JP3834487B2 - Endoscope system - Google Patents

Endoscope system Download PDF

Info

Publication number
JP3834487B2
JP3834487B2 JP2001241215A JP2001241215A JP3834487B2 JP 3834487 B2 JP3834487 B2 JP 3834487B2 JP 2001241215 A JP2001241215 A JP 2001241215A JP 2001241215 A JP2001241215 A JP 2001241215A JP 3834487 B2 JP3834487 B2 JP 3834487B2
Authority
JP
Japan
Prior art keywords
shape detection
detection probe
endoscope
distal end
insertion portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001241215A
Other languages
Japanese (ja)
Other versions
JP2002159437A (en
Inventor
隆康 宮城
厚 渡辺
道雄 佐藤
秀雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2001241215A priority Critical patent/JP3834487B2/en
Publication of JP2002159437A publication Critical patent/JP2002159437A/en
Application granted granted Critical
Publication of JP3834487B2 publication Critical patent/JP3834487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、生体の体腔内に挿入した状態において、挿入部の挿入形状を形状検出用モニターで検出できる内視鏡に関する。
【0002】
【従来の技術】
内視鏡の挿入部に形状検出プローブを内蔵し、術者や助手が生体の体腔内に挿入した挿入部の湾曲形状を確認できるようにした形状検出用内視鏡は、例えば特開平7−111969号公報で知られている。
【0003】
この形状検出用内視鏡は、内視鏡の挿入部に複数の磁界発生用コイルを軸方向に間隔を存して配置し、各磁界発生用コイルから発生される磁界を検出して形状検出用モニターに表示し、術者や助手がモニターによって生体の体腔内に挿入した挿入部の湾曲形状を確認しながら内視鏡を挿入操作できるようになっている。
【0004】
形状検出用内視鏡の具体的構成を説明すると、図15(a)(b)に示すように構成されている。すなわち、内視鏡の挿入部1は、可撓管部2と、湾曲管部3及び先端構成部4とから構成されている。また、形状検出プローブ5は、合成樹脂材料からなる芯線6の軸方向に所定間隔を存して複数の磁界発生用コイル7a,7b,7c,7d……を配置し、その芯線6の先端部に固定ピン8を設けた構造である。
【0005】
この形状検出プローブ5は、内視鏡の挿入部1の軸方向に挿通されている。また、先端構成部4の先端金物としての硬質部9には固定ピン8を挿入する固定穴10が設けられ、この固定穴10に固定ピン8を挿入し、側方からビス11によって固定ピン8が硬質部9に固定されている。
【0006】
従って、内視鏡の挿入部1に内蔵された形状検出プローブ5の複数の磁界発生用コイル7a,7b,7c,7d……は挿入部1内の一定の位置にあり、各磁界発生用コイル7a,7b,7c,7d……から発生される磁界を検出して形状検出用モニターに表示することにより、体腔内に挿入した挿入部1の湾曲形状を確認することができる。
【0007】
【発明が解決しようとする課題】
しかしながら、内視鏡には、胃用内視鏡、十二指腸用内視鏡、大腸用内視鏡など複数の機種があり、機種によって挿入部1の太さ、長さが異なり、また先端構成部4の硬質部9の外径及び軸方向の長さが異なる。
【0008】
従って、前述したように、硬質部9の固定穴10に固定ピン8を挿入し、ビス11によって固定ピン8を固定した場合、硬質部9の軸方向の長さによって先端構成部4の最先端4aと最前端の磁界発生用コイル7aの距離Lが異なってくる。
【0009】
図15は機種が異なる内視鏡の挿入部1を示し、(a)は硬質部9の軸方向の長さが長い内視鏡であり、(b)は硬質部9の軸方向の長さが短い内視鏡である。(a)の場合は、先端構成部4の最先端4aと最前端の磁界発生用コイル7aの距離L1で、(b)の場合は、先端構成部4の最先端4aと最前端の磁界発生用コイル7aの距離L2となり、結果として形状検出用モニターに表示される挿入部1の湾曲形状が内視鏡の機種によって異なってしまい、挿入部1の湾曲形状を正確に把握できない。
【0010】
一方、図16に示すように、挿入部1の可撓管部12は、螺旋管13の外側に金属の網状部材14を層状に重ね、さらにその外側にゴムあるいは樹脂の被覆層15を設けた三層構造である。また、湾曲管部16は湾曲駒17の外側に金属の網状部材18を層状に重ね、さらにその外側にゴムあるいは樹脂の被覆層19を設けた三層構造である。
【0011】
そして、湾曲管部16の最後端の湾曲駒17に接続口金20を接続する一方、可撓管部12の螺旋管13と網状部材14とを半田で固定し、この半田で固定した部分Sを接続口金20に接続している。
【0012】
従って、可撓管部12と湾曲管部17との接続部分は複数の金属部材で覆われた構造であるため、この接続部分に位置する例えば磁界発生用コイル7dは金属部材によって覆われ、磁界発生用コイル7dが発生する磁界が減衰されて表示精度が落ちるという問題も生じる。
【0013】
さらに、内視鏡の挿入部1に内蔵された形状検出用プローブ5のうち、一つの磁界発生用コイルが故障しても、挿入部1の湾曲形状を正確に把握できないため形状検出用プローブ5の全体を交換する必要があるが、従来は、内視鏡を分解して形状検出用プローブ5を新しいものと交換するか、挿入部1の全体を新しいものと交換する手段が採られていた。従って、修理費用が嵩み、また修理に多くの時間、手間が要していた。
【0014】
この発明は、前記事情に着目してなされたもので、その目的とするところは、内視鏡の機種が異なっても形状検出用プローブの磁界発生用コイルまたは磁界検出用コイルの位置を一定にすることができ、挿入部の挿入形状を正確にモニターに表示できる内視鏡を提供することにある。
【0015】
【課題を解決するための手段】
前記目的を達成するために、本発明に係る、それぞれ異なる挿入部を有する複数機種の内視鏡からなる内視鏡システムでは、前記挿入部は、磁界発生用コイルおよび検出用コイルのうち、少なくとも一方のコイルを前記挿入部の軸方向に間隔を存して複数設けた、複数の機種に共通して配置可能な形状検出プローブと、前記挿入部の先端面と、前記形状検出プローブの最も先端側の前記コイルとの距離が一定となる、前記挿入部の先端面から所定距離離間した位置に前記形状検出プローブを固定する固定手段を備え、前記挿入部の先端部を構成する先端構成部とを備えていることを特徴とする。
また、本発明に係る、それぞれ異なる挿入部を有する複数機種の内視鏡からなる内視鏡システムでは、前記挿入部は、磁界発生用コイルおよび検出用コイルのうち、少なくとも一方のコイルを前記挿入部の軸方向に間隔を存して複数設けた、複数の機種に共通して配置可能な形状検出プローブと、前記挿入部の先端面と、前記形状検出プローブの最も先端側の前記コイルとの距離が一定となる、前記挿入部の先端面から所定距離離間した位置に前記形状検出プローブが挿入されて突き当てられる穴部を備え、前記挿入部の先端部を構成する先端構成部と、前記穴部に対して前記形状検出プローブを固定する固定部材とを備えていることを特徴とする。
【0016】
前記構成によれば、内視鏡の機種が異なっても形状検出用プローブの磁界発生用コイルまたは磁界検出用コイルの位置を一定にすることができ、挿入部の挿入形状を正確に形状検出用モニターに表示できるため、挿入操作性の向上を図ることができる。
【0017】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
【0018】
