JP3834275B2 - Sludge volume reduction device - Google Patents

Sludge volume reduction device Download PDF

Info

Publication number
JP3834275B2
JP3834275B2 JP2002254060A JP2002254060A JP3834275B2 JP 3834275 B2 JP3834275 B2 JP 3834275B2 JP 2002254060 A JP2002254060 A JP 2002254060A JP 2002254060 A JP2002254060 A JP 2002254060A JP 3834275 B2 JP3834275 B2 JP 3834275B2
Authority
JP
Japan
Prior art keywords
liquid
sludge
treated
flow
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002254060A
Other languages
Japanese (ja)
Other versions
JP2004089840A (en
Inventor
英樹 稲葉
治之 知久
淳 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2002254060A priority Critical patent/JP3834275B2/en
Priority to KR1020030060334A priority patent/KR20040020807A/en
Priority to CNA031557546A priority patent/CN1490265A/en
Publication of JP2004089840A publication Critical patent/JP2004089840A/en
Application granted granted Critical
Publication of JP3834275B2 publication Critical patent/JP3834275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機性排水等を生物処理で生じた余剰汚泥を削減するための汚泥減容化装置に関する。
【0002】
【従来の技術】
従来、下水、産業廃水等の有機性排水(排水、汚水)の処理には、活性汚泥法が代表的な方法として用いられている。このような方法を用いた生物処理においては、排水中の有機物の処理に伴って余剰汚泥が大量に発生する傾向にある。通常、この余剰汚泥は、脱水された後、そのままの状態で投棄・廃棄処分されるか、焼却処分されている。しかし、近年、廃棄物処分場不足、燃焼に伴うダイオキシン等の有害な有機性塩素化合物の発生等が大きな問題となっており、余剰汚泥の排出量の削減、或いは、発生した余剰汚泥の減容技術の確立が急務となっている。
【0003】
かかる要求に応えるべく、(1)嫌気性微生物によって汚泥を可溶化するいわゆる嫌気性消化を用いた方法、(2)汚泥に酸やアルカリ等を添加して可溶化する方法、(3)汚泥をオゾン酸化によって可溶化する方法、(4)好気性微生物が有する溶菌作用を用いて汚泥を分解・可溶化する方法といった汚泥減容化方法が採用され又は提案されている。
【0004】
【発明が解決しようとする課題】
しかし、これら従来の汚泥減容化方法においては、以下に示すような問題点がある。すなわち、上記(1)の嫌気性消化を用いた方法は、エネルギー消費を抑えてメタンガスのような有用な副生物を産出する点で有利ではあるが、消化反応の反応速度が遅いため、汚泥処理効率が極めて悪くなる傾向にある。また、この場合、大型の反応槽を用いて汚泥の滞留時間を非常に長くする必要があり、装置設備の大型化に加え、結局のところ経済性が悪化してしまうおそれがある。また、上記(2)の酸又はアルカリ等を用いる方法では、大量の薬剤及びそれらの供給系が必要であり、経済性が必ずしも十分ではない。
【0005】
一方、上記(3)のオゾン酸化を用いる方法は、大量の薬剤や熱源等が不要である。しかし、一般的なオゾン酸化槽は、水槽にオゾンを単に吹き込む簡略な装置であり、オゾンの利用効率が高いとは言い難い。これを改善すべく、散気板等を用いてオゾンの微細気泡を供給する手法が考えられるものの、この場合には散気板の目詰まりが生じ易く、よって頻繁な保守(メンテナンス)が必要となる傾向にある。
【0006】
他方、上記(4)の好気性微生物を用いる方法は、大量の薬剤やオゾンガスを用いない反面、大型の処理槽が必要となる傾向にあり、その結果、排水処理装置又は設備全体が大規模となってしまう。また、微生物として好熱性菌体を使用して加温状態(例えば50〜70℃)で処理すれば、その溶菌作用によって汚泥の可溶化効率を高め、且つ、加熱による汚泥の熱変性効果が期待され得る。
【0007】
しかし、温度の上昇に伴って酸素の溶解効率が更に低下してしまい、上記の有用な効果が相殺されてしまうおそれがある。また、このような溶解効率の低下を防止すべく大量のガス(空気)を曝気すると、外部への放熱量が増大してしまい、加温及び保温のための熱エネルギーを浪費してしまうといった不都合がある。
【0008】
そこで、本発明はかかる事情に鑑みてなされたものであり、有機性排水の処理等に伴って生じ得る余剰汚泥としての生物汚泥を効率よく減容化することができ、しかも、エネルギー消費量の増大といった従来の不都合を解消できる汚泥減容化装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明による汚泥減容化装置は、生物汚泥を含有しており且つ液分中のBOD( Biochemical Oxygen Demand )が50mg/L未満である被処理液が供給され、その被処理液に対する酸素移動効率が20%以上となるように被処理液中に乱流が生じて被処理液が攪拌される汚泥処理部と、この汚泥処理部に接続されており、酸素(O )、オゾン(O )、又は過酸化水素(H )を有する供給部とを備える。なお、本発明において「酸素移動効率」とは、酸素濃度0mg/Lの清水中に20℃の空気を供給したときの供給酸素量に対する溶解酸素量の割合をいう。
【0010】
上記汚泥処理部は、被処理液中の気泡流若しくは液流を遮断し、又は、気泡流若しくは液流の向きを変化させて被処理液を攪拌する攪拌部を有するものである。
【0011】
具体的には、上記攪拌部は、汚泥処理部を構成する容器内に設けられており厚み方向に貫通する複数の孔を有する複数の多孔板を有している。このような構成において、汚泥処理部の容器内を被処理液が流動すると、複数の多孔板間を流通する際に、被処理液の流れが乱され、攪拌・混合効果が得られる。
【0012】
さらに、被処理液に好気性耐熱菌を添加する菌体添加部を備えても好適である。
【0013】
本発明による汚泥減容化装置は、以下の汚泥減容化方法を有効に実施するためのものである。汚泥減容化方法は、生物汚泥を含有しており且つ液分中のBODが50mg/L未満である被処理液に酸素(O )、オゾン(O )、又は過酸化水素(H )を供給する供給工程と、被処理液に対する酸素移動効率が20%以上、好ましくは25%以上、特に好ましくは30%以上となるように被処理液中に乱流を生じせしめて攪拌する汚泥処理工程とを備える。また、汚泥減容工程は、供給工程の実行中に一部又は全部を同時に実施してもよく、供給工程の実施後に実施してもよい。
【0014】
このような方法では、供給工程において、有機性排水等の生物処理に用いられた生物汚泥を含む被処理液に酸素ガス、オゾンガス、又は過酸化水素が供給され、それらが混合される。通常、有機性排水等の生物処理において、例えば活性汚泥槽、生物処理槽、反応槽等の主工程での排水処理で使用される汚泥は、栄養分に富み菌体の増殖が行われ、液分中のBODは比較的高い値を示す。これに対し、本発明は、生物処理に使用すべき汚泥よりも活性が低く余剰汚泥として排出され得る被処理液、すなわち液分中のBODが50mg/L未満とされた被処理液を処理対象とする。
【0015】
そして、汚泥処理工程において、酸素等が供給された被処理液に乱流を生じせしめて攪拌・混合し、被処理液に対する酸素移動効率が20%以上とされる。これにより、被処理液へ移行した酸化能を有する化学種が菌体を酸化分解し、汚泥の可溶化が促進される。このとき、酸素移動効率が20%未満であると、富栄養価が低い被処理液に対しても、十分な処理効率での汚泥の可溶化を実現し難くなり、所望の減容化率の達成が困難となる傾向にある。
【0016】
また、被処理液に好気性耐熱菌が存在すると好ましい。好熱性好気性菌が添加された被処理液を加熱又は加温状態(例えば50〜70℃)で処理すれば、その溶菌作用によって汚泥の可溶化効率が高められ、しかも、加温状態においても有機物分解能が得られることと相俟って、減容化のみならずCOD( Chemical Oxygen Demand )の低減効果が高められる。また、処理温度を高めると酸素等の酸化因子の溶解効率が低下してしまう傾向にあり、従来は、かかる溶解効率の低下を防止すべく大量のガス(空気)等を曝気する等していたが、上述の如く、これでは熱エネルギーの浪費を招く。これに対し、本発明は、汚泥処理工程において乱流による攪拌によって酸素移動効率が高く維持されるようにするので、曝気量の増大が抑止される。
【0017】
具体的には、汚泥処理工程において、被処理液中の気泡流若しくは液流を遮断し、又は、気泡流若しくは液流の向きを変化させると好ましい。こうすれば、気泡流又は液流の遮断又は変向により、被処理液の流れの少なくとも一部が撹乱され、つまり被処理液の流れの一様性が乱されて乱流が生じ易くなる。
【0018】
本発明の汚泥減容化装置においては、特に、複数の多孔板のうち少なくとも一つの多孔板に形成された前記複数の孔のうち少なくとも一つの第1の孔が、その多孔板に隣接配置された他の多孔板に形成されており且つ第1の孔から最短距離に位置する第2の孔と非同軸状に設けられたものであると一層好適である。
【0019】
こうすれば、互いに隣り合う多孔板にそれぞれ設けられた第1の孔及び第2の孔が、互いの中心(軸)位置が交互に異なるように配列される。通常、多孔板における孔位置及びその近傍は、孔が設けられていない部位に比して流体流動に対して圧力損失が小さいため、多孔板間を流動する被処理液は、互いに非同軸状に形成された第1の孔から第2の孔の位置を通るように蛇行する。これにより、渦流や乱流が生じ易くなり、攪拌・混合が一層助長される。
【0020】
より具体的には、複数の多孔板のうち互いに隣接配置された二つの多孔板に形成された複数の孔が、千鳥格子状(千鳥模様状、千鳥足状)に配置されるように設けられたものであると有用である。
【0021】
すなわち、一方の多孔板に形成された複数の上記第1の孔と、それに隣接する他方の多孔板に形成された複数の上記第2の孔とが、すべて非同軸状に配置されたものであると好ましい。例えば、孔の穿設位置が多孔板毎に異なる場合には、多孔板を同軸状に配置すればよく、或いは、孔の穿設位置が多孔板同士で同じ場合には、多孔板を非同軸状に配置すればよい。また、多孔板内又は多孔板間で全ての孔径が同一であってもよいが、それらの一部又は全部が異なっていても構わない。このようにすれば、多孔板の全体にわたって渦流や乱流が発生し易くなり、攪拌・混合効率が更に向上される。
【0022】
さらにまた、攪拌部が、前記複数の多孔板、及び、上記の容器のうち少なくともいずれか一方を駆動させる駆動部を有すると好ましい。
【0023】
このようにすれば、被処理液を、多孔板に対して一方向、好ましくは複数方向、特に好ましくは複数方向に交互に繰り返して流動させ得る。よって、乱流の程度(激しさ)が更に高められ、より強力な攪拌・混合効果が得られる。より具体的には、往復駆動(上下動等)する駆動軸(シャフト)等から成る駆動部に多孔板が接続された構成、多孔板が固定され且つ汚泥処理部の容器が駆動又は揺動(上下動等)するような構成、等を例示できる。
【0024】
