulture, which is provided at an exhaust gas outlet of a boiler or the like for supplying carbon dioxide to the greenhouse. A high temperature side heat exchanger is attached, and the heat exchanger is connected to the low temperature side heat exchanger via a heat medium fluid flow path automatic pump set and a heat medium fluid circulation pump via the heat medium fluid flow channel, side heat exchanger is connected to the high temperature side heat exchanger by its flow path for a heat transfer fluid, also the high temperature-side heat exchanger through the automatic valve set for the heating medium flow switching by its flow path for a heat transfer fluid greenhouse heating The hot water circuit is connected to a hot water circuit return hot water pipe, and the hot water pipe is connected to a heat medium fluid flow path between an automatic valve set for switching the heat medium flow path and a circulation pump for the heat medium fluid, and a low temperature side heat exchanger. Is connected to a cooling tower for cold water by a flow path of cold water, and the cooling tower is circulated for cooling by a flow path of cold water. Through the amplifier is solved by providing a heat recovery combined carbon dioxide gas supply system characterized in that it is connected to the low-temperature heat exchanger.
[0005]
According to the invention described in claim 2 , the above-mentioned problem is a waste heat recovery combined carbon dioxide supply system applied to a greenhouse for facility horticulture, which is an exhaust gas outlet of a boiler or the like for supplying carbon dioxide to the greenhouse. The high temperature side heat exchanger is attached to the low temperature side heat exchanger via a three-way automatic valve and a heat medium fluid circulation pump via a heat medium fluid flow path, and the low temperature side heat exchanger is The high temperature side heat exchanger is connected to the high temperature side heat exchanger by the flow path of the heat medium fluid, and is connected to the hot water circuit return pipe for heating in the greenhouse through the three-way automatic valve by the flow path of the heat medium fluid. The return hot water pipe is connected to the flow path of the heat transfer fluid between the three-way automatic valve and the circulation pump for the heat transfer fluid, and the low temperature side heat exchanger is connected to the cooling tower for cold water through the flow path of cold water. It is connected to the cold side heat exchanger through the circulation pump for cooling the cold water flow path It is solved by providing a heat recovery combined carbon dioxide gas supply system comprising.
[0006]
The above object is also achieved, according to the third aspect of the present invention, the flow path through the cold water injection automatic valve from the cold water inlet is connected to the low-temperature heat exchanger, further drains from the cold-side heat exchanger It is solved by providing the exhaust- heat-recovery combined carbon dioxide gas supply system according to claim 1 , further comprising a structure connected to the flow path to reach.
[0007]
The above object is further, according to the invention of claim 4, wherein, when supplying carbon dioxide to the greenhouse, the flow path and the heat medium of the heat transfer fluid between the hot-side heat exchanger and the low temperature-side heat exchanger A circulation channel that forms a circulation channel that is connected via a fluid circulation pump and that is connected between a low-temperature heat exchanger and a cooling tower for cold water via a cooling water channel and a cooling circulation pump The heat transfer fluid that has taken heat from the high-temperature and high-humidity exhaust gas discharged from the boiler, etc., by the high-temperature side heat exchanger is led to the low-temperature side heat exchanger, and heat is supplied to the cold water to provide the high-temperature side heat exchanger. is solved by providing a heat recovery combined carbon dioxide gas supply system according to any one of claims 1 to 3, characterized in that return to.
[0008]
The above object is further, according to the invention of claim 5, wherein, when the recovery of the exhaust gas waste heat concatenates the flow path of the heat transfer fluid in the middle of the heating hot water circuit Kaeyu tube, heating hot water circuit A bypass passage is formed from the return pipe to the heating medium fluid circulation pump, the low temperature side heat exchanger, and the high temperature side heat exchanger circulation path to the heating hot water circuit return pipe. In addition, a part of the heating hot water flowing in the heating hot water circuit return hot water pipe is led to the bypass flow path, and the heat medium is deprived of heat from the high temperature / humidity exhaust gas discharged from the boiler etc. by the high temperature side heat exchanger. is solved by providing a heat recovery combined carbon dioxide gas supply system according to any one of claims 1 to 3, characterized in that to return the fluid to the hot water circuit Kaeyu tube for heating.
[0009]
[Action]
A high temperature side heat exchanger 11 that takes heat from exhaust gas and a low temperature side heat exchanger 12 that cools the heat medium fluid with cold water are cascade-connected as shown in FIG. Cold water is supplied from a cooling source.
When supplying carbon dioxide, the heat transfer fluid is circulated through a closed flow path connecting the two heat exchangers 11 and 12, and the high temperature side heat exchanger 11 is operated as an exhaust gas cooling / condensing device.