図1〜図5は第1の実施形態を示し、内視鏡装置の全体の概略的構成図である。図1中、符号21は内視鏡であり、内視鏡21は、操作部22と、この操作部22に接続された挿入部23及びユニバーサルコード24とから構成されている。挿入部23は、可撓管部25と湾曲管部26及び先端構成部27とから構成されている。
【0019】
ユニバーサルコード24の先端部にはコネクタ28が設けられ、このコネクタ28は光源装置29に接続されている。また、コネクタ28はビデオプロセッサ30を介して内視鏡観察画像を表示するモニター31に接続されている。さらに、コネクタ28には形状検出用ケーブル32の一端が形状検出用コネクタ33を介して接続され、この他端は形状検出用制御装置34に接続されている。
【0020】
形状検出用制御装置34にはアンテナ35が接続されているとともに、形状検出用モニター36が接続されている。この形状検出用モニター36は内視鏡21の挿入部23の挿入形状を表示するようになっている。
【0021】
前記内視鏡21には図2〜図4に示すように挿入部23の湾曲形状を検出する形状検出プローブ38が内蔵されている。すなわち、図2(a)は湾曲管部と形状検出プローブの相対位置関係を示す縦断側面図及び側面図、図2(b)はX部を拡大した断面図、図3は先端構成部の縦断側面図、図4は湾曲管部と可撓管部との接続部分の縦断側面図である。
【0022】
図2(a)(b)に示すように、形状検出プローブ38は合成樹脂材料からなる芯線39の軸方向に所定間隔を存して複数の磁界発生用コイル40a〜40d……(以下、単にコイルという)が配置されている。これらコイル40a〜40d……は芯線39に対して同心的に嵌合され、その一端は接着剤41によって芯線39に固定され、他端は基板42を介して接着剤41によって芯線39に固定されている。基板42には2本のリード線43が接続され、接続部周辺が接着剤41’で覆われており、各コイル40a〜40d……のリード線43は前記形状検出用制御装置34に接続されている。さらに、芯線39を含む各コイル40a〜40d……は合成樹脂チューブ44によって被覆されている。
【0023】
形状検出プローブ38の先端部には芯線39に対して嵌合した状態で、先端方向に突出する固定ピン45が固定されており、固定ピン45の近傍に最前端のコイル40aが位置し、図示しないが挿入部23の基端部近傍に最後端のコイルが位置するように挿入部23の軸方向の略全長に亘って複数のコイルが間隔を存して配置されている。
【0024】
前記先端構成部27には、図3に示すように、金属等によって形成された硬質部46が設けられ、この硬質部46の外周は絶縁カバー47によって被覆されている。硬質部46の一部には軸方向に貫通する貫通穴48が設けられ、この貫通穴48には対物レンズ系49及び固体撮像素子50が設けられている。
【0025】
さらに、硬質部46にはその後端から前端に向かって底部を有する固定穴51が設けられているとともに、この固定穴51と直角に硬質部46の側部からビス穴52が穿設されている。固定穴51には前記形状検出プローブ38の固定ピン45が挿入され、この固定ピン45は側方からビス穴52にねじ込まれたビス53によって硬質部46に固定されている。
【0026】
ここで、Aは先端構成部27の最先端と最前端のコイル40aとの距離を示し、Bは先端構成部27の最先端と固定ピン45の先端との距離を示し、Cは先端構成部27の最先端と硬質部46の後端面との距離を示し、Dは先端構成部27の最先端と湾曲管部26の最前端ピンとの距離を示す。
【0027】
前記可撓管部25と湾曲管部26は、図4に示すように構成されている。すなわち、可撓管部25は、螺旋管54の外側に金属の網状部材55を層状に重ね、さらにその外側にゴムあるいは樹脂の被覆層56を設けた三層構造である。また、湾曲管部26は湾曲駒57の外側に金属の網状部材58を層状に重ね、さらにその外側にゴムあるいは樹脂の被覆層59を設けた三層構造である。
【0028】
そして、湾曲管部26の最後端の湾曲駒57には接続口金60が固定されている。一方、可撓管部25の先端部おける湾曲管部26との接続領域Eにおける螺旋管54と網状部材55とは半田で固定されており、この接続領域E、つまり半田で固定した部分が接続口金60に接続されている。
【0029】
従って、前記形状検出プローブ38は、前述のように構成された可撓管部25と湾曲管部26及び接続領域Eに挿通されているが、最前端のコイル40aは先端構成部27の近傍に位置し、2番目と3番目のコイル40b,40cは湾曲管部26に位置し、4番目のコイル40dは、可撓管部25と湾曲管部26との接続領域Eを避け、可撓管部25側に偏って配置されている(図2及び図4参照)。
【0030】
すなわち、可撓管部25と湾曲管部26との接続領域Eは複数の金属部材で覆われた構造であるため、この接続領域Eにコイル40dを位置すると、金属部材によって覆われてコイル40dが発生する磁界が減衰されて表示精度が落ちるという問題を解消するために接続領域Eを避け、可撓管部25側に偏って配置している。
【0031】
図5は機種が異なる複数の内視鏡21における先端構成部27を示すもので、本実施形態は、先端構成部27の最先端と硬質部46の後端面との距離Cと先端構成部27の最先端と湾曲管部26の最前端ピンとの距離Dが異なる4種類を示し、図5(a)が最も距離C、Dが短く、同図(b)(c)(d)の順に距離C、Dが長い場合を示す。
【0032】
各内視鏡21に設けられる形状検出プローブ38は同一であり、固定ピン45の長さもすべて同一である。そこで、各内視鏡21の先端構成部27における硬質部46に設けられた固定穴51の深さFを調整して複数の機種の内視鏡21における先端構成部27の最先端と最前端のコイル40aとの距離Aを同じになっており、挿入部内の各コイルの内視鏡先端からの位置は機種によらず同じとなる。
【0033】
すなわち、図5(a)の固定穴51の深さはF1、図5(b)の固定穴51の深さはF2、図5(c)の固定穴51の深さはF3、図5(d)の固定穴51の深さはF4であり、F1<F2<F3<F4の関係にあり、図5(d)においては、硬質部46の後端面に座ぐり部51aを形成して固定穴51の深さF4を設定している。
【0034】
このように形状検出プローブ38の固定ピン45を挿入する固定穴51の深さFを調整することにより、内視鏡21の機種によって先端構成部27の最先端と硬質部46の後端面との距離Cが異なっても、先端構成部27の最先端と最前端のコイル40aとの距離Aを同じにすることができる。
【0035】
従って、内視鏡21の機種が異なっても形状検出用プローブ38の磁界発生用コイル40a〜40d……の位置を一定にすることができ、挿入部23の挿入形状を正確に形状検出用モニター36に表示できるため、挿入操作性の向上を図ることができる。また、機種が異なっても同一の形状検出プローブ38を共通に使用できる。
【0036】
図6〜図11は第2の実施形態を示し、第1の実施形態と同一構成部分は同一番号を付して説明を省略する。
【0037】
図6は内視鏡21の全体構成を示し、図7は図6のG部を分解して拡大した側面図である。本実施形態は、内視鏡21に内蔵された旧形状検出プローブ38が故障したとき、新形状検出プローブ38’に交換する際に、内視鏡21の分解個所を最小限にして交換可能にしたものである。
【0038】
図7に示すように、内視鏡21の湾曲管部26における最前端の湾曲駒57と先端構成部27の硬質部46とを分離し、旧形状検出プローブ38を露出させる。また、図8に示すように、操作部22と挿入部23の可撓管部25とを分離して旧形状検出プローブ38を露出させる。さらに、図9に示すように、ユニバーサルコード24とコネクタ28とを分離して旧形状検出プローブ38を露出させる。
【0039】
この状態で、図7に示すように、ビス53を緩め、旧形状検出プローブ38の固定ピン45を固定穴51から抜き取り、固定ピン45とダミーチューブ61とを接続チューブ62によって接続する。図10に示すように、ダミーチューブ61は合成樹脂材料等の可撓性を有するチューブによって形状検出プローブ38より細径に形成され、その基端部には抜止め用の鍔部63aを有する接続部材63が固定されている。
【0040】
そこで、接続チューブ62の一端部を固定ピン45に嵌合した状態で旧形状検出プローブ38と接続するとともに、その他端部を接続部材63の鍔部63aを包容した状態で、例えば熱収縮させて接続する。
【0041】
このように旧形状検出プローブ38とダミーチューブ61を接続した状態で、図8に示すように、旧形状検出プローブ38を操作部22方向に引っ張ると、旧形状検出プローブ38が挿入部23から抜け、代わりにダミーチューブ61が挿入部23に引き込まれる。