或いは、攪拌部が、上記の容器に接続されており、その容器内に被処理液を循環流通させ、且つ、被処理液の流通方向を互いに異なる複数の方向に切り替える液循環部を有しても好ましい。こうすれば、被処理液を一定方向へ循環させるだけでなく、所望の頻度(間隔)で、その流動方向を随時切り替えることができる。したがって、多孔板又は容器を駆動させることなく、より強力な攪拌・混合効果が得られる。
【0025】
具体的には、液循環部が、容器に接続された少なくとも一つの循環路(管路、ライン等)と、各循環路に吐出方向が互いに異なるように且つ並列に設けられた少なくとも二台のポンプとを有すると好ましい。この場合、二台のポンプを随時切り替えることにより、循環ラインと容器内を流通する被処理液の流路方向が切り替えられる(例えば、反転される。)。
【0026】
或いは、液循環部が、容器に接続された少なくとも一つの循環ラインと、各循環ラインに設けられた二つの三方弁と、それら二つの三方弁に接続された一台のポンプとを有しても好適である。この場合、一台のポンプを用いても、各三方弁に備わる各弁の開閉を調節・制御することにより、循環ラインと容器内を流通する被処理液の流路方向が切り替えられる(例えば、反転される。)。
【0027】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限られるものではない。
【0028】
図1及び2は、それぞれ、本発明による汚泥減容化装置の第1実施形態及び第2実施形態を模式的に示す構成図である。図1に示す汚泥減容化装置100は、生物汚泥を含有する被処理液Wの移送管路L1に接続された汚泥処理部1に、それぞれ管路L2,L3を介して、空気等の酸素ガスを含むガス又はオゾンを含むガスを貯留又は発生させるガス供給源2(供給部)、及び重力沈降分離等を利用した固液分離槽3が接続されたものである。また、固液分離槽3の底部には、汚泥処理部1に接続された返送管路L4が接続されており、また、その上部には処理済液Wsの排出管路L5が設けられている。
【0029】
ここで、被処理液Wは、その液分中のBODが50mg/L未満とされたものであり、例えば、有機性排水等の生物処理に使用された活性汚泥の一部が余剰分(すなわち余剰汚泥)として排出されたもの等が挙げられる。かかるBOD値は、生物処理に使用される際の活性汚泥の通常値に比して低い値であり、汚泥が増殖するのに十分とは言い難い程の低栄養価に相当する。
【0030】
このような性状を有する被処理液Wは、管路L1を通して汚泥処理部1に供給されると共に、ガス供給源2から空気等が曝気供給される。後述するように、汚泥処理部1内では、このように空気等が供給された被処理液Wの攪拌・混合が行われ、菌体が酸化分解されて液中の汚泥が可溶化される。この被処理液Wは、固液分離槽3へ移送され、分離された処理済液Wsが管路L5を通して、更なる浄水処理等を行う処理設備等へ送られる。また、可溶化されずに固形分として残った汚泥が管路L4を通して汚泥処理部1へ返送され、循環処理される。
【0031】
一方、図2に示す汚泥減容化装置200は、汚泥処理部1が、生物汚泥による有機性排水等の処理が行われる排水処理装置9に管路L1,L3を介して接続されたこと、及び、固液分離槽3を有しないこと以外は、汚泥減容化装置100と同様に構成されたものである。この汚泥減容化装置200は、排水処理装置9にオンサイトで装備された構成を有しており、排水処理装置9から供給された被処理液Wは、汚泥処理部1で所望量の生物汚泥が可溶化された後、処理済液として排水処理装置9へ返送される。
【0032】
以下、汚泥処理部1の諸例について説明する。図3は、汚泥処理部1の好適な一例としての反応装置10を示す摸式断面図(一部構成図)である。反応装置10では、密閉された略筒状を成す容器11内に、多数の多孔板15n(添字nは、任意位置を示す。)が所定間隔で棒状の支柱13に固定配置された多孔板群15(攪拌部)が略同軸状に設けられている。容器11の上部及び底部には、循環管路L50の各端部が接続されており、この循環管路L50の途中には、並列に配設されたポンプP1,P2をそれぞれ有する分岐管路L51,L52が設置されている。ポンプP1,P2の吐出方向は、それぞれ図示矢印t1,t2で示すように互いに逆方向とされている。このように循環管路L50,分岐管路L51,L52、及びポンプP1,P2から液循環部が構成されている。また、反応装置10は攪拌部を兼ねるものである。
【0033】
また、容器11の底部には、管路L1が接続され、被処理液Wが容器11の下部に供給されるようになっている。一方、管路L3が容器11の上部壁に接続されており、処理済液が容器11の上部から固液分離槽3又は排水処理装置9へ返送される。さらに、ガス供給源2に接続された管路L2は、流量調整バルブV21,V22を有し且つそれぞれ容器11の底部及び管路L50の双方に接続された分岐管路L21,L22に分かれている。
【0034】
ここで、図4は、反応装置10の要部を示す斜視図であり、多孔板群15の一部を示す。また、図5は、多孔板群15の一部を示す模式断面図である。両図に示す如く、各多孔板15nには、その厚み方向に貫通する複数の孔Hnが形成されている。また、任意の位置の多孔板15nは、隣接する多孔板15n-1及び15n+1と、各多孔板15n-1,n,n+1に設けられた孔Hn-1,n,n+1の水平方向の位置が一致しないように配置されている。
【0035】
換言すれば、多孔板群15は、互いに隣接された一方の多孔板15nに形成された複数の孔Hn(第1の孔)と他方の多孔板15n-1,n+1に形成された複数の孔Hn-1,n+1(第2の孔)とが、平面位置が互いに異なって配置されるように設けられている。すなわち、隣接された多孔板15n毎に、孔Hの中心(軸)位置が交互に異なるように千鳥格子状(千鳥模様状、千鳥足状)に配列されている。さらに言えば、複数の多孔板15nのうち、任意に選択される隣接配置された二つの多孔板15nのうち一方の多孔板15nに形成された孔Hn(第1の孔)と、他方の多孔板15n-1,n+1に形成された孔Hn-1,n+1のうちその第1の孔と最短距離に位置する孔(第2の孔)とが、非同軸状(孔が円形孔であれば、非同心状)に設けられている。
【0036】
このように構成された反応装置10を汚泥処理部1として備える汚泥減容化装置100,200を運転し、汚泥減容化処理を行う方法の一例について説明する。まず、管路L1を通して、被処理液Wを容器11の内側且つ下側の位置に導入する。被処理液Wの供給と共に或いは一定の液量となった後、ガス供給源2から管路L21を通して容器11の下部に空気等を曝気供給する(供給工程)。また、ポンプP1を運転すると共に、管路L22を通して管路L50の他端側に空気等を曝気供給する(供給工程)。
【0037】
そして、被処理液Wの供給流量を調整し、例えば、管路L50の一端が接続された上部の排出口よりも液面がやや高くなるような液量に維持しながら、空気等を供給した状態で被処理液Wを容器11内で強制循環させる。この時、被処理液Wは、多孔板群15を下向きに流通する。そして、一定時間ポンプP1の運転を行った後、ポンプP1を停止すると共に、ポンプP2を運転する。こうして、容器11内の循環流を逆向きとし、被処理液Wを上向きに流通させる。
【0038】
この間に、空気等に含まれる酸素が被処理液W中に移行し、その酸化能によって液中に含まれる生物汚泥を構成する菌体の酸化・分解が行われる。また、このとき被処理液Wを所定の温度に維持すべく、容器11内部又は外部にヒーター等を設けて加熱又は保温してもよい。この場合、被処理液Wを予め一定温度に加熱又は加温した状態で容器11内へ供給してもよい。
【0039】
ここで、ポンプP2を運転している場合を例にとると、空気等の微細気泡を含む気液固相の混相流は、多孔板15nの孔Hnを通るように上向きに流動するが、その流れは上方に位置する多孔板15n-1によって遮断又は遮へいされ、一部が下方に向きを変えられる。よって、その部位では、上昇流と下降流が複雑に混合し撹乱されて渦流等を含む乱流状態が絶え間なく生起される(図5参照)。このような状態は、各多孔板15nの各孔Hn近傍の部位で引き起こされ、全体として被処理液Wの攪拌・混合が十分に行われる。逆に、ポンプP1を運転している状態においても、多孔板群15によって多孔板15n間に乱流が生起され、十分な攪拌混合が行われる。
【0040】
また、多孔板15nに設けられた孔Hnを通過する際に、流速が極めて大きなジェット流のような高速流が発生し得る。したがって、容器11内では、激流による混合状態とも言うべき略完全な攪拌・混合状態が実現される。これにより、空気等の気泡が極めて微細化されると共に、強力な攪拌・混合により、空気等に含まれる酸素等の気相から液相へ、及び、液相から固相(生物汚泥)への酸素等の酸化因子の移動速度(効率)が劇的に増大する。具体例を挙げれば、このときの酸素移動効率は、20%以上、ときには80%以上にも達する。これに対し、従来から用いられている通常の曝気槽では、一般に酸素移動効率が10%に満たない程度である。
【0041】
すなわち、空気等に含まれる酸素等の液相への溶解効率が、従来に比して格段に高められる。これにより、生物汚泥を構成する微生物菌体の酸化分解反応の効率が飛躍的に向上され、生物汚泥の可溶化が格段に促進され(汚泥処理工程)、汚泥の減容化を十分に達成できる。得られる処理済液は、管路L3を通して、固液分離槽3又は排水処理装置9へ移送される。微生物菌体は、水、二酸化炭素、その他の低級炭水化物、有機酸等へと変換され、これらを含む液分(溶液)中の特にBOD成分は、活性汚泥による排水処理における栄養分となり得る。
【0042】
ここで、容器11内での被処理液Wへの酸素移動効率は、ポンプP1,P2の運転出力ひいては容器11内を循環する被処理液Wの流量又は流速、ガス供給源2からの空気の曝気量、多孔板15nの形状、配置等を適宜調節することにより制御することが可能である。
【0043】
また、ポンプP1,P2の運転を切り替えて、容器11内の被処理液Wと空気等との混相流の流れの向きを逐次反転するので、多孔板15n間に不可避的に生じ得る滞留を解消できる。よって、被処理液Wと空気等との攪拌・混合を更に促進することができる。したがって、より少ない空気等の供給量又は液循環量によって20%以上、好ましくは25%以上、特に好ましくは30%以上の十分な酸素移動効率を簡易に実現できる。しかも、多孔板群15を駆動することなく、液流方向の交互切り替えによる攪拌を行うので、可動部を少なくして装置の信頼性及び保守性を向上できると共に、動力使用量の増大を防止できる。
【0044】
さらに、多孔板群15における各多孔板15nに形成された孔Hnが千鳥格子状に配置されることにより、乱流の発生効果が高められるので、多数の孔を同軸状に同一位置に配置した場合に比して、同一の空気供給量又は液循環量でより高い酸素移動効率を達成できる。
【0045】
またさらに、本発明者らの知見によれば、反応装置30内における酸素等の高移動効率は、低温域から高温域にわたる広い温度領域で発現されるため、温度条件に左右されずに、空気等の容器11への供給量(曝気量)が少なくても生物汚泥の可溶化率の低下が抑止される。よって、空気等の供給量を低減でき、その結果、反応装置30の外部への放熱量を軽減できる。したがって、熱エネルギーの消費量を抑えて省力化を図り得る。
【0046】
さらにまた、生物汚泥と空気等との十分な攪拌・混合が行われるため、溶解した酸素等と汚泥を構成する微生物菌体との接触頻度(確率)、接触時間、接触量等が格別に増大される。しかも、多孔板15n間の強高速流によるせん断力、多孔板15n間で生じる圧縮及び膨張の繰返しによるキャビテーション効果によって菌体細胞を機械的に破砕する効果も奏される。したがって、これらにより、菌体の酸化分解反応が更に促進され、生物汚泥の可溶化を一層増進できる。
【0047】
加えて、容器11内壁によって多孔板群15の周囲が覆われているので、混相流が各多孔板15nの径方向(外周へ向かう方向)へ拡散又は放散することが妨げられる。よって、混相流の流圧の低下が抑止され、或いは流圧が高められ、被処理液Wが一層強力に攪拌・混合される。よって、生物汚泥の可溶化を更に一層増強できる。
【0048】