In the case of heating only, the flow path connecting the two heat exchangers 11 and 12 is incorporated in a heating hot water circuit heated by a hot water heating heat source such as a boiler. The hot water for heating is used as a heat transfer fluid, and the low temperature side heat exchanger 12 does not transfer heat (does not flow cold water). Exhaust heat of exhaust gas can be recovered by passing the high temperature side heat exchanger 11 through the high temperature side heat exchanger 11 before returning the hot water whose temperature has been reduced by applying heat to the greenhouse to the hot water heating source such as a boiler. 11 can be operated as an exhaust heat recovery device to save energy.
That is, the heat transfer fluid is the hot water for heating itself. Depending on the necessity of carbon dioxide supply, the flow of the heat transfer fluid by the automatic valve is linked to the operation of the cooling source.
[0010]
【Example】
FIG. 1 shows the entire volume of the exhaust heat recovery and combined carbon dioxide gas supply system according to the present invention. In the figure, the white arrow 10 is the flow direction of exhaust gas, 11 is a high temperature side heat exchanger, 12 is a low temperature side heat exchanger, 13 is a cooling tower for cold water, 14a is a circulation pump for heat transfer fluid, and 14b is for cold water. Circulation pumps 151, 152, 153, and 154 are manual valves, 15a is an automatic valve set for switching the heat medium flow path, 15b is an automatic valve for injecting cold water, 16 is a check valve, 17 is a drainage groove, and 18 is a cold water inlet. , 19 is a flow path of the heat transfer fluid, 20 is a hot water circuit return pipe for heating, 21 is a flow path of the cold water, and a black arrow indicates the flow direction of the hot water for heating, the heat transfer fluid, and the cold water.
[0011]
Configuration of the exhaust heat recovery combined carbon dioxide gas supply system according to the present invention, fitted with a hot-side heat exchanger 11 to the exhaust gas outlet of the boiler, the heat exchanger 11 is a heat medium flow path switching by the flow passage 19 of the heat transfer fluid The low temperature side heat exchanger 12 is connected to the high temperature side heat exchanger 11 by the heat medium fluid flow path 19 via the automatic valve set 15a and the circulation pump 14a for the heat medium fluid. Further, the high temperature side heat exchanger 11 is connected to the heating hot water circuit return hot water pipe 20 through the heat medium fluid flow path automatic valve set 15a by the heat medium fluid flow path 19, and the return hot water pipe 20 is reversed. It is connected to the heat medium fluid flow path 19 between the heat medium flow path switching automatic valve set 15a and the heat medium fluid circulation pump 14a via the stop valve 16, and the low temperature side heat exchanger 12 is connected to the cold water flow path. 21 is connected to the cold water cooling tower 13 through the manual valve 151 by The cooling tower 13 is the cold water circulating pump 14b by cold water flow passage 21 is connected to the low-temperature heat exchanger 12 through the manual valve 152.
[0012]
Further, as a cooling source of another system, a path from the cold water inlet 18 through the manual valve 153 and the cold water injection automatic valve 15b is connected to the cold water flow path 21 between the manual valve 152 and the low temperature side heat exchanger 12. The flow path that reaches the drainage groove 17 via the manual valve 154 is connected between the low-temperature side heat exchanger 12 and the manual valve 151.
To the cold water inlet 18, ground water or agricultural water is used as cold water for cooling.
[0013]
Referring to FIG. 2 when supplying carbon dioxide, the heating medium flow switching automatic valve set 15a closes the connection to the heating hot water circuit return pipe 20 and at the same time exchanges between the high temperature side heat exchanger 11 and the low temperature side heat exchange. A circulation channel is formed between the vessels 12. The heat medium fluid filled in the heat medium flow path 19 is heated by the heat medium fluid circulation pump 14a to the high temperature side heat exchanger 11, the heat medium flow path switching automatic valve set 15a, the heat medium fluid circulation pump 14a, It circulates to the low temperature side heat exchanger 12 and the high temperature side heat exchanger 11. The high-temperature and high-humidity exhaust gas discharged from the boiler or the like is deprived of heat by the heat transfer fluid in the high-temperature side heat exchanger 11 and partially condensed, and is supplied to carbon dioxide supply. The heat transfer fluid deprived of heat from the exhaust gas by the high temperature side heat exchanger 11 is guided to the low temperature side heat exchanger 12 by the heat medium fluid circulation pump 14a, and heats the cold water and returns to the high temperature side heat exchanger 11. . The temperature of the heat transfer fluid is lowered by the low temperature side heat exchanger 12 so that the exhaust gas can be sufficiently cooled and condensed by the high temperature side heat exchanger 11. The cold water obtained from the heat transfer fluid in the low temperature side heat exchanger 12 is cooled to the original temperature in the cold water cooling tower 13 and returned to the low temperature side heat exchanger 12 by the cold water circulation pump 14b. In this way, the high temperature and high humidity exhaust gas can be changed to a state suitable for carbon dioxide supply.
[0014]