【0042】
ダミーチューブ61を操作部22まで引き込んだ後、図9に示すように、ユニバーサルコード24の端部において、旧形状検出プローブ38をコネクタ28方向に引っ張ると、旧形状検出プローブ38がユニバーサルコード24から抜け、代わりにダミーチューブ61がユニバーサルコード24に引き込まれる。
【0043】
このように挿入部23から操作部22を経由してユニバーサルコード24までダミーチューブ61を引き込んだ後、図11に示すように、ユニバーサルコード24の端部において、旧形状検出プローブ38を接続チューブ62から取り外し、代わって新形状検出プローブ38’を接続チューブ62に接続する。
【0044】
この状態で、前述と逆に操作部22において、ダミーチューブ61を操作部22方向に引っ張ると、ダミーチューブ61がユニバーサルコード24から抜け、代わりに新形状検出プローブ38’がユニバーサルコード24に引き込まれる。
【0045】
次に、挿入部23の先端部において、ダミーチューブ61を先端構成部27方向に引っ張ると、ダミーチューブ61が挿入部23から抜け、代わりに新形状検出プローブ38’が挿入部23に引き込まれる。
【0046】
このようにダミーチューブ61を用いることにより、細くて長い挿入部23及びユニバーサルコード24においても、故障した旧形状検出プローブ38を抜き取って新形状検出プローブ38’に簡単に交換することができ、従来のように内視鏡全体を分解したり、挿入部全体を交換する必要がなく、修理費用の節減及び修理時間の短縮を図ることができる。
【0047】
図12は第3の実施形態を示し、第2の実施形態と同一構成部分は同一番号を付して説明を省略する。本実施形態は、第2の実施形態と基本的に同一であるが、ユニバーサルコード24とコネクタ28とを分離して旧形状検出プローブ38を露出させた後、新形状検出プローブ38aを接続チューブ62によって接続する。
【0048】
そして、旧形状検出プローブ38を操作部22方向に引っ張ると、旧形状検出プローブ38がユニバーサルコード24から抜け、代わりに新形状検出プローブ38’がユニバーサルコード24に引き込まれる。
【0049】
次に、挿入部23の先端部において、旧形状検出プローブ38を先端構成部27方向に引っ張ると、旧形状検出プローブ38が挿入部23から抜け、代わりに新形状検出プローブ38’が挿入部23に引き込まれる。
【0050】
このようにダミーチューブ61を用いることなく、旧形状検出プローブ38と新形状検出プローブ38’を接続した後、旧形状検出プローブ38を引き抜くことにより、新形状検出プローブ38’に簡単に交換することができ、従来のように内視鏡全体を分解したり、挿入部全体を交換する必要がなく、修理費用の節減及び修理時間の短縮を図ることができる。
【0051】
図13は第4の実施形態を示し、内視鏡装置の全体の概略的構成図である。
【0052】
形状検出装置100に第1の実施形態のアンテナ35の代わりにループ状アンテナ101がケーブル102を介して接続されていること以外は第1の実施形態と同様の構成になっている。図示しないが、挿入部23には形状検出プローブ38が内蔵されており、形状検出プローブ38には挿入部23の軸方向の略全長に亘って複数のコイル40a’〜40d’……が間隔を存して配置されている。
【0053】
形状検出装置100はケーブル102を介してループ状アンテナ101に高周波電流を供給する回路(図示しない)と複数の磁界検出用コイル40a’〜40d’……が発生した信号をリード線43、形状検出用ケーブル32を介して検知して画像処理を行い、形状検出用モニター36に表示する信号処理回路(図示しない)とを有している。
【0054】
次に、第4の実施形態の作用について説明する。
【0055】
形状検出装置100がケーブル102を介してループ状アンテナ101に高周波電流を供給することで、ループ状アンテナ101は磁界が発生する。形状検出プローブ38に配置された複数の磁界検出用コイル40a’〜40d’……はループ状アンテナ101から発生した磁界を受信することにより、誘導起電圧を発生し、この発生した電圧信号がリード線43、形状検出用ケーブル32を介して形状検出装置100に入力される。形状検出装置100は各磁界検出用コイル40a’〜40d’……の位置を検出することにより、内視鏡21の挿入部23の形状を推定して形状検出用モニター36に表示する。その他の作用は第1の実施形態と同じである。
【0056】
第4の実施形態によれば、第1の実施形態に加えて次の効果がある。
【0057】
第1の実施形態ではリード線43に高周波電流が流れることにより多少の電磁波が発生する。内視鏡21の内部には多くの内蔵物が配置されており、スペース上、十分な電磁シールドが施せないため、この電磁波が内視鏡21の外部に放出され、アンテナ35に受信されて挿入部21の形状検出精度を落とす要因になっていた。しかし、第4の実施形態によれば、ケーブル102に電磁シールドを施すことは容易なのでループ状アンテナ101のみから電磁波を受信することが可能となり、挿入部23の形状検出精度を上げることが可能となる。
【0058】
図14は開示例を示し、形状検出プローブ38を内蔵した挿入部23の湾曲管部26の横断面図である。外周側には湾曲駒57に固定された4個のワイヤガイド部材65a〜65dが周方向に等間隔に設けられている。また、ワイヤガイド部材65aと65bとの間及び65cと65dとの間にはそれぞれライトガイドファイバー66a,66bが配置されている。さらに、ワイヤガイド部材65bと65cとの間には鉗子チャンネル67が配置されている。
【0059】
また、ワイヤガイド部材65aと65dとの間には形状検出プローブ38が配置され、この形状検出プローブ38の近傍で軸心寄りには固体撮像素子(図示しない)と接続する信号ケーブル68及び送気送水チャンネル69が配置されている。
【0060】
挿入部23の湾曲管部26は操作部22の操作ノブの操作によって上下及び左右方向に湾曲されるため、湾曲に伴って湾曲管部26に挿通された内蔵物は軸方向に移動するとともに径方向にも移動する。従って、湾曲操作に伴って内蔵物相互が干渉しあうことが避けられないが、形状検出プローブ38を内蔵物のうちで最も硬い鉗子チャンネル67から遠ざけ、比較的軟質の信号ケーブル68及び送気送水チャンネル69に近づけて配置することにより、形状検出プローブ38の故障を少なくすることができる。
【0061】
前述した各実施形態によれば、次のような構成が得られる。
【0062】
(付記1)操作部と、この操作部に接続された挿入部と、この挿入部の先端部に設けられた先端構成部とからなる内視鏡において、複数の磁界発生または検出用のコイルを軸方向に間隔を存して設けた形状検出プローブを前記挿入部の少なくとも一部に軸方向に沿って挿通するとともに、前記先端構成部の最先端と最前端の前記コイルとの距離を機種の異なる複数の内視鏡においても同じにしたことを特徴とする内視鏡。
【0063】
(付記2)前記磁界発生用コイルあるいは磁界検出用コイルは、挿入部のうちで磁界の減衰が大となる部分を避けて配置されていることを特徴とする付記1記載の内視鏡。
【0064】
(付記3)前記形状検出プローブは、内視鏡本体から分離可能に配置されていることを特徴とする付記1記載の内視鏡。
【0065】
(付記4)前記形状検出プローブは、ダミーチューブと接続して内視鏡本体から抜き取って新形状検出プローブと交換可能であり、前記ダミーチューブは形状検出プローブより細径であることを特徴とする付記1記載の内視鏡。
【0066】
(付記5)前記形状検出プローブは、新形状検出プローブと接続して内視鏡本体から抜き取り、新形状検出プローブを内視鏡本体に引き込んで交換可能であることを特徴とする付記1記載の内視鏡。
【0067】
(付記6)前記形状検出プローブは、挿入部の湾曲管部では、硬質の内蔵物と遠ざけて配置されていることを特徴とする付記1記載の内視鏡。
【0068】
【発明の効果】
以上説明したように、この発明によれば、複数の磁界発生または検出用コイルを軸方向に間隔を存して設けた形状検出プローブを挿入部の軸方向に沿って挿通するとともに、先端構成部の最先端と最前端の前記コイルとの距離を機種の異なる複数の内視鏡においても同じにしたことを特徴とする。
【0069】
従って、内視鏡の機種が異なっても形状検出用プローブの磁界発生または検出用コイルの位置を一定にすることができ、挿入部の挿入形状を正確に形状検出用モニターに表示できるため、挿入操作性の向上を図ることができるという効果がある。