また、被処理液Wに、例えばバチルス(Bacillus)属に属する細菌のような好熱菌や好熱性耐熱菌といった菌体が存在していれば、被処理液Wを加熱することにより、生物汚泥を構成する主菌体の熱変成効果により、その増殖を十分に抑えつつ、また、好熱性耐熱菌の溶菌作用によってかかる生物汚泥の可溶化効率が高められる。よって、無機化された汚泥の割合が従来に比して高められ、COD成分をも十分に低減できる。なお、この場合、かかる好熱性耐熱菌を貯留する菌体添加部(図示せず)を管路L1又は容器11に接続すると好ましく、或いは、被処理液Wの発生元において予め添加してもよい。
【0049】
図6は、汚泥処理部1の好適な他の例としての反応装置20を示す摸式断面図(一部構成図)である。反応装置20は、ポンプP1,P2が設けられた管路L51,L52の代わりに、図示矢印t3で示す方向に吐出するポンプP3に接続された管路L53,L54が循環管路L50に接続されたこと以外は、図3に示す反応装置10と同様に構成されたものである。管路L53は三方弁V33を有する分岐管路であり、管路L50における管路L53が接続された部位間には三方弁V34が設けられている。
【0050】
管路L54は、管路L50,L53間をバイパスするように、それらの三方弁V33,V34に接続されている。すなわち、管路L50に三方弁V33,V34を介して1台のポンプP3が接続されている。このように循環管路L50,分岐管路L53,L54、三方弁V33,V34、及びポンプP3から液循環部が構成されている。また、反応装置20は攪拌部を兼ねるものである。
【0051】
このように構成された反応装置20を備える汚泥減容化装置100,200によれば、ポンプP3を運転した状態で、三方弁V33,V34の各弁の開閉操作により、被処理液Wの循環流の方向を切り替えることが可能である。具体的には、容器11内の上昇流を生起させるには、管路L50において被処理液Wを図示矢印X方向に流通させる。一方、容器11内の下降流を生起させるには、管路L50において被処理液Wを図示矢印Y方向に流通させる。これにより、一台のポンプP3のみで、被処理液Wの流路を随時切り替えることができ、20%以上の高い酸素移動効率が達成される。なお、汚泥減容に関する他の作用効果については、図3に示す反応装置10と実質的に同等であり、重複説明を避けるため、ここでの詳述は省略する。
【0052】
図7は、汚泥処理部1の好適な更に他の例としての反応装置30を示す摸式断面図(一部構成図)である。反応装置30は、支柱13の代わりに駆動部35に上端部が接続されたシャフト33に多孔板群15が結合されており、且つ、管路L50,L51,L52等及びポンプP1,P2を有しないこと以外は、反応装置10と同様に構成されたものである。シャフト33の下端部は解放状態とされ、駆動部35の運転により、図示矢印A方向(すなわち、鉛直方向)に一定周期及びストロークで上下移動される。このように、反応装置30は攪拌部を兼ねるものである。
【0053】
これにより、多孔板群15と被処理液Wとの相対的な流動が生じ、その流動方向が多孔板群15の駆動周期で頻繁に切り替わり、上述したような被処理液Wと空気等との混相流の乱流が生起され、強力な攪拌・混合が行われる。その結果、被処理液Wに対して20%以上の高い酸素移動効率が達成される。なお、汚泥減容に関する他の作用効果については、図3に示す反応装置10と実質的に同等であり、重複説明を避けるため、ここでの詳述は省略する。
【0054】
図8は、汚泥処理部1の好適な更に別の他の例としての反応装置40を示す摸式断面図(一部構成図)である。反応装置40は、シャフト33の代わりに外部の支持体に端部が固定された支柱34に多孔板群15が設置されており、且つ、容器11が駆動部45に結合されたこと以外は、反応装置30と同様に構成されたものである。容器11の上壁及び底壁における支柱34の貫通部は、摺動可能に密封されている。このような反応装置40においては、多孔板群15を駆動する代わりに、駆動部45の運転によって容器11全体を図示矢印B方向(すなわち、鉛直方向)に一定周期及びストロークで上下移動される。このように、反応装置40は攪拌部を兼ねるものである。
【0055】
これにより、多孔板群15と被処理液Wとの相対的な流動が生じ、その流動方向が容器11の駆動周期で頻繁に切り替わり、上述したような被処理液Wと空気等との混相流の乱流が生起され、強力な攪拌・混合が行われる。その結果、20%以上の高い酸素移動効率が達成される。なお、汚泥減容に関する他の作用効果については、図3に示す反応装置10と実質的に同等であり、重複説明を避けるため、ここでの詳述は省略する。
【0056】
図9は、汚泥処理部1の好適な更に他の例としての反応装置50を示す摸式断面図(一部構成図)である。反応装置50は、三方弁V33,V34の代わりに、それぞれ2台の二方弁V33a,V33b、及びV34a,V34bを備えること以外は、図6に示す反応装置20と同様に構成されたものである。これらの二方弁V33a,V33b,V34a,V34bの切り替えにより、三方弁V33,V34による反応装置20におけるとの同等の循環流を形成させることができる。また、例えばスケジュール100A程度の配管を用いる場合には、経済性の観点から有利である。なお、汚泥減容に関する他の作用効果については、図3に示す反応装置10と実質的に同等であり、重複説明を避けるため、ここでの詳述は省略する。
【0057】
なお、本発明は、上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、各反応装置10〜40における容器11内には、多孔板群15の代わりに、被処理液Wの流動方向を一部遮断又は遮へいし得る他の部材、例えば、駆動可能な又は駆動しないフィン部材、プロペラ部材、他の板状体、櫛状体、網状体等、或いはそれらを組み合わせたもの等を設置してもよい。また、各多孔板15nに形成された孔Hnの形状は図示のものに限定されない。さらに、反応装置30,40の容器11に、反応装置10,20を構成するポンプP1,P2又はポンプP3を有する管路L50を設置し、多孔板群15又は容器11の駆動と、ポンプにより被処理液Wの強制循環を組み合わせて実施してもよい。
【0058】
またさらに、ガス供給源2からオゾン含有ガスを用いる場合には、未反応のオゾンが外部へ漏出することを防止するため、容器11の閉止又は封止が望ましく、空気の場合には、より緩やかな密閉状態でよい。ただし、本発明によれば、オゾンの使用量を軽減しても生物汚泥の可溶化を十分に達成できので、未反応オゾン自体を低減できる利点がある。さらにまた、空気やオゾン含有ガスの代わりに、過酸化水素を用いてよく、その酸化能により菌体の酸化分解ひいては生物汚泥の可溶化が促進される。
【0059】
【実施例】
以下、本発明に係る具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
【0060】
〈実施例1〉
図7に示す反応装置30を汚泥処理部1として備える汚泥減容化装置200と同等の構成を有する装置を準備した。この反応装置30は、有効容積20L(リットル;以下同様)の筒状容器11に、多孔板15n(直径13cmφ、孔径は8mmφ)が6cm間隔で16枚設けられた多孔板群15が内設されたものである。そして、この反応装置30内に、生物汚泥を10000mg/Lの濃度で含み且つ液分中のBODが10mg/Lである被処理液Wを、30L/hの流量で供給した。それと共に、多孔板群15を60,80,100,120rpmと異なる駆動周期で上下動させつつ、容器11内に空気を5,7.5,10L/min(すなわち15,22.5,30VVH)と異なる流量で供給し、汚泥減容処理を実施した。また、清水に対して同条件で空気を供給したところ、酸素移動効率は何れも20%以上であった。
【0061】
ここで、単位「VVH」は、ガス供給量(Vol.)/容器11の有効容積(Vol.)/hなる物理量を示し、水処理技術、発酵技術、等の分野で一般に用いられる単位であり、反応装置30への空気供給量をその容器の有効容積で規格化した値に相当する。なお、処理に際し、容器11内の被処理液の温度を60℃に保持した。
【0062】
その結果、いずれの条件においても、生物汚泥に対する所望の減容化率(30〜50%)、すなわち、例えば排水処理装置9に応じて新たな汚泥の生成量(菌体の増殖量)が可溶化による削減量(菌体の分解量)と略等しくなるような減容化率が達成された。また、亜硫酸ソーダによる酸素吸収法を用いて、被処理液W中に溶解した酸素量を計測し、空気の供給流量に基づいて、酸素の溶解速度を算出した。各処理条件における酸素溶解速度の結果を表1に示す。
【0063】
【表1】

Figure 0003834275
【0064】
〈実施例2〉
空気の代りにオゾン含有ガス(オゾン濃度:40g/Nm3)を用い、これを10,12.5,15VVHの流量で容器11内に供給し、多孔板群15の駆動周期を80,100,120rpmとしたこと、及び、被処理液Wの処理温度を20〜24℃としたこと以外は、実施例1と同様にして汚泥減容処理を実施した。その結果、いずれの条件においても、実施例1と同等又はそれ以上の効率で、生物汚泥に対する所望の減容化率(30〜50%)が得られた。
【0065】
また、被処理液中に溶解したオゾン量を計測し、オゾン含有ガスの供給流量に基づいて、オゾンの溶解速度を算出した。各処理条件におけるオゾン溶解速度の結果を表2に示す。これより、極めて高いオゾン溶解速度が得られることが判明した。
【0066】
【表2】
Figure 0003834275
【0067】
〈実施例3〉
反応装置30の容器11の有効容積を1.5Lとし、それに応じた形状の多孔板を用いたこと、反応装置30内の被処理液Wの温度を70℃に保持したこと、容器11内への空気の供給量を0.3L/min(すなわち12VVH)としたこと、及び、多孔板群15の駆動周期を45,50,100rpmとしたこと以外は、実施例1と同様にして汚泥減容処理を実施した。各条件における酸素移動効率及び活性汚泥の減容化率を表3に示す。
【0068】
〈比較例1〉
多孔板群15の代りにマグネチックスターラーを用いて被処理液Wを攪拌したこと以外は、実施例3と同様にして汚泥減容処理を実施した。このときの酸素移動効率及び活性汚泥の減容化率を表3に併せて示す。
【0069】
【表3】
Figure 0003834275
【0070】
表3に示す結果からも、本実施例の条件では20%以上の酸素移動効率が得られ、この場合に、約50%近い高減容化率を達成できることが確認された。
【0071】
〈実施例4〉
多孔板群15の駆動周期を100rpmとし、且つ、反応装置30内の被処理液の温度を60,70℃に保持したこと以外は、実施例3と同様にして汚泥減容処理を行った。なお、温度70℃での実施例は、実施例3における温度70℃の実施例と同一条件であるが、説明の便宜上、ここで再掲する。各条件における被処理液Wに含まれる汚泥の減容化率を表4に示す。これにより、熱エネルギーを汚泥減容処理に有効に活用でき、外部への放熱量の増大を抑止できることが確認された。
【0072】
【表4】
Figure 0003834275
【0073】
【発明の効果】
以上説明したように、本発明の汚泥減容化装置によれば、有機性排水の生物処理に伴って生じ得る余剰汚泥としての生物汚泥を効率よく減容化することができ、これにより、余剰発生の発生量を削減できる。また、汚泥の減容化に際し、エネルギー消費量の増大を十分に抑え、処理効率及び経済性の向上を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明による汚泥減容化装置の第1実施形態を模式的に示す構成図である。
【図2】本発明による汚泥減容化装置の第2実施形態を模式的に示す構成図である。
【図3】汚泥処理部1の好適な一例としての反応装置10を示す摸式断面図(一部構成図)である。
【図4】反応装置10の要部を示す斜視図である。
【図5】多孔板群15の一部を示す模式断面図である。
【図6】汚泥処理部1の好適な他の例としての反応装置20を示す摸式断面図(一部構成図)である。