In the case of only heating (FIG. 3), the heating medium flow switching automatic valve set 15a closes the circulation flow path from the high-temperature side heat exchanger 11 to the heat transfer fluid circulation pump 14a and simultaneously returns the heating hot water circuit. The flow path to the hot water pipe 20 is opened. Thereby, the bypass from the hot water circuit return hot water pipe 20 to the check valve 16, the heat medium fluid circulation pump 14 a, the low temperature side heat exchanger 12, the high temperature side heat exchanger 11 and the heating hot water circuit return hot water pipe 20 is bypassed. The heat transfer fluid that has been formed between the heat exchangers 11 and 12 circulates in the heating hot water circuit again as the heating hot water. A part of the hot water for heating flowing through the heating hot water circuit return hot water pipe 20 by the heat medium fluid circulation pump 14a is led into the flow path, and the check valve 16, the heat medium fluid circulation pump 14a, the low temperature side The heat enters the high temperature side heat exchanger 11 through the heat exchanger 12, takes heat from the high temperature and high humidity exhaust gas discharged from the boiler or the like, and returns to the hot water circuit return hot water pipe 20 for heating. Then, the hot water for heating is circulated through a circuit that is heated by a heating heat source such as a boiler, is consumed in the greenhouse, and returns to the upstream side of the hot water circuit return hot water pipe 20 again. In this way, it is possible to realize an energy saving effect that enables exhaust heat recovery with the same equipment, although it is a full-fledged carbon dioxide supply system. On the other hand, hot water for heating is usually operated at 60 to 80 ° C., but the temperature is too high to cool and condense the exhaust gas. In this case, the exhaust gas emitted from the high temperature side heat exchanger 11 is suitable for supplying carbon dioxide. Absent.
[0015]
The operation of only carbon dioxide supply and heating is switched by an instruction from the host system of this system, but the switching of the heat medium flow switching automatic valve set 15a stops the operation of the heat medium fluid circulation pump 14a. The operation can be switched smoothly. Since the heat transfer fluid is always flowing, there is no need to temporarily stop the operation of a heat source such as a boiler because of fear of overheating of the high temperature side heat exchanger 11 at the time of operation switching. Therefore, controllability is good. Further, at the time of operation switching, discharge or to hot water circuit out of hot water for heating, since the contamination of the cooling source of cold water hot water circuits in does not occur, it does not inhibit the water quality management of hot water for heating. If proper water quality control is not maintained, heat sources for warm water (heating) such as boilers and hot water circuits for heating are at risk of corrosion and damage.
[0016]
As a cooling source, ground water or agricultural water (cooling source of another system) can be used in addition to a cooling tower. In the case of groundwater or agricultural water, the cold water injection automatic valve 15b is operated to operate the cold water side of the low temperature side heat exchanger 12, but the manual valve 153 of the cold water inlet 18 is opened, and two manual operations of the cold water flow path 21 are performed. By closing the valves 151 and 152 and forming a flow path from the cold water inlet 18 to the low temperature side heat exchanger 12 and the drainage groove 17, a cooling source that does not use the cold water cooling tower 13 can be secured. Therefore, by providing two cooling sources as shown in the figure, it is possible to place the other as a backup in addition to the cooling tower.
In addition, the heat medium flow path switching automatic valve set 15a may be a three-way automatic valve 22 as shown in FIG. The check valve 16 may be omitted.
[0017]
【The invention's effect】
As described above, according to the present invention, one exhaust heat recovery and combined carbon dioxide supply system is installed, and when supplying carbon dioxide, a heat medium is provided in a closed flow path connecting the two heat exchangers 11 and 12. Since the fluid is circulated and the high temperature side heat exchanger 11 is operated as an exhaust gas cooling / condensing device, carbon dioxide gas dehumidified at low temperature is obtained, and carbon dioxide gas is supplied to an appropriate place in the greenhouse by a polyduct or the like. Can do. In the case of heating only, the flow path connecting the two heat exchangers 11 and 12 is incorporated in the heating hot water circuit, and the hot water that has been cooled by applying heat to the greenhouse is returned to the heat source such as a boiler before being returned to the heat source. By passing through the heat exchanger 11, exhaust heat recovery of the exhaust gas becomes possible and energy saving is realized.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
FIG. 2 is a system explanatory diagram showing an operation state when supplying carbon dioxide gas according to the present invention.
FIG. 3 is a system explanatory diagram showing an operation state during exhaust heat recovery according to the present invention.
FIG. 4 is a schematic configuration diagram showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Arrow which shows direction of flow of exhaust gas High temperature side heat exchanger 12 Low temperature side heat exchanger 13 Cooling tower for cold water 14a Circulating pump for heat medium fluid 14b Circulating pump for cold water 151, 152, 153, 154 Manual valve 15a Heat medium flow Automatic valve set for path switching 15b Automatic valve for cold water injection 16 Check valve 17 Drain groove 18 Cold water inlet 19 Heat medium fluid flow path 20 Hot water circuit return hot water pipe 21 Cold water flow path 22 Three-way automatic valve