【図面の簡単な説明】
【図1】この発明の第1の実施形態を示し、内視鏡装置全体の構成図。
【図2】同実施形態を示し、(a)は湾曲管部と形状検出プローブの相対位置関係を示す縦断側面図及び側面図、(b)はX部を拡大した断面図。
【図3】同実施形態を示す先端構成部の縦断側面図。
【図4】同実施形態の湾曲管部と可撓管部との接続部分の縦断側面図。
【図5】同実施形態を示し、(a)〜(d)は異なる機種の内視鏡における形状検出プローブの取付け状態を示す縦断側面図。
【図6】この発明の第2の実施形態を示す内視鏡の全体構成図。
【図7】同実施形態を示し、内視鏡の湾曲管部と先端構成部とを分離し、旧形状検出プローブを露出させた状態の側面図。
【図8】同実施形態を示し、操作部と挿入部とを分離して旧形状検出プローブを露出させた状態の側面図。
【図9】同実施形態を示し、ユニバーサルコードとコネクタとを分離して旧形状検出プローブを露出させた状態の側面図。
【図10】同実施形態を示し、ダミーチューブと形状検出プローブとの接続状態を拡大して示す縦断側面図。
【図11】同実施形態を示し、ダミーチューブと新形状検出プローブとを接続した状態の側面図。
【図12】この発明の第3の実施形態を示し、旧形状検出プローブと新形状検出プローブとを接続した状態の側面図。
【図13】この発明の第4の実施形態を示し、内視鏡装置全体の構成図。
【図14】開示例を示し、内視鏡の湾曲管部の横断面図。
【図15】(a)(b)は従来の機種が異なる内視鏡の概略的構成図。
【図16】同じく従来の可撓管部と湾曲管部の接続部における縦断側面図。
【符号の説明】
21…内視鏡
22…操作部
23…挿入部
27…先端構成部
38…形状検出プローブ
40a〜40d…磁界発生用コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an endoscope capable of detecting an insertion shape of an insertion portion with a shape detection monitor in a state of being inserted into a body cavity of a living body.
[0002]
[Prior art]
A shape detection endoscope in which a shape detection probe is incorporated in an insertion portion of an endoscope so that an operator or an assistant can confirm the curved shape of the insertion portion inserted into a body cavity of a living body is disclosed in, for example, Japanese Patent Laid-Open No. 7-1993. No. 111969.
[0003]
In this endoscope for shape detection, a plurality of magnetic field generating coils are arranged at intervals in the axial direction at an insertion portion of the endoscope, and a shape is detected by detecting a magnetic field generated from each magnetic field generating coil. The endoscope can be inserted and operated while confirming the curved shape of the insertion part inserted into the body cavity of the living body by the operator and assistant using the monitor.
[0004]
The specific configuration of the shape detection endoscope will be described as shown in FIGS. 15 (a) and 15 (b). That is, the endoscope insertion portion 1 includes a flexible tube portion 2, a bending tube portion 3, and a distal end configuration portion 4. The shape detection probe 5 has a plurality of magnetic field generating coils 7a, 7b, 7c, 7d,... Arranged at predetermined intervals in the axial direction of the core wire 6 made of a synthetic resin material. This is a structure in which a fixing pin 8 is provided.
[0005]
The shape detection probe 5 is inserted in the axial direction of the insertion portion 1 of the endoscope. Further, a fixing hole 10 into which the fixing pin 8 is inserted is provided in the hard part 9 as the tip metal part of the tip component part 4. Is fixed to the hard portion 9.
[0006]
Therefore, the plurality of magnetic field generating coils 7a, 7b, 7c, 7d,... Of the shape detection probe 5 built in the insertion section 1 of the endoscope are at fixed positions in the insertion section 1, and each magnetic field generation coil By detecting the magnetic field generated from 7a, 7b, 7c, 7d... And displaying it on the shape detection monitor, the curved shape of the insertion portion 1 inserted into the body cavity can be confirmed.
[0007]
[Problems to be solved by the invention]
However, there are a plurality of types of endoscopes such as a gastric endoscope, a duodenum endoscope, and a large intestine endoscope. The four hard portions 9 have different outer diameters and axial lengths.
[0008]
Therefore, as described above, when the fixing pin 8 is inserted into the fixing hole 10 of the hard portion 9 and the fixing pin 8 is fixed by the screw 11, the tip of the tip component portion 4 depends on the axial length of the hard portion 9. The distance L between 4a and the foremost magnetic field generating coil 7a is different.