【図7】汚泥処理部1の好適な更に他の例としての反応装置30を示す摸式断面図(一部構成図)である。
【図8】汚泥処理部1の好適な更に別の他の例としての反応装置40を示す摸式断面図(一部構成図)である。
【図9】汚泥処理部1の好適な更に別の他の例としての反応装置50を示す模式断面図(一部構成図)である。
【符号の説明】
1…汚泥処理部、2…ガス供給源(供給部)、3…固液分離槽、10,20,30,40…反応装置(汚泥処理部,攪拌部)、11…容器、13…支柱、15…多孔板群、15n…多孔板、35,45…駆動部、100,200…汚泥減容化装置、Hn…孔、P1,P2,P3…ポンプ、V33,V34…三方弁、V33a,V33b,V34a,V34b…二方弁、W…被処理液、Ws…処理済液。[0001]
BACKGROUND OF THE INVENTION
  The present invention is for reducing excess sludge produced by biological treatment of organic wastewater and the like.Sludge volume reduction deviceAbout.
[0002]
[Prior art]
Conventionally, the activated sludge method has been used as a representative method for treating organic wastewater (drainage, sewage) such as sewage and industrial wastewater. In biological treatment using such a method, excess sludge tends to be generated in large quantities with the treatment of organic matter in wastewater. Usually, this excess sludge is dehydrated and then dumped and disposed of as it is or incinerated. However, in recent years, the shortage of waste disposal sites and the generation of harmful organic chlorine compounds such as dioxins due to combustion have become major problems, reducing the amount of excess sludge discharged or reducing the volume of generated excess sludge. There is an urgent need to establish technology.
[0003]
In order to meet such demands, (1) a method using so-called anaerobic digestion in which sludge is solubilized by anaerobic microorganisms, (2) a method in which acid or alkali is added to sludge and solubilized, (3) sludge A sludge volume reduction method such as a method of solubilization by ozone oxidation and (4) a method of decomposing and solubilizing sludge using the lysis action of aerobic microorganisms has been adopted or proposed.
[0004]
[Problems to be solved by the invention]
However, these conventional sludge volume reduction methods have the following problems. That is, the method using anaerobic digestion (1) is advantageous in that it reduces energy consumption and produces useful by-products such as methane gas. However, since the reaction rate of the digestion reaction is slow, sludge treatment is performed. Efficiency tends to be extremely poor. Further, in this case, it is necessary to make the sludge residence time very long using a large reaction tank, and in addition to the increase in the size of the equipment, there is a possibility that the economy will deteriorate in the end. In addition, the method (2) using an acid or alkali requires a large amount of chemicals and their supply system, and is not necessarily economical.
[0005]
On the other hand, the method using ozone oxidation (3) does not require a large amount of chemicals, heat sources, and the like. However, a general ozone oxidation tank is a simple device that simply blows ozone into a water tank, and it is difficult to say that the utilization efficiency of ozone is high. In order to improve this, a method of supplying fine bubbles of ozone using a diffuser plate can be considered. However, in this case, the diffuser plate is likely to be clogged, and thus frequent maintenance is required. Tend to be.
[0006]
On the other hand, the method using the aerobic microorganism of (4) above does not use a large amount of chemicals or ozone gas, but tends to require a large treatment tank. turn into. Moreover, if a thermophilic microbial cell is used as a microorganism and treated in a heated state (for example, 50 to 70 ° C.), the lysis action increases the sludge solubilization efficiency, and heat sludge heat denaturation effect is expected. Can be done.
[0007]
However, as the temperature rises, the oxygen dissolution efficiency further decreases, and the above-mentioned useful effects may be offset. Further, if a large amount of gas (air) is aerated to prevent such a decrease in dissolution efficiency, the amount of heat released to the outside increases, and heat energy for heating and heat retention is wasted. There is.
[0008]
  Therefore, the present invention has been made in view of such circumstances, it is possible to efficiently reduce the volume of biological sludge as surplus sludge that can be generated with the treatment of organic wastewater, etc., and energy consumption Sludge volume reduction that can eliminate conventional problems such as increaseapparatusThe purpose is to provide.
[0009]
[Means for Solving the Problems]
  The sludge volume reducing device according to the present invention contains biological sludge and contains BOD ( Biochemical Oxygen Demand ) Is supplied with a liquid to be treated of less than 50 mg / L, and sludge treatment is performed in which the liquid to be treated is agitated so that the oxygen transfer efficiency with respect to the liquid to be treated is 20% or more. Connected to the sludge treatment section and oxygen (O 2 ), Ozone (O 3 ) Or hydrogen peroxide (H 2 O 2 ).In the present invention, “oxygen transfer efficiency” refers to the ratio of the dissolved oxygen amount to the supplied oxygen amount when air at 20 ° C. is supplied into fresh water having an oxygen concentration of 0 mg / L.
[0010]
  The sludge treatment part has an agitation part that blocks the bubble flow or the liquid flow in the liquid to be treated or changes the direction of the bubble flow or the liquid flow to agitate the liquid to be treated.