Claims (5)

施設園芸用の温室に適用される排熱回収兼用炭酸ガス供給システムであって、
温室に炭酸ガスを供給するためのボイラ等の排ガス出口に高温側熱交換器(11)を取付け、該熱交換器(11)は熱媒流体の流路(19)により熱媒流路切替用自動弁セット(15a)および熱媒流体用循環ポンプ(14a)を介して低温側熱交換器(12)へ連結され、該低温側熱交換器(12)は熱媒流体の流路(19)により高温側熱交換器(11)へ連結され、また高温側熱交換器(11)は熱媒流体の流路(19)により熱媒流路切替用自動弁セット(15a)を介して温室の暖房用温湯回路還湯管(20)へ連結され、該還湯管(20)は熱媒流路切替用自動弁セット(15a)と熱媒流体用循環ポンプ(14a)の間で熱媒流体の流路(19)に連結され、また低温側熱交換器(12)は冷水の流路(21)により冷水用冷却塔(13)へ連結され、該冷却塔(13)は冷水の流路(21)により冷却用循環ポンプ(14b)を介して低温側熱交換器(12)へ連結されることを特徴とする排熱回収兼用炭酸ガス供給システム。
A carbon dioxide gas supply system combined with exhaust heat recovery applied to greenhouses for horticulture,
A high-temperature side heat exchanger (11) is attached to an exhaust gas outlet of a boiler or the like for supplying carbon dioxide to the greenhouse, and the heat exchanger (11) is used for switching the heat medium flow path by a heat medium fluid flow path (19). The low temperature side heat exchanger (12) is connected to the low temperature side heat exchanger (12) via an automatic valve set (15a) and a heat medium fluid circulation pump (14a). the coupled to the high temperature side heat exchanger (11), also the high-temperature side heat exchanger (11) flow path of the heat transfer fluid (19) by a greenhouse through the heat medium flow path switching automatic valve set (15a) It is connected to a hot water circuit return hot water pipe (20) for heating, and the hot water pipe (20) is connected between the automatic valve set (15a) for heat medium flow switching and the circulation pump (14a) for the heat medium fluid. The low-temperature side heat exchanger (12) is connected to the flow path (19) of the chilled water by the cold water flow path (21). Coupled to the column (13), the cooling tower (13) is characterized in that it is connected via a circulation pump for cooling (14b) by cold water flow path (21) low-temperature heat exchanger (12) Carbon dioxide gas supply system combined with exhaust heat recovery.
施設園芸用の温室に適用される排熱回収兼用炭酸ガス供給システムであって、
温室に炭酸ガスを供給するためのボイラ等の排ガス出口に高温側熱交換器(11)を取付け、該熱交換器(11)は熱媒流体の流路(19)により三方自動弁(22)および熱媒流体用循環ポンプ(14a)を介して低温側熱交換器(12)へ連結され、該低温側熱交換器(12)は熱媒流体の流路(19)により高温側熱交換器(11)へ連結され、また高温側熱交換器(11)は熱媒流体の流路(19)により三方自動弁(22)を介して温室の暖房用温湯回路還湯管(20)へ連結され、該還湯管(20)は三方自動弁(22)と熱媒流体用循環ポンプ(14a)の間で熱媒流体の流路(19)に連結され、また低温側熱交換器(12)は冷水の流路(21)により冷水用冷却塔(13)へ連結され、該冷却塔(13)は冷水の流路(21)により冷却用循環ポンプ(14b)を介して低温側熱交換器(12)へ連結されることを特徴とする排熱回収兼用炭酸ガス供給システム。
A carbon dioxide gas supply system combined with exhaust heat recovery applied to greenhouses for horticulture,
A high temperature side heat exchanger (11) is attached to an exhaust gas outlet of a boiler or the like for supplying carbon dioxide gas to the greenhouse, and the heat exchanger (11) is a three-way automatic valve (22) by a heat medium fluid passage (19). And a low temperature side heat exchanger (12) via a circulation pump (14a) for the heat medium fluid, and the low temperature side heat exchanger (12) is connected to the high temperature side heat exchanger by the flow path (19) of the heat medium fluid. The high temperature side heat exchanger (11) is connected to the hot water circuit return hot water pipe (20) for heating in the greenhouse via the three-way automatic valve (22) by the flow path (19) of the heat transfer fluid. The return hot water pipe (20) is connected to the heat medium fluid passage (19) between the three-way automatic valve (22) and the heat medium fluid circulation pump (14a), and the low temperature side heat exchanger (12). ) Is connected to the cold water cooling tower (13) by the cold water flow path (21), and the cooling tower (13) is connected to the cold water flow path (13). Heat recovery combined carbon dioxide gas supply system, characterized in that it is connected via a circulation pump for cooling (14b) low-temperature heat exchanger (12) by 1).