[0009]
FIG. 15 shows an endoscope insertion portion 1 of different types, (a) is an endoscope in which the length of the hard portion 9 in the axial direction is long, and (b) is the length of the hard portion 9 in the axial direction. Is a short endoscope. In the case of (a), the distance L1 between the most distal end 4a of the tip constituting portion 4 and the foremost magnetic field generating coil 7a, and in the case of (b), the leading end 4a of the tip constituting portion 4 and the foremost magnetic field generation. As a result, the curved shape of the insertion portion 1 displayed on the shape detection monitor differs depending on the endoscope model, and the curved shape of the insertion portion 1 cannot be accurately grasped.
[0010]
On the other hand, as shown in FIG. 16, the flexible tube portion 12 of the insertion portion 1 has a metal mesh member 14 stacked on the outside of the spiral tube 13 and a rubber or resin coating layer 15 provided on the outside thereof. It has a three-layer structure. The bending tube portion 16 has a three-layer structure in which a metal mesh member 18 is layered on the outside of the bending piece 17 and a rubber or resin coating layer 19 is provided on the outside.
[0011]
Then, while connecting the connection cap 20 to the bending piece 17 at the rearmost end of the bending tube portion 16, the spiral tube 13 and the mesh member 14 of the flexible tube portion 12 are fixed with solder, and the portion S fixed with this solder is fixed. The connection base 20 is connected.
[0012]
Therefore, since the connection portion between the flexible tube portion 12 and the bending tube portion 17 has a structure covered with a plurality of metal members, for example, the magnetic field generating coil 7d located at this connection portion is covered with the metal member, Another problem is that the magnetic field generated by the generating coil 7d is attenuated and the display accuracy is lowered.
[0013]
Further, among the shape detection probes 5 built in the insertion portion 1 of the endoscope, even if one magnetic field generating coil fails, the curved shape of the insertion portion 1 cannot be accurately grasped, so that the shape detection probe 5 is used. However, conventionally, a means has been employed in which the endoscope is disassembled and the shape detection probe 5 is replaced with a new one, or the entire insertion portion 1 is replaced with a new one. . Therefore, the repair cost is high, and a lot of time and labor are required for the repair.
[0014]
The present invention has been made paying attention to the above circumstances, and the purpose thereof is to make the position of the magnetic field generating coil or the magnetic field detecting coil of the shape detecting probe constant even if the endoscope model is different. Another object of the present invention is to provide an endoscope that can accurately display an insertion shape of an insertion portion on a monitor.
[0015]
[Means for Solving the Problems]
To achieve the above purpose, In the endoscope system comprising a plurality of types of endoscopes having different insertion portions according to the present invention, The insertion portion is a shape detection that can be arranged in common for a plurality of models, in which at least one of the magnetic field generating coil and the detection coil is provided at intervals in the axial direction of the insertion portion. The distance between the probe, the distal end surface of the insertion portion, and the coil on the most distal end side of the shape detection probe is constant. Tip surface A fixing means for fixing the shape detection probe at a position spaced apart from a predetermined distance, and a distal end constituting portion constituting the distal end portion of the insertion portion.
Also, In the endoscope system comprising a plurality of types of endoscopes having different insertion portions according to the present invention, The insertion portion is a shape detection that can be arranged in common for a plurality of models, in which at least one of the magnetic field generating coil and the detection coil is provided at intervals in the axial direction of the insertion portion. The distance between the probe, the distal end surface of the insertion portion, and the coil on the most distal end side of the shape detection probe is constant. Tip surface A hole portion into which the shape detection probe is inserted and abutted at a predetermined distance from the distal end of the insertion portion, and the shape detection probe is fixed to the hole portion. And a fixing member.
[0016]
According to the above configuration, the position of the magnetic field generating coil or magnetic field detecting coil of the shape detecting probe can be made constant even when the endoscope models are different, and the insertion shape of the insertion portion can be accurately detected. Since it can be displayed on the monitor, the insertion operability can be improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
1 to 5 show a first embodiment and are schematic configuration diagrams of an entire endoscope apparatus. In FIG. 1, reference numeral 21 denotes an endoscope. The endoscope 21 includes an operation unit 22, an insertion unit 23 connected to the operation unit 22, and a universal cord 24. The insertion portion 23 includes a flexible tube portion 25, a bending tube portion 26, and a tip configuration portion 27.
[0019]
A connector 28 is provided at the tip of the universal cord 24, and this connector 28 is connected to a light source device 29. The connector 28 is connected via a video processor 30 to a monitor 31 that displays an endoscopic observation image. Furthermore, one end of a shape detection cable 32 is connected to the connector 28 via a shape detection connector 33, and the other end is connected to a shape detection control device 34.
[0020]
An antenna 35 and a shape detection monitor 36 are connected to the shape detection control device 34. The shape detection monitor 36 displays the insertion shape of the insertion portion 23 of the endoscope 21.
[0021]
As shown in FIGS. 2 to 4, the endoscope 21 incorporates a shape detection probe 38 that detects the curved shape of the insertion portion 23. 2A is a longitudinal side view and a side view showing the relative positional relationship between the bending tube portion and the shape detection probe, FIG. 2B is an enlarged sectional view of the X portion, and FIG. FIG. 4 is a side view, and FIG. 4 is a longitudinal side view of a connection portion between the bending tube portion and the flexible tube portion.
[0022]
As shown in FIGS. 2A and 2B, the shape detection probe 38 has a plurality of magnetic field generating coils 40a to 40d (hereinafter simply referred to as “synthetic resin material”) at predetermined intervals in the axial direction of the core wire 39 made of a synthetic resin material. Coil). These coils 40a to 40d are concentrically fitted to the core wire 39, one end of which is fixed to the core wire 39 by an adhesive 41, and the other end is fixed to the core wire 39 by an adhesive 41 through a substrate 42. ing. Two lead wires 43 are connected to the substrate 42, and the periphery of the connecting portion is covered with an adhesive 41 ′. The lead wires 43 of the coils 40 a to 40 d... Are connected to the shape detection control device 34. ing. Further, each of the coils 40 a to 40 d... Including the core wire 39 is covered with a synthetic resin tube 44.
[0023]
A fixed pin 45 protruding in the distal direction in a state of being fitted to the core wire 39 is fixed to the distal end portion of the shape detection probe 38, and the foremost coil 40a is located in the vicinity of the fixed pin 45. However, a plurality of coils are arranged at intervals over substantially the entire length of the insertion portion 23 in the axial direction so that the rearmost coil is positioned in the vicinity of the proximal end portion of the insertion portion 23.
[0024]
As shown in FIG. 3, a hard portion 46 made of metal or the like is provided on the tip constituting portion 27, and the outer periphery of the hard portion 46 is covered with an insulating cover 47. A through hole 48 penetrating in the axial direction is provided in a part of the hard portion 46, and an objective lens system 49 and a solid-state imaging device 50 are provided in the through hole 48.
[0025]
Further, the hard portion 46 is provided with a fixing hole 51 having a bottom portion from the rear end to the front end, and a screw hole 52 is formed from the side of the hard portion 46 at a right angle to the fixing hole 51. . A fixing pin 45 of the shape detection probe 38 is inserted into the fixing hole 51, and the fixing pin 45 is fixed to the hard portion 46 by a screw 53 screwed into the screw hole 52 from the side.