[0011]
  Specifically, the agitation unit includes a plurality of perforated plates provided in a container constituting the sludge treatment unit and having a plurality of holes penetrating in the thickness direction. In such a configuration, when the liquid to be treated flows in the container of the sludge treatment section, the flow of the liquid to be treated is disturbed when flowing between the plurality of perforated plates, and a stirring / mixing effect is obtained.
[0012]
  Furthermore, it is also preferable to provide a cell addition unit for adding aerobic heat-resistant bacteria to the liquid to be treated.
[0013]
  The sludge volume reducing device according to the present invention is for effectively implementing the following sludge volume reducing method. In the sludge volume reduction method, oxygen (O is added to the liquid to be treated which contains biological sludge and the BOD in the liquid is less than 50 mg / L. 2 ), Ozone (O 3 ) Or hydrogen peroxide (H 2 O 2 ) And a sludge that stirs by generating turbulent flow in the liquid to be treated so that the oxygen transfer efficiency with respect to the liquid to be treated is 20% or more, preferably 25% or more, particularly preferably 30% or more. A processing step. Moreover, a sludge volume reduction process may be implemented partially or entirely simultaneously during execution of a supply process, and may be implemented after implementation of a supply process.
[0014]
  In such a method, in the supplying step, oxygen gas, ozone gas, or hydrogen peroxide is supplied to a liquid to be treated containing biological sludge used for biological treatment such as organic waste water, and these are mixed. Usually, in biological treatment such as organic wastewater, sludge used in wastewater treatment in main processes such as activated sludge tanks, biological treatment tanks, reaction tanks, etc. is rich in nutrients and propagates bacterial cells. The middle BOD shows a relatively high value. On the other hand, the present invention treats a liquid to be treated that has a lower activity than sludge to be used for biological treatment and can be discharged as surplus sludge, that is, a liquid to be treated whose BOD in the liquid is less than 50 mg / L. And
[0015]
  In the sludge treatment step, a turbulent flow is generated in the liquid to be treated to which oxygen or the like is supplied, and the mixture is stirred and mixed, so that the oxygen transfer efficiency for the liquid to be treated is 20% or more. Thereby, the chemical species having the oxidizing ability transferred to the liquid to be treated oxidatively decomposes the bacterial cells, and solubilization of the sludge is promoted. At this time, if the oxygen transfer efficiency is less than 20%, it is difficult to achieve sludge solubilization with sufficient treatment efficiency even for a liquid to be treated with a low eutrophic value, and a desired volume reduction rate is achieved. It tends to be difficult to achieve.
[0016]
  Moreover, it is preferable that an aerobic heat-resistant bacterium exists in the liquid to be treated. If the liquid to be treated to which a thermophilic aerobic bacterium has been added is treated in a heated or heated state (for example, 50 to 70 ° C.), the solubilization efficiency of sludge can be enhanced by the lysing action, and even in the heated state. Combined with organic matter resolution, not only volume reduction but COD ( Chemical Oxygen Demand ) Reduction effect is enhanced. In addition, when the treatment temperature is increased, the dissolution efficiency of oxidizing factors such as oxygen tends to decrease. Conventionally, a large amount of gas (air) or the like has been aerated to prevent a decrease in the dissolution efficiency. However, as described above, this causes a waste of heat energy. In contrast, according to the present invention, since the oxygen transfer efficiency is maintained high by turbulent stirring in the sludge treatment step, an increase in the amount of aeration is suppressed.
[0017]
  Specifically, in the sludge treatment step, it is preferable to block the bubble flow or liquid flow in the liquid to be treated, or to change the direction of the bubble flow or liquid flow. By so doing, at least a part of the flow of the liquid to be processed is disturbed by blocking or turning the bubble flow or the liquid flow, that is, the uniformity of the flow of the liquid to be processed is disturbed, and the turbulent flow is likely to occur.
[0018]
  In the sludge volume reduction device of the present invention,In particular, at least one of the plurality of holes formed in at least one of the plurality of perforated plates is formed in another perforated plate disposed adjacent to the perforated plate; It is more preferable that the second hole located in the shortest distance from the first hole is provided non-coaxially.
[0019]
By so doing, the first holes and the second holes respectively provided in the perforated plates adjacent to each other are arranged so that their center (axis) positions are alternately different. Usually, the position of the holes in the perforated plate and the vicinity thereof have a smaller pressure loss with respect to the fluid flow than the part where the holes are not provided. The meandering passes from the formed first hole to the position of the second hole. Thereby, it becomes easy to produce a vortex | eddy_current and a turbulent flow, and stirring and mixing are further promoted.
[0020]
More specifically, a plurality of holes formed in two perforated plates arranged adjacent to each other among the plurality of perforated plates are provided so as to be arranged in a staggered lattice shape (staggered pattern shape, staggered foot shape). It is useful to be
[0021]
That is, the plurality of first holes formed in one porous plate and the plurality of second holes formed in the other porous plate adjacent thereto are all arranged non-coaxially. Preferably there is. For example, if the hole drilling position differs for each perforated plate, the perforated plate may be arranged coaxially, or if the hole drilling position is the same between the perforated plates, the perforated plate is non-coaxial. What is necessary is just to arrange | position. Moreover, although all the hole diameters may be the same in the porous plate or between the porous plates, some or all of them may be different. If it does in this way, it will become easy to generate a vortex and a turbulent flow over the whole perforated board, and stirring and mixing efficiency will be improved further.
[0022]
Furthermore, it is preferable that the stirring unit has a driving unit that drives at least one of the plurality of perforated plates and the container.
[0023]
In this way, the liquid to be treated can be alternately and repeatedly flowed in one direction, preferably in a plurality of directions, particularly preferably in a plurality of directions, with respect to the perforated plate. Therefore, the degree (intensity) of turbulence is further increased, and a stronger stirring / mixing effect can be obtained. More specifically, a structure in which a perforated plate is connected to a drive unit composed of a drive shaft (shaft) or the like that reciprocates (such as moving up and down), a porous plate is fixed, and a container of a sludge treatment unit is driven or oscillated ( A configuration that moves up and down, etc. can be exemplified.
[0024]
Alternatively, the stirring section is connected to the container, and has a liquid circulation section that circulates and circulates the liquid to be treated in the container and switches the flow direction of the liquid to be treated in a plurality of different directions. Is also preferable. In this way, not only the liquid to be treated is circulated in a certain direction but also the flow direction can be switched at any time with a desired frequency (interval). Therefore, a stronger stirring / mixing effect can be obtained without driving the perforated plate or the container.
[0025]
Specifically, the liquid circulation unit includes at least two circulation paths (pipe lines, lines, etc.) connected to the container, and at least two of the circulation paths provided in parallel so that the discharge directions are different from each other. It is preferable to have a pump. In this case, by switching the two pumps as needed, the flow direction of the liquid to be processed flowing through the circulation line and the container is switched (for example, reversed).
[0026]
Alternatively, the liquid circulation unit has at least one circulation line connected to the container, two three-way valves provided in each circulation line, and one pump connected to the two three-way valves. Is also suitable. In this case, even if a single pump is used, the flow direction of the liquid to be processed flowing through the circulation line and the container can be switched by adjusting and controlling the opening and closing of each valve provided in each three-way valve (for example, Inverted.)
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
[0028]
1 and 2 are configuration diagrams schematically showing a first embodiment and a second embodiment of a sludge volume reducing device according to the present invention, respectively. A sludge volume reducing apparatus 100 shown in FIG. 1 is connected to a sludge treatment unit 1 connected to a transfer pipe L1 of a liquid W to be treated containing biological sludge, through oxygen pipes L2 and L3, respectively. A gas supply source 2 (supply unit) for storing or generating a gas containing gas or a gas containing ozone, and a solid-liquid separation tank 3 using gravity sedimentation separation or the like are connected. Moreover, the return line L4 connected to the sludge process part 1 is connected to the bottom part of the solid-liquid separation tank 3, and the discharge line L5 of the processed liquid Ws is provided in the upper part. .
[0029]
Here, the liquid W to be treated has a BOD of less than 50 mg / L in the liquid. For example, a part of the activated sludge used for biological treatment such as organic wastewater is a surplus (that is, Excess sludge) can be used. Such a BOD value is a value lower than the normal value of activated sludge when used for biological treatment, and corresponds to a low nutritional value that is not sufficient for sludge to grow.
[0030]
The liquid W to be treated having such properties is supplied to the sludge treatment unit 1 through the pipe L1, and air or the like is supplied from the gas supply source 2 by aeration. As will be described later, in the sludge treatment unit 1, the liquid W to which the air or the like is supplied in this way is stirred and mixed, and the bacterial cells are oxidatively decomposed to solubilize the sludge in the liquid. This to-be-processed liquid W is transferred to the solid-liquid separation tank 3, and the separated processed liquid Ws is sent to the processing facility etc. which perform the further water purification process etc. through the pipe line L5. Further, the sludge remaining as a solid content without being solubilized is returned to the sludge treatment section 1 through the pipe L4 and is circulated.
[0031]
On the other hand, in the sludge volume reducing device 200 shown in FIG. 2, the sludge treatment unit 1 is connected to the waste water treatment device 9 in which treatment of organic waste water or the like by biological sludge is performed via the pipelines L1 and L3. And it is comprised similarly to the sludge volume reduction apparatus 100 except not having the solid-liquid separation tank 3. FIG. The sludge volume reducing device 200 has a configuration equipped on-site to the waste water treatment device 9, and the liquid W to be treated supplied from the waste water treatment device 9 is in the sludge treatment unit 1 in a desired amount of organisms. After the sludge is solubilized, it is returned to the wastewater treatment device 9 as a treated liquid.