冷水注入口(18)から冷水注入用自動弁(15b)を経る流路低温側熱交換器(12)に連結され、さらに該低温側熱交換器(12)から排水溝(17)に至る流路へと連結される構成を更に備えることを特徴とする請求項1または2記載の排熱回収兼用炭酸ガス供給システム。A flow path going through the cold water inlet (18) of cold water for injection Automatic valve (15b) is connected to the low-temperature heat exchanger (12), leading to the drainage groove (17) from further low temperature-side heat exchanger (12) 3. The exhaust heat recovery combined carbon dioxide gas supply system according to claim 1 , further comprising a structure connected to the flow path. 温室に炭酸ガス供給するには、高温側熱交換器(11)と低温側熱交換器(12)との間を熱媒流体の流路(19)と熱媒流体用循環ポンプ(14a)を介して連結される循環流路を形成すると共に、低温側熱交換器(12)と冷水用冷却塔(13)との間を冷水の流路(21)と冷却用循環ポンプ(14b)を介して連結される循環流路を形成し、ボイラ等から排出される高温・高湿の排ガスから高温側熱交換器(11)により熱を奪った熱媒流体を低温側熱交換器(12)に導き、冷水に熱を与えて高温側熱交換器(11)に戻すことを特徴とする請求項1乃至3のいずれか1項に記載の排熱回収兼用炭酸ガス供給システム。 When supplying carbon dioxide to the greenhouse, the hot-side heat exchanger (11) and the low-temperature heat exchanger (12) a flow path for the heat transfer fluid between the (19) and the heat transfer fluid circulation pump (14a ) And a cooling water pump (14b) between the low temperature side heat exchanger (12) and the cooling water cooling tower (13). The heat transfer fluid that has deprived the heat from the high-temperature and high-humidity exhaust gas discharged from the boiler or the like by the high-temperature side heat exchanger (11) is formed in the low-temperature side heat exchanger (12 ) to lead exhaust heat recovery combined carbon dioxide gas supply system according to any one of claims 1 to 3, characterized in that return to the hot-side heat exchanger gives heat (11) to the cold water. 排ガスの排熱回収するには、暖房用温湯回路還湯管(20)の途中に熱媒流体の流路(19)を連結し、暖房用温湯回路還湯管(20)から熱媒流体の流路(19)によって熱媒流体用循環ポンプ(14a)、低温側熱交換器(12)、高温側熱交換器(11)の循環流路を通り暖房用温湯回路還湯管(20)へと戻るバイパス流路を形成し、暖房用温湯回路還湯管(20)内を流れる暖房用温湯の一部を前記バイパス流路に導き、ボイラ等から排出される高温・高湿の排ガスから高温側熱交換器(11)により熱を奪った熱媒流体を暖房用温湯回路還湯管(20)に戻すことを特徴とする請求項1乃至3のいずれか1項に記載の排熱回収兼用炭酸ガス供給システム。 When recovering exhaust heat of exhaust gas flow path of the heat transfer fluid (19) is connected in the middle of the heating hot water circuit Kaeyukan (20), the heating medium from the heating hot water circuit Kaeyukan (20) The heating fluid circulating pump (14a), the low-temperature side heat exchanger (12), and the high-temperature side heat exchanger (11) are circulated by the fluid channel (19) through the circulation channel (20). ), A part of the hot water for heating flowing through the heating hot water circuit return pipe (20) is led to the bypass flow channel, and exhaust gas of high temperature and high humidity discharged from the boiler or the like. The exhaust heat according to any one of claims 1 to 3, wherein the heat transfer fluid deprived of heat from the high temperature side heat exchanger (11) is returned to the heating hot water circuit return hot water pipe (20). recovery also used carbon dioxide gas supply system.
JP2003183561A 2003-05-23 2003-05-23 Carbon dioxide gas supply system combined with exhaust heat recovery in greenhouse for horticulture Expired - Lifetime JP3834567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183561A JP3834567B2 (en) 2003-05-23 2003-05-23 Carbon dioxide gas supply system combined with exhaust heat recovery in greenhouse for horticulture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183561A JP3834567B2 (en) 2003-05-23 2003-05-23 Carbon dioxide gas supply system combined with exhaust heat recovery in greenhouse for horticulture