[0026]
Here, A indicates the distance between the leading edge of the tip component 27 and the foremost coil 40a, B indicates the distance between the tip of the tip component 27 and the tip of the fixing pin 45, and C indicates the tip component. 27 indicates the distance between the most distal end of 27 and the rear end face of the hard portion 46, and D indicates the distance between the most distal end of the distal end constituting portion 27 and the foremost end pin of the bending tube portion 26.
[0027]
The flexible tube portion 25 and the curved tube portion 26 are configured as shown in FIG. That is, the flexible tube portion 25 has a three-layer structure in which a metal mesh member 55 is layered on the outside of the spiral tube 54 and a rubber or resin coating layer 56 is provided on the outside. The bending tube portion 26 has a three-layer structure in which a metal mesh member 58 is layered on the outside of the bending piece 57 and a rubber or resin coating layer 59 is provided on the outside.
[0028]
A connection cap 60 is fixed to the bending piece 57 at the rearmost end of the bending tube portion 26. On the other hand, the spiral tube 54 and the mesh member 55 in the connection region E with the curved tube portion 26 at the distal end of the flexible tube portion 25 are fixed with solder, and this connection region E, that is, the portion fixed with solder is connected. It is connected to the base 60.
[0029]
Therefore, the shape detection probe 38 is inserted into the flexible tube portion 25, the bent tube portion 26, and the connection region E configured as described above, but the foremost coil 40a is located in the vicinity of the distal end configuration portion 27. The second and third coils 40b and 40c are located in the bending tube portion 26, and the fourth coil 40d avoids the connection region E between the flexible tube portion 25 and the bending tube portion 26, and is a flexible tube. They are arranged so as to be biased toward the portion 25 (see FIGS. 2 and 4).
[0030]
That is, since the connection region E between the flexible tube portion 25 and the bending tube portion 26 is covered with a plurality of metal members, when the coil 40d is positioned in the connection region E, the coil 40d is covered with the metal member. In order to solve the problem that the display accuracy is deteriorated due to the attenuation of the magnetic field generated, the connection region E is avoided, and the magnetic field is biased toward the flexible tube portion 25 side.
[0031]
FIG. 5 shows the distal end component 27 in a plurality of endoscopes 21 of different types. In the present embodiment, the distance C between the most distal end of the distal end component 27 and the rear end surface of the hard portion 46 and the distal end component 27 are shown. FIG. 5 (a) shows the shortest distances C and D, and FIG. 5 (b), (c) and (d) show the distances in this order. The case where C and D are long is shown.
[0032]
The shape detection probes 38 provided in each endoscope 21 are the same, and the lengths of the fixing pins 45 are also the same. Therefore, by adjusting the depth F of the fixing hole 51 provided in the rigid portion 46 in the distal end configuration portion 27 of each endoscope 21, the forefront and foremost ends of the distal end configuration portion 27 in the endoscopes 21 of a plurality of models. The distance A to the coil 40a is the same, and the position of each coil in the insertion section from the endoscope tip is the same regardless of the model.
[0033]
That is, the depth of the fixing hole 51 in FIG. 5A is F1, the depth of the fixing hole 51 in FIG. 5B is F2, the depth of the fixing hole 51 in FIG. 5C is F3, FIG. The depth of the fixing hole 51 in d) is F4, which is in the relationship of F1 <F2 <F3 <F4. In FIG. 5D, a counterbore 51a is formed on the rear end surface of the hard portion 46 and fixed. The depth F4 of the hole 51 is set.
[0034]
In this way, by adjusting the depth F of the fixing hole 51 into which the fixing pin 45 of the shape detection probe 38 is inserted, depending on the model of the endoscope 21, the leading edge of the distal end component portion 27 and the rear end surface of the hard portion 46. Even if the distance C is different, the distance A between the foremost end portion 27 and the foremost end coil 40a can be made the same.
[0035]
Therefore, even if the type of the endoscope 21 is different, the positions of the magnetic field generating coils 40a to 40d... Of the shape detection probe 38 can be made constant, and the insertion shape of the insertion portion 23 can be accurately measured. 36, the insertion operability can be improved. Further, the same shape detection probe 38 can be used in common even if the models are different.
[0036]
6 to 11 show a second embodiment, and the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
[0037]
FIG. 6 shows the overall configuration of the endoscope 21, and FIG. 7 is an exploded side view of the G portion of FIG. In the present embodiment, when the old shape detection probe 38 built in the endoscope 21 breaks down, when replacing with the new shape detection probe 38 ′, the disassembly portion of the endoscope 21 can be replaced with a minimum. It is a thing.
[0038]
As shown in FIG. 7, the bending piece 57 at the foremost end in the bending tube portion 26 of the endoscope 21 and the hard portion 46 of the distal end constituting portion 27 are separated to expose the old shape detection probe 38. Further, as shown in FIG. 8, the old shape detection probe 38 is exposed by separating the operation portion 22 and the flexible tube portion 25 of the insertion portion 23. Further, as shown in FIG. 9, the universal cord 24 and the connector 28 are separated to expose the old shape detection probe 38.
[0039]
In this state, as shown in FIG. 7, the screw 53 is loosened, the fixing pin 45 of the old shape detection probe 38 is extracted from the fixing hole 51, and the fixing pin 45 and the dummy tube 61 are connected by the connection tube 62. As shown in FIG. 10, the dummy tube 61 is formed with a flexible tube such as a synthetic resin material so as to have a diameter smaller than that of the shape detection probe 38, and a base end portion of the dummy tube 61 has a retaining collar portion 63a. The member 63 is fixed.
[0040]
Therefore, one end of the connection tube 62 is connected to the old shape detection probe 38 in a state in which the connection tube 62 is fitted to the fixing pin 45, and the other end is subjected to, for example, thermal contraction in a state in which the flange 63a of the connection member 63 is enclosed. Connecting.
[0041]
With the old shape detection probe 38 and the dummy tube 61 connected in this way, as shown in FIG. 8, when the old shape detection probe 38 is pulled in the direction of the operation portion 22, the old shape detection probe 38 comes out of the insertion portion 23. Instead, the dummy tube 61 is drawn into the insertion portion 23.
[0042]
After pulling the dummy tube 61 to the operation unit 22, as shown in FIG. 9, when the old shape detection probe 38 is pulled toward the connector 28 at the end of the universal cord 24, the old shape detection probe 38 is removed from the universal cord 24. The dummy tube 61 is pulled into the universal cord 24 instead.
[0043]
After the dummy tube 61 is drawn from the insertion portion 23 to the universal cord 24 through the operation portion 22 as described above, the old shape detection probe 38 is connected to the connection tube 62 at the end of the universal cord 24 as shown in FIG. Instead, the new shape detection probe 38 ′ is connected to the connection tube 62 instead.
[0044]
In this state, when the dummy tube 61 is pulled in the direction of the operation unit 22 in the operation unit 22 contrary to the above, the dummy tube 61 is detached from the universal cord 24, and the new shape detection probe 38 ′ is pulled into the universal cord 24 instead. .
[0045]
Next, when the dummy tube 61 is pulled in the direction of the distal end configuration portion 27 at the distal end portion of the insertion portion 23, the dummy tube 61 is removed from the insertion portion 23, and instead, the new shape detection probe 38 ′ is drawn into the insertion portion 23.