[0032]
Hereinafter, examples of the sludge treatment unit 1 will be described. FIG. 3 is a schematic cross-sectional view (partial configuration diagram) showing a reaction apparatus 10 as a preferred example of the sludge treatment unit 1. In the reaction apparatus 10, a large number of perforated plates 15 are placed in a sealed container 11 having a substantially cylindrical shape.nA perforated plate group 15 (stirring portion) is disposed substantially coaxially (subscript n indicates an arbitrary position) fixedly disposed on a rod-like support 13 at a predetermined interval. Each end of the circulation pipe L50 is connected to the top and bottom of the container 11, and a branch pipe L51 having pumps P1 and P2 arranged in parallel is provided in the middle of the circulation pipe L50. , L52 are installed. The discharge directions of the pumps P1 and P2 are opposite to each other as indicated by the illustrated arrows t1 and t2. In this way, the circulation line L50, the branch lines L51 and L52, and the pumps P1 and P2 constitute a liquid circulation unit. The reactor 10 also serves as a stirring unit.
[0033]
Further, a pipe line L <b> 1 is connected to the bottom of the container 11 so that the liquid W to be processed is supplied to the lower part of the container 11. On the other hand, the pipe line L3 is connected to the upper wall of the container 11, and the treated liquid is returned from the upper part of the container 11 to the solid-liquid separation tank 3 or the waste water treatment device 9. Furthermore, the pipe line L2 connected to the gas supply source 2 is divided into branch pipe lines L21 and L22 having flow rate adjusting valves V21 and V22 and connected to both the bottom of the container 11 and the pipe line L50, respectively. .
[0034]
Here, FIG. 4 is a perspective view showing a main part of the reaction apparatus 10 and shows a part of the perforated plate group 15. FIG. 5 is a schematic cross-sectional view showing a part of the perforated plate group 15. As shown in both figures, each perforated plate 15nIncludes a plurality of holes H penetrating in the thickness direction.nIs formed. Further, the perforated plate 15 at an arbitrary positionnAdjacent perforated plate 15n-1And 15n + 1And each perforated plate 15n-1, n, n + 1Hole H provided inn-1, n, n + 1Are arranged so that their horizontal positions do not match.
[0035]
In other words, the porous plate group 15 includes one porous plate 15 adjacent to each other.nA plurality of holes H formed inn(First hole) and the other perforated plate 15n-1, n + 1A plurality of holes H formed inn-1, n + 1(Second holes) are provided so that the planar positions are different from each other. That is, the adjacent perforated plate 15nThe holes H are arranged in a staggered lattice pattern (staggered pattern, staggered pattern) so that the center (axis) positions of the holes H are alternately different. Furthermore, a plurality of perforated plates 15nOf the two perforated plates 15 arranged adjacent to each other, arbitrarily selectednOne of the perforated plates 15nHole H formed inn(First hole) and the other perforated plate 15n-1, n + 1Hole H formed inn-1, n + 1The first hole and the hole located at the shortest distance (second hole) are provided non-coaxially (non-concentric if the hole is a circular hole).
[0036]
An example of a method for operating the sludge volume reducing apparatuses 100 and 200 including the reactor 10 configured as described above as the sludge treatment section 1 and performing the sludge volume reduction treatment will be described. First, the liquid W to be treated is introduced into the position inside and below the container 11 through the pipe L1. Along with the supply of the liquid to be processed W or after the liquid amount becomes constant, air or the like is supplied from the gas supply source 2 to the lower portion of the container 11 through the pipe L21 (supply process). In addition, the pump P1 is operated, and air or the like is aerated and supplied to the other end side of the pipe line L50 through the pipe line L22 (supply process).
[0037]
Then, the supply flow rate of the liquid W to be treated is adjusted, for example, air or the like is supplied while maintaining the liquid level so that the liquid level is slightly higher than the upper discharge port to which one end of the pipe L50 is connected. In this state, the liquid W to be treated is forcibly circulated in the container 11. At this time, the liquid W to be processed flows downward through the perforated plate group 15. Then, after operating the pump P1 for a certain time, the pump P1 is stopped and the pump P2 is operated. In this way, the circulating flow in the container 11 is reversed, and the liquid W to be treated is circulated upward.
[0038]
During this time, oxygen contained in the air or the like moves into the liquid W to be treated, and oxidation / decomposition of the cells constituting the biological sludge contained in the liquid is performed by its oxidizing ability. At this time, in order to maintain the liquid W to be treated at a predetermined temperature, a heater or the like may be provided inside or outside the container 11 to heat or keep the temperature. In this case, the liquid W to be processed may be supplied into the container 11 in a state of being heated or heated to a certain temperature in advance.
[0039]
Here, taking the case where the pump P2 is operating as an example, the mixed phase flow of the gas-liquid solid phase containing fine bubbles such as air is generated in the perforated plate 15.nHole HnIt flows upward so as to pass through, but the flow is located above the perforated plate 15n-1Is blocked or shielded and partly turned downward. Therefore, in that part, the upward flow and the downward flow are mixed and disturbed in a complicated manner, and a turbulent state including a vortex flow is continuously generated (see FIG. 5). Such a state is indicated by each perforated plate 15.nEach hole HnIt is caused at a nearby site, and the liquid W to be treated is sufficiently stirred and mixed as a whole. Conversely, even when the pump P1 is in operation, the perforated plate 15 is removed by the perforated plate group 15.nA turbulent flow is generated in between, and sufficient stirring and mixing is performed.
[0040]
In addition, perforated plate 15nHole H provided innWhen passing through a high-speed flow such as a jet flow having a very high flow velocity can be generated. Therefore, in the container 11, a substantially complete stirring / mixing state, which can be referred to as a mixed state by a turbulent flow, is realized. As a result, bubbles such as air are extremely miniaturized, and by vigorous stirring and mixing, from the gas phase such as oxygen contained in the air to the liquid phase and from the liquid phase to the solid phase (biological sludge). The transfer rate (efficiency) of oxidants such as oxygen increases dramatically. As a specific example, the oxygen transfer efficiency at this time reaches 20% or more, and sometimes reaches 80% or more. On the other hand, in a conventional aeration tank used conventionally, the oxygen transfer efficiency is generally less than 10%.
[0041]
That is, the dissolution efficiency in the liquid phase of oxygen or the like contained in the air or the like is remarkably enhanced as compared with the conventional case. As a result, the efficiency of the oxidative decomposition reaction of the microbial cells constituting the biological sludge is dramatically improved, solubilization of the biological sludge is remarkably promoted (sludge treatment process), and the volume reduction of the sludge can be sufficiently achieved. . The obtained treated liquid is transferred to the solid-liquid separation tank 3 or the waste water treatment device 9 through the pipe line L3. The microbial cells are converted into water, carbon dioxide, other lower carbohydrates, organic acids, and the like, and particularly the BOD component in the liquid (solution) containing these can be a nutrient in wastewater treatment with activated sludge.
[0042]
Here, the oxygen transfer efficiency to the liquid W to be processed in the container 11 is determined based on the operation output of the pumps P 1 and P 2, the flow rate or flow rate of the liquid W to be circulated in the container 11, Aeration volume, perforated plate 15nIt is possible to control by appropriately adjusting the shape, arrangement and the like.
[0043]
In addition, the operation of the pumps P1 and P2 is switched to sequentially reverse the direction of the mixed phase flow of the liquid W to be treated and the air in the container 11, so that the porous plate 15nIt is possible to eliminate stagnation that may inevitably occur in the meantime. Therefore, stirring and mixing of the liquid W to be treated and air can be further promoted. Therefore, sufficient oxygen transfer efficiency of 20% or more, preferably 25% or more, particularly preferably 30% or more can be easily realized by a smaller supply amount of air or the like or a liquid circulation amount. In addition, since the agitation is performed by alternately switching the liquid flow direction without driving the perforated plate group 15, the number of movable parts can be reduced to improve the reliability and maintainability of the apparatus and to prevent an increase in power consumption. .
[0044]
Further, each perforated plate 15 in the perforated plate group 15.nHole H formed innSince the effect of generating turbulent flow is enhanced by arranging them in a staggered pattern, compared to the case where a large number of holes are coaxially arranged at the same position, the same air supply amount or liquid circulation amount is used. Higher oxygen transfer efficiency can be achieved.
[0045]
Furthermore, according to the knowledge of the present inventors, the high transfer efficiency of oxygen or the like in the reactor 30 is expressed in a wide temperature range from a low temperature range to a high temperature range, and therefore air is not affected by temperature conditions. Even if the supply amount (aeration amount) to the container 11 is small, a decrease in the solubilization rate of the biological sludge is suppressed. Therefore, the supply amount of air or the like can be reduced, and as a result, the amount of heat released to the outside of the reactor 30 can be reduced. Therefore, it is possible to save labor by suppressing the consumption of heat energy.
[0046]
Furthermore, because sufficient agitation and mixing of biological sludge and air is performed, the contact frequency (probability), contact time, contact amount, etc. between dissolved oxygen and microbial cells constituting the sludge are significantly increased. Is done. Moreover, the perforated plate 15nShear force due to strong high-speed flow between, perforated plate 15nThere is also an effect of mechanically crushing the microbial cells by a cavitation effect caused by repeated compression and expansion between them. Therefore, due to these, the oxidative decomposition reaction of the bacterial cells is further promoted, and the solubilization of the biological sludge can be further enhanced.
[0047]
In addition, since the periphery of the perforated plate group 15 is covered by the inner wall of the container 11, a multiphase flow is generated in each perforated plate 15nIs prevented from diffusing or diffusing in the radial direction (direction toward the outer periphery). Accordingly, a decrease in the flow pressure of the multiphase flow is suppressed or the flow pressure is increased, and the liquid W to be processed is stirred and mixed more strongly. Therefore, the solubilization of biological sludge can be further enhanced.
[0048]
In addition, if the treatment liquid W contains cells such as thermophilic bacteria such as bacteria belonging to the genus Bacillus or thermophilic heat-resistant bacteria, biological sludge can be obtained by heating the treatment liquid W. Due to the thermal metamorphic effect of the main microbial cells constituting the structure, the solubilization efficiency of the biological sludge is enhanced by sufficiently suppressing the growth thereof and the lytic action of the thermophilic thermotolerant bacteria. Therefore, the ratio of the mineralized sludge can be increased as compared with the conventional case, and the COD component can be sufficiently reduced. In this case, it is preferable to connect a fungus body addition part (not shown) for storing such thermophilic thermotolerant bacteria to the pipe line L1 or the container 11, or alternatively, it may be added in advance at the source of the liquid W to be treated. .