Publications (2)

Publication Number Publication Date
JP2004344154A JP2004344154A (en) 2004-12-09
JP3834567B2 true JP3834567B2 (en) 2006-10-18

Family

ID=33535329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183561A Expired - Lifetime JP3834567B2 (en) 2003-05-23 2003-05-23 Carbon dioxide gas supply system combined with exhaust heat recovery in greenhouse for horticulture

Country Status (1)

Country Link
JP (1) JP3834567B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199687B1 (en) * 2009-10-01 2012-11-08 주식회사 경동나비엔 Operating method of compact cogeneration system
JP5451473B2 (en) * 2010-03-18 2014-03-26 大阪瓦斯株式会社 Greenhouse cultivation system
KR101681601B1 (en) 2012-07-10 2016-12-01 가부시키가이샤 덴소 Carbon dioxide supply device
JP6067621B2 (en) * 2014-06-24 2017-01-25 ネポン株式会社 Carbon dioxide generation system
JP7077817B2 (en) * 2018-06-25 2022-05-31 株式会社ノーリツ CO2 supply device

Also Published As

Publication number Publication date
JP2004344154A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP3886977B2 (en) Combined air conditioning system
DK3098541T3 (en) CO2 HEATERS
JP2010096436A (en) Ejector type refrigeration system
JP3834567B2 (en) Carbon dioxide gas supply system combined with exhaust heat recovery in greenhouse for horticulture
JP2005061677A (en) Hot-water supply heater
JP2003035467A (en) Engine cooling equipment
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
CN101545695B (en) Absorption type water cooling and warming machine
JPH10238972A (en) Heat transfer unit
CN210178546U (en) Air compressor machine heat energy recycle circulation system
KR101147973B1 (en) Hot water supply system of dyeing process using heat pump
JP2004028363A (en) Antifreezer in heat pump type water heater
CN205351855U (en) Single cold unit heat source tower heat pump system
JP3733119B2 (en) Heat pump water heater / heater
KR101627659B1 (en) Hybrid heat pump boiler system
JP2003214699A (en) Antifreezer in heat pump type water heater
CN212566376U (en) Auxiliary heating type air source heat pump device
JPH04158174A (en) Heating and cooling system with heat pump
JPH033902Y2 (en)
JP2007120846A (en) Hot water supply system and its control method
JP2645855B2 (en) Refrigeration equipment
CN118669885A (en) Chilled water air conditioning system and control method thereof
JPH0626731A (en) Cooler, heater and hot water supplying device
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
CN106461235A (en) Boiler module for district or central heating without combustion unit, which considers humidifying and cooling operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Ref document number: 3834567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

EXPY Cancellation because of completion of term