[0046]
By using the dummy tube 61 in this way, the old and old shape detection probe 38 can be easily removed and replaced with the new shape detection probe 38 ′ even in the thin and long insertion portion 23 and the universal cord 24. As described above, it is not necessary to disassemble the entire endoscope or replace the entire insertion portion, and it is possible to reduce repair costs and repair time.
[0047]
FIG. 12 shows a third embodiment, and the same components as those of the second embodiment are denoted by the same reference numerals and description thereof is omitted. This embodiment is basically the same as the second embodiment, but after separating the universal cord 24 and the connector 28 to expose the old shape detection probe 38, the new shape detection probe 38a is connected to the connection tube 62. Connect by.
[0048]
Then, when the old shape detection probe 38 is pulled in the direction of the operation unit 22, the old shape detection probe 38 comes out of the universal cord 24, and the new shape detection probe 38 ′ is drawn into the universal cord 24 instead.
[0049]
Next, when the old shape detection probe 38 is pulled toward the tip constituting portion 27 at the distal end portion of the insertion portion 23, the old shape detection probe 38 comes out of the insertion portion 23, and instead, the new shape detection probe 38 ′ is inserted into the insertion portion 23. Be drawn into.
[0050]
Thus, without using the dummy tube 61, after the old shape detection probe 38 and the new shape detection probe 38 'are connected, the old shape detection probe 38 is pulled out, so that it can be easily replaced with the new shape detection probe 38'. Thus, it is not necessary to disassemble the entire endoscope or replace the entire insertion portion as in the prior art, and it is possible to reduce the repair cost and shorten the repair time.
[0051]
FIG. 13 shows a fourth embodiment and is a schematic configuration diagram of the entire endoscope apparatus.
[0052]
The configuration is the same as that of the first embodiment except that a loop antenna 101 is connected to the shape detection apparatus 100 via a cable 102 instead of the antenna 35 of the first embodiment. Although not shown, a shape detection probe 38 is built in the insertion portion 23, and a plurality of coils 40 a ′ to 40 d ′... Are spaced over the entire length of the insertion portion 23 in the axial direction. Exist.
[0053]
The shape detection apparatus 100 uses a lead wire 43 to detect a signal generated by a circuit (not shown) that supplies a high-frequency current to the loop antenna 101 via a cable 102 and a plurality of magnetic field detection coils 40a ′ to 40d ′. And a signal processing circuit (not shown) for performing image processing by detecting via the cable 32 and displaying on the shape detection monitor 36.
[0054]
Next, the operation of the fourth embodiment will be described.
[0055]
When the shape detection apparatus 100 supplies a high-frequency current to the loop antenna 101 via the cable 102, the loop antenna 101 generates a magnetic field. The plurality of magnetic field detection coils 40a ′ to 40d ′... Arranged in the shape detection probe 38 generate an induced electromotive voltage by receiving the magnetic field generated from the loop antenna 101, and the generated voltage signal is read. The signal is input to the shape detection apparatus 100 via the line 43 and the shape detection cable 32. The shape detection apparatus 100 estimates the shape of the insertion portion 23 of the endoscope 21 and displays it on the shape detection monitor 36 by detecting the positions of the magnetic field detection coils 40a ′ to 40d ′. Other operations are the same as those in the first embodiment.
[0056]
According to the fourth embodiment, in addition to the first embodiment, there are the following effects.
[0057]
In the first embodiment, when a high frequency current flows through the lead wire 43, some electromagnetic waves are generated. Since many built-in objects are arranged inside the endoscope 21 and a sufficient electromagnetic shield cannot be provided due to space, this electromagnetic wave is emitted to the outside of the endoscope 21, received by the antenna 35, and inserted. This has been a factor of reducing the shape detection accuracy of the portion 21. However, according to the fourth embodiment, since it is easy to apply electromagnetic shielding to the cable 102, electromagnetic waves can be received only from the loop antenna 101, and the shape detection accuracy of the insertion portion 23 can be increased. Become.
[0058]
FIG. 14 is a cross-sectional view of the bending tube portion 26 of the insertion portion 23 in which the shape detection probe 38 is incorporated, showing a disclosed example. On the outer peripheral side, four wire guide members 65a to 65d fixed to the bending piece 57 are provided at equal intervals in the circumferential direction. Light guide fibers 66a and 66b are arranged between the wire guide members 65a and 65b and between the wire guide members 65a and 65d, respectively. Further, a forceps channel 67 is disposed between the wire guide members 65b and 65c.
[0059]
In addition, a shape detection probe 38 is disposed between the wire guide members 65a and 65d, and a signal cable 68 connected to a solid-state imaging device (not shown) in the vicinity of the shape detection probe 38 and near the axis and an air supply A water supply channel 69 is arranged.
[0060]
Since the bending tube portion 26 of the insertion portion 23 is bent in the vertical and horizontal directions by the operation of the operation knob of the operation portion 22, the built-in object inserted through the bending tube portion 26 along with the bending moves in the axial direction and has a diameter. Move also in the direction. Therefore, it is inevitable that the built-in objects interfere with each other during the bending operation, but the shape detection probe 38 is moved away from the hardest forceps channel 67 among the built-in objects, and the relatively soft signal cable 68 and air / water supply By arranging it close to the channel 69, the failure of the shape detection probe 38 can be reduced.
[0061]
According to each embodiment mentioned above, the following composition is obtained.
[0062]
(Additional remark 1) In the endoscope which consists of an operation part, the insertion part connected to this operation part, and the front-end | tip structure part provided in the front-end | tip part of this insertion part, several coils for magnetic field generation or a detection are provided. A shape detection probe provided with an interval in the axial direction is inserted along at least a part of the insertion portion along the axial direction, and the distance between the foremost end of the tip configuration portion and the coil at the foremost end of the model is determined. An endoscope characterized in that the same is applied to a plurality of different endoscopes.
[0063]
(Supplementary note 2) The endoscope according to supplementary note 1, wherein the magnetic field generating coil or the magnetic field detection coil is disposed so as to avoid a portion where the attenuation of the magnetic field is large in the insertion portion.
[0064]
(Additional remark 3) The said shape detection probe is arrange | positioned so that isolation | separation from an endoscope main body is possible, The endoscope of Additional remark 1 characterized by the above-mentioned.
[0065]
(Supplementary note 4) The shape detection probe is connected to a dummy tube and can be extracted from the endoscope body and replaced with a new shape detection probe. The dummy tube is smaller in diameter than the shape detection probe. The endoscope according to appendix 1.
[0066]
(Additional remark 5) The said shape detection probe is connectable with a new shape detection probe, is extracted from an endoscope main body, a new shape detection probe is drawn into an endoscope main body, and it can replace | exchange. Endoscope.
[0067]
(Supplementary note 6) The endoscope according to supplementary note 1, wherein the shape detection probe is disposed away from a hard built-in object in the bending tube portion of the insertion portion.
[0068]
【The invention's effect】
As described above, according to the present invention, the shape detecting probe in which a plurality of magnetic field generating or detecting coils are provided with an interval in the axial direction is inserted along the axial direction of the insertion portion, and the tip component portion The distance between the leading edge and the foremost coil is the same in a plurality of endoscopes of different models.
[0069]
Therefore, even if the endoscope model is different, the magnetic field generation of the shape detection probe or the position of the detection coil can be made constant, and the insertion shape of the insertion portion can be accurately displayed on the shape detection monitor. There is an effect that operability can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an entire endoscope apparatus according to a first embodiment of the present invention.
2A is a longitudinal side view and a side view showing a relative positional relationship between a bending tube portion and a shape detection probe, and FIG. 2B is an enlarged cross-sectional view of an X portion.
FIG. 3 is a longitudinal side view of a tip constituent portion showing the same embodiment;
FIG. 4 is a longitudinal side view of a connecting portion between the bending tube portion and the flexible tube portion of the embodiment.
FIG. 5 is a longitudinal side view showing the mounting state of the shape detection probe in different types of endoscopes according to the embodiment;
FIG. 6 is an overall configuration diagram of an endoscope showing a second embodiment of the present invention.
FIG. 7 is a side view showing a state where the bending tube portion and the distal end configuration portion of the endoscope are separated and the old shape detection probe is exposed, showing the embodiment;
FIG. 8 is a side view of the state in which the old shape detection probe is exposed by separating the operation portion and the insertion portion according to the embodiment;
FIG. 9 is a side view showing the embodiment, in which the universal cord and the connector are separated and the old shape detection probe is exposed.
FIG. 10 is a longitudinal side view showing the connection state between the dummy tube and the shape detection probe in an enlarged manner according to the embodiment;
FIG. 11 is a side view showing a state in which the dummy tube and the new shape detection probe are connected to each other, showing the embodiment.
FIG. 12 is a side view showing a third embodiment of the present invention in a state where an old shape detection probe and a new shape detection probe are connected.
FIG. 13 is a configuration diagram of an entire endoscope apparatus according to a fourth embodiment of the present invention.
FIG. 14 is a cross-sectional view of a bending tube portion of an endoscope showing a disclosed example.
15A and 15B are schematic configuration diagrams of endoscopes of different conventional models.
FIG. 16 is a longitudinal side view of a connecting portion between a conventional flexible tube portion and a bending tube portion.
[Explanation of symbols]
21 ... Endoscope
22 ... operation part
23 ... Insertion section
27. Tip component
38 ... Shape detection probe
40a to 40d ... Magnetic field generating coil

Claims (2)

それぞれ異なる挿入部を有する複数機種の内視鏡からなる内視鏡システムにおいて、
前記挿入部は、
磁界発生用コイルおよび検出用コイルのうち、少なくとも一方のコイルを前記挿入部の軸方向に間隔を存して複数設けた、複数の機種に共通して配置可能な形状検出プローブと、
前記挿入部の先端面と、前記形状検出プローブの最も先端側の前記コイルとの距離が一定となる、前記挿入部の先端面から所定距離離間した位置に前記形状検出プローブを固定する固定手段を備え、前記挿入部の先端部を構成する先端構成部と
を具備することを特徴とする内視鏡システム
In an endoscope system consisting of multiple types of endoscopes each having a different insertion part ,
The insertion part is
A shape detection probe that can be arranged in common for a plurality of models, in which at least one of the magnetic field generating coil and the detection coil is provided in the axial direction of the insertion portion with a plurality of gaps therebetween, and
Fixing means for fixing the shape detection probe at a position spaced a predetermined distance from the distal end surface of the insertion portion, wherein a distance between the distal end surface of the insertion portion and the coil on the most distal end side of the shape detection probe is constant. An endoscope system comprising: a distal end constituting portion that constitutes a distal end portion of the insertion portion.
それぞれ異なる挿入部を有する複数機種の内視鏡からなる内視鏡システムにおいて、
前記挿入部は、
磁界発生用コイルおよび検出用コイルのうち、少なくとも一方のコイルを前記挿入部の軸方向に間隔を存して複数設けた、複数の機種に共通して配置可能な形状検出プローブと、
前記挿入部の先端面と、前記形状検出プローブの最も先端側の前記コイルとの距離が一定となる、前記挿入部の先端面から所定距離離間した位置に前記形状検出プローブが挿入されて突き当てられる穴部を備え、前記挿入部の先端部を構成する先端構成部と、
前記穴部に対して前記形状検出プローブを固定する固定部材と
を具備することを特徴とする内視鏡システム
In an endoscope system consisting of multiple types of endoscopes each having a different insertion part ,
The insertion part is
A shape detection probe that can be arranged in common for a plurality of models, in which at least one of the magnetic field generating coil and the detection coil is provided in the axial direction of the insertion portion with a plurality of gaps therebetween, and
The shape detection probe is inserted and abutted at a position spaced a predetermined distance from the distal end surface of the insertion portion where the distance between the distal end surface of the insertion portion and the coil on the most distal end side of the shape detection probe is constant. A distal end constituting portion that constitutes the distal end portion of the insertion portion,
An endoscope system comprising: a fixing member that fixes the shape detection probe to the hole.
JP2001241215A 2000-09-13 2001-08-08 Endoscope system Expired - Lifetime JP3834487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001241215A JP3834487B2 (en) 2000-09-13 2001-08-08 Endoscope system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000278813 2000-09-13
JP2000-278813 2000-09-13
JP2001241215A JP3834487B2 (en) 2000-09-13 2001-08-08 Endoscope system

Publications (2)

Publication Number Publication Date
JP2002159437A JP2002159437A (en) 2002-06-04
JP3834487B2 true JP3834487B2 (en) 2006-10-18

Family

ID=26599935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001241215A Expired - Lifetime JP3834487B2 (en) 2000-09-13 2001-08-08 Endoscope system

Country Status (1)

Country Link
JP (1) JP3834487B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317874B2 (en) * 2009-07-21 2013-10-16 株式会社町田製作所 Endoscope and endoscope system

Also Published As

Publication number Publication date
JP2002159437A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US5685311A (en) Image display system
EP0672914B1 (en) Device for use in combination with a magnetic resonance imaging apparatus
JP4618410B2 (en) Ultrasound endoscope
US7850605B2 (en) Inserting shape detecting probe
JPWO2013039059A1 (en) Endoscope insertion shape observation probe
JP2017113417A (en) Endoscope
JP4633282B2 (en) Endoscope
EP1707125B1 (en) Ultrasonic endoscope
JP3834487B2 (en) Endoscope system
JP5283343B2 (en) Ultrasound endoscope
JP2000139927A (en) Ultrasonic endoscope device
US20190000417A1 (en) Endoscope
JP2001128937A (en) Electronic endoscope
JP3290150B2 (en) Endoscope shape detector
JP2003019104A (en) Insertion tube detecting probe
US11076749B2 (en) Endoscope
JP4248909B2 (en) Ultrasound endoscope
CN109069123B (en) Endoscope with a detachable handle
JP3931177B2 (en) Endoscope device and endoscope insertion portion shape detection device
JP2003079566A (en) Endoscope configuration detecting probe
US11076744B2 (en) Method of manufacturing endoscope and endoscope
JPH09103415A (en) Magnetic resonance observation device
JP2003180615A (en) Endoscope system
JP6697273B2 (en) Endoscope with magnetic sensor unit
JP5019808B2 (en) Endoscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R151 Written notification of patent or utility model registration

Ref document number: 3834487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term