[0049]
FIG. 6 is a schematic cross-sectional view (partial configuration diagram) showing a reactor 20 as another preferred example of the sludge treatment unit 1. In the reactor 20, pipes L53 and L54 connected to a pump P3 that discharges in a direction indicated by an arrow t3 are connected to a circulation pipe L50 in place of the pipes L51 and L52 provided with pumps P1 and P2. Except for this, the reactor is configured in the same manner as the reactor 10 shown in FIG. The pipe L53 is a branch pipe having a three-way valve V33, and a three-way valve V34 is provided between portions of the pipe L50 to which the pipe L53 is connected.
[0050]
The pipe line L54 is connected to the three-way valves V33 and V34 so as to bypass the pipe lines L50 and L53. That is, one pump P3 is connected to the pipe line L50 via the three-way valves V33 and V34. As described above, the circulation line L50, the branch lines L53 and L54, the three-way valves V33 and V34, and the pump P3 constitute a liquid circulation unit. The reactor 20 also serves as a stirring unit.
[0051]
According to the sludge volume reducing apparatuses 100 and 200 including the reaction apparatus 20 configured as described above, the circulation of the liquid W to be treated is performed by opening and closing each of the three-way valves V33 and V34 while the pump P3 is operated. It is possible to switch the direction of the flow. Specifically, in order to cause the upward flow in the container 11, the liquid W to be processed is circulated in the direction indicated by the arrow X in the pipe L <b> 50. On the other hand, in order to cause the downward flow in the container 11, the liquid W to be processed is circulated in the direction indicated by the arrow Y in the pipe line L50. Thereby, the flow path of the liquid W to be processed can be switched at any time with only one pump P3, and a high oxygen transfer efficiency of 20% or more is achieved. In addition, about another effect regarding sludge volume reduction, it is substantially equivalent to the reactor 10 shown in FIG. 3, and in order to avoid duplication description, detailed description here is abbreviate | omitted.
[0052]
FIG. 7 is a schematic cross-sectional view (partial configuration diagram) showing a reactor 30 as still another preferred example of the sludge treatment unit 1. The reactor 30 has a perforated plate group 15 coupled to a shaft 33 whose upper end is connected to a drive unit 35 instead of a support column 13, and has pipes L50, L51, L52 and the like and pumps P1, P2. Except not, it is comprised similarly to the reaction apparatus 10. FIG. The lower end portion of the shaft 33 is in a released state, and is moved up and down in the direction indicated by the arrow A (that is, in the vertical direction) at a constant cycle and stroke by the operation of the drive unit 35. Thus, the reactor 30 also serves as a stirring unit.
[0053]
Thereby, the relative flow of the perforated plate group 15 and the liquid W to be processed is generated, and the flow direction is frequently switched in the drive cycle of the perforated plate group 15, and the liquid W to be processed and the air or the like as described above. A turbulent multiphase flow is generated, and powerful stirring and mixing are performed. As a result, a high oxygen transfer efficiency of 20% or more with respect to the liquid W to be processed is achieved. In addition, about another effect regarding sludge volume reduction, it is substantially equivalent to the reactor 10 shown in FIG. 3, and in order to avoid duplication description, detailed description here is abbreviate | omitted.
[0054]
FIG. 8 is a schematic cross-sectional view (partial configuration diagram) showing a reactor 40 as still another preferred example of the sludge treatment unit 1. The reactor 40 has a porous plate group 15 installed on a column 34 whose end is fixed to an external support instead of the shaft 33, and the container 11 is coupled to the drive unit 45, The reactor is configured in the same manner as the reactor 30. The penetration part of the support | pillar 34 in the upper wall and bottom wall of the container 11 is slidably sealed. In such a reactor 40, instead of driving the perforated plate group 15, the entire container 11 is moved up and down in the direction indicated by the arrow B (that is, the vertical direction) at a constant cycle and stroke by the operation of the driving unit 45. Thus, the reactor 40 also serves as a stirring unit.
[0055]
Thereby, the relative flow of the perforated plate group 15 and the liquid W to be processed is generated, and the flow direction is frequently switched in the driving cycle of the container 11, and the mixed phase flow between the liquid W to be processed and the air as described above. Turbulence is generated, and powerful stirring and mixing are performed. As a result, a high oxygen transfer efficiency of 20% or more is achieved. In addition, about another effect regarding sludge volume reduction, it is substantially equivalent to the reactor 10 shown in FIG. 3, and in order to avoid duplication description, detailed description here is abbreviate | omitted.
[0056]
FIG. 9 is a schematic cross-sectional view (partial configuration diagram) showing a reactor 50 as still another preferred example of the sludge treatment unit 1. The reaction apparatus 50 is configured in the same manner as the reaction apparatus 20 shown in FIG. 6 except that it includes two two-way valves V33a and V33b and V34a and V34b instead of the three-way valves V33 and V34. is there. By switching these two-way valves V33a, V33b, V34a, and V34b, a circulation flow equivalent to that in the reactor 20 by the three-way valves V33 and V34 can be formed. Further, for example, when a pipe having a schedule of about 100A is used, it is advantageous from the viewpoint of economy. In addition, about another effect regarding sludge volume reduction, it is substantially equivalent to the reactor 10 shown in FIG. 3, and in order to avoid duplication description, detailed description here is abbreviate | omitted.
[0057]
In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation is possible in the range which does not deviate from the summary. For example, in the container 11 in each of the reaction devices 10 to 40, instead of the perforated plate group 15, other members that can partially block or block the flow direction of the liquid W to be processed, such as drivable or non-driven A fin member, a propeller member, another plate-like body, a comb-like body, a net-like body, or a combination thereof may be installed. Each perforated plate 15nHole H formed innThe shape is not limited to that shown in the figure. Further, a pipe L50 having pumps P1, P2 or pump P3 constituting the reactors 10 and 20 is installed in the containers 11 of the reactors 30 and 40, and the perforated plate group 15 or the containers 11 are driven and covered by the pumps. You may implement combining the forced circulation of the process liquid W. FIG.
[0058]
Furthermore, when ozone-containing gas is used from the gas supply source 2, it is desirable to close or seal the container 11 in order to prevent unreacted ozone from leaking to the outside. It may be in a sealed state. However, according to the present invention, biological sludge can be sufficiently solubilized even if the amount of ozone used is reduced, so that there is an advantage that unreacted ozone itself can be reduced. Furthermore, hydrogen peroxide may be used in place of air or ozone-containing gas, and its oxidizing ability promotes oxidative decomposition of the cells and thus solubilization of biological sludge.
[0059]
【Example】
Specific examples according to the present invention will be described below, but the present invention is not limited thereto.
[0060]
<Example 1>
An apparatus having the same configuration as the sludge volume reducing apparatus 200 provided with the reaction apparatus 30 shown in FIG. 7 as the sludge treatment unit 1 was prepared. The reactor 30 is provided in a cylindrical container 11 having an effective volume of 20 L (liter; the same applies hereinafter) to a perforated plate 15.nA group of perforated plates 15 provided with 16 sheets (with a diameter of 13 cmφ and a hole diameter of 8 mmφ) at intervals of 6 cm is provided. And the to-be-processed liquid W which contains biological sludge with the density | concentration of 10000 mg / L and whose BOD in a liquid component is 10 mg / L in this reactor 30 was supplied with the flow volume of 30 L / h. At the same time, while moving the perforated plate group 15 up and down at a driving cycle different from 60, 80, 100, and 120 rpm, air is supplied to the container 11 at 5, 7.5, 10 L / min (that is, 15, 22.5, 30 VVH). Was supplied at a different flow rate and sludge volume reduction treatment was carried out. Further, when air was supplied to the fresh water under the same conditions, the oxygen transfer efficiency was 20% or more.
[0061]
Here, the unit “VVH” indicates a physical quantity of gas supply amount (Vol.) / Effective volume (Vol.) / H of the container 11, and is a unit generally used in the fields of water treatment technology, fermentation technology, and the like. This corresponds to a value obtained by normalizing the amount of air supplied to the reactor 30 by the effective volume of the container. During the treatment, the temperature of the liquid to be treated in the container 11 was maintained at 60 ° C.
[0062]
As a result, under any conditions, a desired volume reduction rate (30 to 50%) with respect to biological sludge, that is, a new sludge generation amount (bacterial cell growth amount) is possible depending on, for example, the waste water treatment device 9. A volume reduction rate was achieved that was approximately equal to the amount of reduction due to solubilization (decomposition amount of bacterial cells). Further, the amount of oxygen dissolved in the liquid W to be treated was measured using an oxygen absorption method using sodium sulfite, and the oxygen dissolution rate was calculated based on the air supply flow rate. Table 1 shows the results of the oxygen dissolution rate under each treatment condition.
[0063]
[Table 1]
Figure 0003834275
[0064]
<Example 2>
Gas containing ozone instead of air (ozone concentration: 40 g / NmThree) Is supplied into the container 11 at a flow rate of 10, 12.5, and 15 VVH, the driving cycle of the porous plate group 15 is set to 80, 100, and 120 rpm, and the processing temperature of the liquid W to be processed is set to The sludge volume reduction process was implemented like Example 1 except having set it as 20-24 degreeC. As a result, a desired volume reduction rate (30 to 50%) with respect to biological sludge was obtained with efficiency equal to or higher than that of Example 1 under any condition.
[0065]
Further, the amount of ozone dissolved in the liquid to be treated was measured, and the dissolution rate of ozone was calculated based on the supply flow rate of the ozone-containing gas. Table 2 shows the results of the ozone dissolution rate under each treatment condition. From this, it was found that an extremely high ozone dissolution rate can be obtained.
[0066]
[Table 2]
Figure 0003834275
[0067]
<Example 3>
The effective volume of the container 11 of the reactor 30 is 1.5 L, a perforated plate having a shape corresponding thereto is used, the temperature of the liquid W to be treated in the reactor 30 is maintained at 70 ° C., and the container 11 is moved into the container 11. The sludge volume was reduced in the same manner as in Example 1 except that the amount of air supplied was 0.3 L / min (that is, 12 VVH) and the driving cycle of the perforated plate group 15 was 45, 50, 100 rpm. Processing was carried out. Table 3 shows the oxygen transfer efficiency and the activated sludge volume reduction rate under each condition.
[0068]
<Comparative example 1>
A sludge volume reduction treatment was performed in the same manner as in Example 3 except that the liquid W was stirred using a magnetic stirrer instead of the perforated plate group 15. Table 3 also shows the oxygen transfer efficiency and the volume reduction rate of the activated sludge at this time.
[0069]
[Table 3]
Figure 0003834275
[0070]
From the results shown in Table 3, it was confirmed that an oxygen transfer efficiency of 20% or more was obtained under the conditions of this example, and in this case, a high volume reduction rate of about 50% could be achieved.
[0071]
<Example 4>
The sludge volume reduction treatment was performed in the same manner as in Example 3 except that the driving cycle of the perforated plate group 15 was set to 100 rpm and the temperature of the liquid to be treated in the reactor 30 was maintained at 60 and 70 ° C. The example at the temperature of 70 ° C. has the same conditions as the example at the temperature of 70 ° C. in the example 3, but for the sake of convenience of description, it will be reprinted here. Table 4 shows the volume reduction rate of the sludge contained in the liquid W to be treated under each condition. As a result, it was confirmed that the thermal energy can be effectively used for sludge volume reduction treatment and the increase in the amount of heat radiation to the outside can be suppressed.
[0072]
[Table 4]
Figure 0003834275
[0073]
【The invention's effect】
  As explained above, the present inventionDirtyAccording to the mud volume reducing device, it is possible to efficiently reduce the volume of biological sludge as surplus sludge that can be generated by the biological treatment of organic wastewater, thereby reducing the amount of surplus generation. In addition, when reducing the volume of sludge, it is possible to sufficiently suppress an increase in energy consumption and improve the processing efficiency and economy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing a first embodiment of a sludge volume reducing device according to the present invention.
FIG. 2 is a block diagram schematically showing a second embodiment of the sludge volume reducing device according to the present invention.
FIG. 3 is a schematic cross-sectional view (partial configuration diagram) showing a reaction apparatus 10 as a preferred example of the sludge treatment unit 1;
4 is a perspective view showing a main part of the reaction apparatus 10. FIG.
5 is a schematic cross-sectional view showing a part of a perforated plate group 15. FIG.
FIG. 6 is a schematic cross-sectional view (partial configuration diagram) showing a reaction apparatus 20 as another preferred example of the sludge treatment unit 1;
7 is a schematic cross-sectional view (partial configuration diagram) showing a reaction apparatus 30 as still another preferred example of the sludge treatment section 1. FIG.
FIG. 8 is a schematic cross-sectional view (partial configuration diagram) showing a reactor 40 as still another preferred example of the sludge treatment section 1;
FIG. 9 is a schematic cross-sectional view (partial configuration diagram) showing a reaction apparatus 50 as still another preferred example of the sludge treatment section 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sludge process part, 2 ... Gas supply source (supply part), 3 ... Solid-liquid separation tank 10, 20, 30, 40 ... Reactor (sludge process part, stirring part), 11 ... Container, 13 ... Support | pillar, 15: perforated plate group, 15n... perforated plate, 35, 45 ... drive unit, 100, 200 ... sludge volume reduction device, Hn... holes, P1, P2, P3 ... pumps, V33, V34 ... three-way valves, V33a, V33b, V34a, V34b ... two-way valves, W ... liquid to be processed, Ws ... processed liquid.

Claims (5)

生物汚泥を含み且つ液分中のBODが50mg/L未満である被処理液が供給され、該被処理液に対する酸素移動効率が20%以上となるように該被処理液中に乱流が生じて該被処理液が攪拌される汚泥処理部と、
前記汚泥処理部に接続されており、酸素(O )、オゾン(O )、又は過酸化水素(H )を有する供給部と、を備え、
前記汚泥処理部は、前記被処理液中の気泡流若しくは液流を遮断し、又は、該気泡流若しくは液流の向きを変化させて該被処理液を攪拌する攪拌部を有し、
前記攪拌部、前記汚泥処理部を構成する容器内に設けられており厚み方向に貫通する複数の孔を有する複数の多孔板を有することを特徴とする汚泥減容化装置。
A treatment liquid containing biological sludge and having a BOD of less than 50 mg / L in the liquid is supplied, and turbulent flow is generated in the treatment liquid so that the oxygen transfer efficiency with respect to the treatment liquid is 20% or more A sludge treatment part in which the liquid to be treated is stirred,
A supply unit connected to the sludge treatment unit and having oxygen (O 2 ), ozone (O 3 ), or hydrogen peroxide (H 2 O 2 ),
The sludge treatment unit has a stirring unit that blocks the bubble flow or the liquid flow in the liquid to be treated, or changes the direction of the bubble flow or the liquid flow to stir the liquid to be treated.
The stirring unit, a plurality of perforated plates sludge volume reduction device you characterized as having a having a plurality of holes penetrating in the thickness direction is provided in the container constituting the sludge treatment unit.
前記複数の多孔板は、該複数の多孔板のうち少なくとも一つの多孔板に形成された前記複数の孔のうち少なくとも一つの第1の孔が、該多孔板に隣接配置された他の多孔板に形成されており且つ該第1の孔から最短距離に位置する第2の孔と非同軸状に設けられたものである、
ことを特徴とする請求項記載の汚泥減容化装置。
The plurality of perforated plates are other perforated plates in which at least one of the plurality of holes formed in at least one of the plurality of perforated plates is disposed adjacent to the perforated plate. And provided non-coaxially with the second hole located at the shortest distance from the first hole.
The sludge volume reducing device according to claim 1, wherein:
前記複数の多孔板は、該複数の多孔板のうち互いに隣接配置された二つの多孔板に形成された前記複数の孔が、千鳥格子状に配置されるように設けられたものである、
ことを特徴とする請求項記載の汚泥減容化装置。
The plurality of perforated plates are provided so that the plurality of holes formed in two perforated plates adjacent to each other among the plurality of perforated plates are arranged in a staggered pattern,
The sludge volume reducing device according to claim 1, wherein:
前記攪拌部は、前記複数の多孔板、及び、前記容器のうち少なくともいずれか一方を駆動させる駆動部を有することを特徴とする請求項1〜3のいずれか一項に記載の汚泥減容化装置。The sludge volume reduction according to any one of claims 1 to 3 , wherein the stirring unit includes a drive unit that drives at least one of the plurality of perforated plates and the container. apparatus. 前記攪拌部は、前記容器に接続されており、該容器内に前記被処理液を循環流通させ、且つ、該被処理液の流通方向を互いに異なる複数の方向に切り替える液循環部を有することを特徴とする請求項1〜3のいずれか一項に記載の汚泥減容化装置。The agitation unit includes a liquid circulation unit that is connected to the container, circulates and circulates the liquid to be treated in the container, and switches the flow direction of the liquid to be treated to a plurality of different directions. The sludge volume reduction apparatus as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2002254060A 2002-08-30 2002-08-30 Sludge volume reduction device Expired - Fee Related JP3834275B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002254060A JP3834275B2 (en) 2002-08-30 2002-08-30 Sludge volume reduction device
KR1020030060334A KR20040020807A (en) 2002-08-30 2003-08-29 Apparatus and method for reducing sludge volume, apparatus and method for treating wastewater using the same
CNA031557546A CN1490265A (en) 2002-08-30 2003-09-01 Sludge treating device and method, and its dewatering device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254060A JP3834275B2 (en) 2002-08-30 2002-08-30 Sludge volume reduction device

Publications (2)

Publication Number Publication Date
JP2004089840A JP2004089840A (en) 2004-03-25
JP3834275B2 true JP3834275B2 (en) 2006-10-18

Family

ID=32059896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254060A Expired - Fee Related JP3834275B2 (en) 2002-08-30 2002-08-30 Sludge volume reduction device

Country Status (1)

Country Link
JP (1) JP3834275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064338B2 (en) * 2008-09-17 2012-10-31 住友重機械エンバイロメント株式会社 Wastewater treatment equipment
JP2009255088A (en) * 2009-08-06 2009-11-05 Fuji Koki Kk Surplus sludge volume reduction apparatus

Also Published As

Publication number Publication date
JP2004089840A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US5744105A (en) Slurry reactor
CA2664683C (en) Ozonation of wastewater for reduction of sludge or foam and bulking control
JP5097024B2 (en) Water treatment apparatus and water treatment method
JP3944379B2 (en) Waste water treatment method and waste water treatment equipment
JP4840563B2 (en) Sewage treatment equipment
JP2007136366A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
JP2006297205A (en) Processing method of organic waste and its apparatus
JP2008178792A (en) Biological reaction method and biological reaction apparatus
JP3834275B2 (en) Sludge volume reduction device
JP3738699B2 (en) Sludge treatment method and treatment apparatus, and sewage treatment method and treatment equipment using the same
JP4451991B2 (en) Aeration equipment
JP4503248B2 (en) Wastewater treatment method
JP2007319783A (en) Waste water treatment method and waste water treatment equipment
JPH1177087A (en) Method and apparatus for anaerobic biotreatment of organic waste water
KR100995096B1 (en) Sludge reforming method and the equipment
CN209906422U (en) Device for advanced oxidation of degradation-resistant industrial wastewater by ozone/hydrogen peroxide
KR20040020807A (en) Apparatus and method for reducing sludge volume, apparatus and method for treating wastewater using the same
JPH11319877A (en) Waste water treatment method and device
CN110790364A (en) Garbage disposal device capable of performing garbage disposal in rivers and lakes
CN217418299U (en) Intermittent type formula effluent treatment plant
CN221166385U (en) Aquaculture wastewater denitrification recycling system
KR20010046943A (en) Waste Water Treatment Equipment with the Function of Air Priming, Intermittent Aeration, Deoderization, Agitating and Horizontal Mixing
CN209651961U (en) Biochemical sludge becomes Zero discharging system
JP2001038397A (en) Method for decreasing volume of excess sludge and device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees