JP3833015B2 - Method and system for controlling position of shielding member in mold making apparatus - Google Patents

Method and system for controlling position of shielding member in mold making apparatus Download PDF

Info

Publication number
JP3833015B2
JP3833015B2 JP23849199A JP23849199A JP3833015B2 JP 3833015 B2 JP3833015 B2 JP 3833015B2 JP 23849199 A JP23849199 A JP 23849199A JP 23849199 A JP23849199 A JP 23849199A JP 3833015 B2 JP3833015 B2 JP 3833015B2
Authority
JP
Japan
Prior art keywords
sand
model
frame
shielding
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23849199A
Other languages
Japanese (ja)
Other versions
JP2001062544A (en
Inventor
平田実
波多野豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP23849199A priority Critical patent/JP3833015B2/en
Publication of JP2001062544A publication Critical patent/JP2001062544A/en
Application granted granted Critical
Publication of JP3833015B2 publication Critical patent/JP3833015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Devices For Molds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳型造型装置における遮蔽部材の位置制御方法およびそのシステムに係り、より詳しくは、模型板と、鋳枠と、盛枠と、複数の遮蔽部材を有する分割型遮蔽機構と、前記模型板、前記鋳枠、前記盛枠及び前記分割型遮蔽機構により画成された砂充填空間に鋳物砂を供給する砂供給手段と、を備えた鋳型造型装置において、前記鋳枠内の鋳型の密度をほぼ均一にしかつ前記鋳型におけるキャビティ面の背面にあたる面が前記鋳枠の表面とほぼ同一になるようにすべく前記遮蔽部材の位置を制御する方法およびそのシステムに関する。
【0002】
【従来の技術】
一般に従来の鋳枠付き鋳型の鋳型造型装置においては、模型板上の鋳枠への鋳物砂の充填は、鋳物砂をホッパーから重力落下により鋳枠内に供給し、その後供給された鋳物砂の上面を適宜の手段で引き掻いて平坦状にする工程で行なっていた。
【0003】
【発明が解決しようとする課題】
しかし、このような従来の鋳物砂の充填方式では、模型板の模型部の高さに関係なく鋳物砂が鋳枠内に供給されるため、鋳物砂をスクイズして造型された鋳型は、模型部の高さの相違によって鋳型の密度が異なるなどの問題があった。
【0004】
しかも、従来の鋳物砂の充填方式では、鋳枠への鋳物砂の供給量は模型板の模型の形状によって変わるにもかかわらず、ホッパからの鋳物砂の排出量はほぼ一定であるため、模型板模型の形状変化に伴い鋳枠への鋳物砂の充填状態が変わる。これに伴って鋳物砂をスクイズすると、鋳型が鋳枠から突出した状態に成ることがある。この場合には鋳型表面を鋳枠のそれと同一のレベルにすべく鋳型を掻き取る必要があり、この結果、無駄な鋳物砂が大量に発生したり、サンドカット装置が必要になったり、掻き取った鋳物砂が飛散するなどの問題も生じていた。
【0005】
本発明は上記の事情に鑑みてなされたもので、その目的は、模型板と、鋳枠と、盛枠と、複数の遮蔽部材を有する分割型遮蔽機構と、前記模型板、前記鋳枠、前記盛枠および前記分割型遮蔽機構により画成された砂充填空間に鋳物砂を供給する砂供給手段と、を備えた鋳型造型装置において、前記鋳枠内の鋳型の密度をほぼ均一にしかつ前記鋳型におけるキャビティ面の背面にあたる面が前記鋳枠の表面とほぼ同一になるようにすべく前記遮蔽部材の位置を制御する方法およびそのシステムを提供することにある。
【 0006】
【課題を解決するための手段】
上記の目的を達成するために請求項1の鋳型造型装置における遮蔽部材の位置制 御方法は、模型板と、この模型板上に載置可能な鋳枠と、この鋳枠上に載置可能な盛枠と、少なくともこの盛枠に進入可能でありかつ表面がこの表面に相対向する前記模型板の模型部とで所要の間隔を成す位置に一時維持可能な複数の遮蔽部材を有する分割型遮蔽機構と、前記模型板、前記鋳枠、前記盛枠及び前記分割型遮蔽機構により画成された砂充填空間に鋳物砂を供給する砂供給手段と、を備えた鋳型造型装置において、前記鋳枠内の鋳型の密度をほぼ均一にしかつ前記鋳型におけるキャビティ面の背面にあたる面が前記鋳枠の表面とほぼ同一になるようにすべく前記遮蔽部材の位置を制御する方法であって、前記模型板の模型部の高さが高い部分では遮蔽部材が下降して圧縮される鋳物砂の量を少なくし、前記模型板の模型部の高さが低い部分では前記遮蔽部材は上昇したままで圧縮される鋳物砂の量を多くするように、前記遮蔽部材をそれぞれ移動させて、前記模型板、前記鋳枠、前記盛枠および前記複数の遮蔽部材により構成した砂充填空間に鋳物砂を供給した後、前記砂充填空間の鋳物砂をスクイズして前記分割型遮蔽機構の複数の遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさをそれぞれ測定する工程と、この測定結果に基づき、前記遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさを相互に同じにすべく、次回の鋳物砂供給時における前記砂充填空間に関連する前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔をそれぞれ補正して、次回の鋳物砂供給時の前記砂充填空間における前記複数の遮蔽部材のそれぞれがこれに相対向する模型板の模型部とで成す間隔を長くまたは短くする工程と、を含んでいて、鋳物砂の充填後、鋳枠等内に充填された鋳物砂を適宜の慣用の鋳型造型機によりスクイズする。
【0007】
また、請求項2の鋳型造型装置における遮蔽部材の位置制御システムは、模型板と、この模型板上に載置可能な鋳枠と、この鋳枠上に載置可能な盛枠と、少なくともこの盛枠に進入可能でありかつ表面がこの表面に相対向する前記模型板の模型部とで所要の間隔を成す位置に一時維持可能な複数の遮蔽部材を有する分割型遮蔽機構と、前記模型板、前記鋳枠、前記盛枠及び前記分割型遮蔽機構により画成された砂充填空間に鋳物砂を供給する砂供給手段と、を備えた鋳型造型装置において、前記鋳枠内の鋳型の密度をほぼ均一にしかつ前記鋳型におけるキャビティ面の背面にあたる面が前記鋳枠の表面とほぼ同一になるようにすべく前記遮蔽部材の位置を制御するシステムであって、前記砂充填空間の鋳物砂をスクイズして前記分割型遮蔽機構の複数の遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさをそれぞれ測定する反力測定手段と、この反力測定手段の測定結果に基づき、前記遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさを相互に同じにすべく、前記模型板の模型部の高さが高い部分では遮蔽部材が下降して圧縮される鋳物砂の量を少なくし、前記模型板の模型部の高さが低い部分では前記遮蔽部材は上昇したままで圧縮される鋳物砂の量を多くするように、次回の鋳物砂供給時の前記砂充填空間における前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔を長くまたは短くなるように補正した、次回の鋳物砂供給時における前記砂充填空間に関連する前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔をそれぞれ演算する間隔演算手段と、を有していることを特徴とする。
【0008】
【実施例1】
以下、発明の実施例を図1〜図3に基づき詳細に説明する。図1は、本発明の一実施例の所要部を示す縦断面図であって、鋳物砂の鋳枠等への充填とスクイズ機能を備えた装置を示す。そして、図示しない適宜の慣用手段により間欠的に水平移動可能に配置された移動定盤1の上面上には、模型板2がセットしてあり、前記移動定盤1が一時停止する所定位置における前記模型板2の上方位置に、鋳枠3が図示しない枠搬送装置により入出しかつ昇降するようになっている。また、前記所定位置における前記鋳枠3の上方位置には、下端部に盛枠4を所要距離上下動可能にして垂設された分割型遮蔽機構5が図示しないアクチュエータにより昇降可能にして配設してある。
【0009】
そして、前記分割型遮蔽機構5は、スクイズヘッド機能も兼ね備えている。また、この分割型遮蔽機構5においては、前記盛枠4を所要距離上下動可能にして垂設された逆置箱状の支持部材6が設けてあり、支持部材6の上面には砂供給手段としての四角筒状の砂ホッパ7が設けてある。前記支持部材6の下部空間内には、複数の遮蔽部材8・8が碁盤の目状に配置されかつ上下動自在にして設けてあり、これら遮蔽部材8・8のそれぞれは、図2に示すように、下端を板材でかつ上端を孔9付き角材でそれぞれ閉鎖されたシリンダ構造を成しており、さらにこれら遮蔽部材8・8の各内部にはピストン10を一体的に設けたピストンロッド11が前記孔付き板材の孔9を貫通して上下摺動自在にして装着してあり、ピストンロッド11の上端部は前記支持部材6に装着してある。
【0010】
また、前記ピストンロッド11、11のそれぞれには、これに沿って延びて前記 ピストン10を貫通する第1貫通孔12と、ピストンロッド11に沿って延びる がピストン10を貫通しない第2貫通孔13とがそれぞれ透設してあり、各第1 ・第2貫通孔12・13は、方向切換弁14を介してて図示しない油圧ユニット に接続してある。また、各第1貫通孔12と各方向切換弁14との間には、砂充 填空間の鋳物砂をスクイズして前記分割型遮蔽機構の複数の遮蔽部材8・8それぞれ作用する反力の大きさをそれぞれ測定する反力測定手段としての圧力センサ15と、前記第1貫通孔12への圧油の流量を調整する流量調整弁17とが装着してある。これら複数の圧力センサ15・15および流量調整弁17・17のそれぞれには、この圧力センサ15・15の測定結果に基づき、前記遮蔽部材8・8にそれぞれ作用する前記鋳物砂の反力の大きさを相互に同じにすべく、次回の鋳物砂供給時の前記砂充填空間における前記複数の遮蔽部材8・8のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔を長くまたは短くなるように補正した、次回の鋳物砂供給時における前記砂充填空間に関連する前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔をそれぞれ演算する間隔演算手段としてのマイクロコンピュータ18が電気的に接続してある。
【0011】
これに伴ない、複数の遮蔽部材8・8は、図1に示すように、これら遮蔽部材8・8に相対向する前記模型板2の模型部とで成す複数の間隔について、スクイズ前とスクイズ後の割合が相互に限りなく近くような位置に維持できるようになっている。すなわち、スクイズ前における遮蔽部材8・8とこれに相対向する前記模型板2の模型部とで成す複数の間隔をA,Bとし、スクイズ後におけるそれらをa,bとすると(図2参照)、これらの割合a/Aおよび
b/Bが、a/A=b/Bの関係に限りなく近くなるように制御されるようになっている。
【0012】
また、図1および図3に示すように、前記支持部材6における複数の遮蔽部材8・8に囲まれた各空間内には、砂排出孔16が形成してあり、各砂排出孔16は漏斗状を成している。図中符号17は安全弁である。
【0013】
次に、上記の装置を用いて、鋳枠3内の鋳型の密度をほぼ均一にしかつ鋳型におけるキャビティ面の背面にあたる面が鋳枠3の表面とほぼ同一になる鋳型の造型手順について説明する。まず、図1に示すように、模型板2上に鋳枠3を、鋳枠3上に盛枠4および分割型遮蔽機構5をそれぞれ重ね合わせた後、方向切換弁14・14を適宜切り替えて複数の第1貫通孔12・12を介して複数の遮蔽部材8・8にこけるピストン10・10の下側に圧油をそれぞれ供給して複数の遮蔽部材8・8を下降させるとともに、複数の遮蔽部材8・8を、これらに相対向する模型板2の模型部とで成す複数の間隔について、スクイズ前とスクイズ後の割合が相互に限りなく近づくような位置A・Bに維持する。言い換えると、模型部の高さが高い部分では遮蔽部材8が下降して圧縮される鋳物砂の量を少なくし、模型部の高さが低い部分では、遮蔽部材8は上昇したままで、圧縮される鋳物砂の量を多くするように移動して、模型板2・鋳枠3・盛枠4・複数の遮蔽部材8・8により、砂充填空間を構成する。
【0014】
次いで、図示しない砂投入機構により砂ホッパ7に鋳物砂を投入して、鋳物砂を分割型遮蔽機構5の砂ホッパ7から複数の砂排出孔16・16を通して砂充填空間内に供給し、続いて、図3に示すように、図示しないアクチュエーターにより、分割型遮蔽機構5を下降させて砂充填空間内の鋳物砂を複数の遮蔽部材8・8によりスクイズする。この複数の遮蔽部材8・8のスクイズ作動に伴い、鋳物砂の遮蔽部材8・8への反力が遮蔽部材8・8の下降力より大きくなると、遮蔽部材8・8は、分割型遮蔽機構5の下降に伴って相対的には上昇端まで押し上げられることとなる。こうして、分割型遮蔽機構5が所定の位置まで下降し、鋳物砂を均一にスクイズした状態では、全ての遮蔽部材8・8は、上昇端に移動してスクイズ面が平坦状態で均一にスクイズされた鋳型を造型できる。
【0015】
さらに、スクイズ完了時に遮蔽部材8・8のそれぞれに作用する鋳物砂の反力( 鋳型密度)の大きさを圧力センサ15で測定し、この測定結果に基づき、前記遮蔽部材8・8にそれぞれ作用する前記鋳物砂の反力の大きさを相互に同じにすべく、コンピュータ18からの指令によって流量調整弁17・17を適宜作動して前回の鋳物砂供給時における砂充填空間に関連する複数の遮蔽部材8・8の下降位置を補正しながらこれらを下降させて、模型板2の模型部の高さが高い部分では遮蔽部材8・8が下降して圧縮される鋳物砂の量を少なくし、模型板2の模型部の高さが低い部分では遮蔽部材8・8は上昇したままで圧縮される鋳物砂の量を多くするように、次回の鋳物砂供給時の砂充填空間における複数の遮蔽部材8・8のそれぞれがこれに相対向する模型板2の模型部とで成す間隔を長くまたは短くし、これにより、複数の遮蔽部材8・8と模型板2の模型部とで成すそれぞれの間隔へ供給する鋳物砂の供給量を増加または減少させて、スクイズ後の鋳型密度すなわちスクイズ完了時に複数の遮蔽部材8・8にそれぞれ作用する鋳物砂の反力の大きさ相互に同じになるように制御する。
【0016】
なお、上記の実施例では、鋳物砂のスクイズ造型は、鋳物砂充填装置で行なったが、この鋳物砂充填装置で模型板上の鋳枠内に所要量の鋳物砂を供給した後、適宜の慣用鋳型造型機で鋳物砂をスクイズして所望の鋳型を造型するようにしてもよい。
【 0017】
【発明の効果】
上記の説明から明らかなように、請求項1の鋳型造型装置における遮蔽部材の位置制御方法は、模型板と、この模型板上に載置可能な鋳枠と、この鋳枠上に載置 可能な盛枠と、少なくともこの盛枠に進入可能でありかつ表面がこの表面に相対 向する前記模型板の模型部とで所要の間隔を成す位置に一時維持可能な複数の遮 蔽部材を有する分割型遮蔽機構と、前記模型板、前記鋳枠、前記盛枠及び前記分 割型遮蔽機構により画成された砂充填空間に鋳物砂を供給する砂供給手段と、を 備えた鋳型造型装置において、前記鋳枠内の鋳型の密度をほぼ均一にしかつ前記 鋳型におけるキャビティ面の背面にあたる面が前記鋳枠の表面とほぼ同一になる ようにすべく前記遮蔽部材の位置を制御する方法であって、前記模型板の模型部の高さが高い部分では遮蔽部材が下降して圧縮される鋳物砂の量を少なくし、前記模型板の模型部の高さが低い部分では前記遮蔽部材は上昇したままで圧縮される鋳物砂の量を多くするように、前記遮蔽部材をそれぞれ移動させて、前記模型板、前記鋳枠、前記盛枠および前記複数の遮蔽部材により構成した砂充填空間に鋳物砂を供給した後、前記砂充填空間の鋳物砂をスクイズして前記分割型遮蔽機構の複数の遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさをそれぞれ測定する工程と、この測定結果に基づき、前記遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさを相互に同じにすべく、次回の鋳物砂供給時における前記砂充填空間に関連する前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔をそれぞれ補正して、次回の鋳物砂供給時の前記砂充填空間における前記複数の遮蔽部材のそれぞれがこれに相対向する模型板の模型部とで成す間隔を長くまたは短くする工程と、を含んでいて、鋳物砂の充填後、鋳枠等内に充填された鋳物砂を適宜の慣用の鋳型造型機によりスクイズするようにして、鋳物砂の充填後、鋳枠等内に充填された鋳物砂を適宜の慣用の鋳型造型機によりスクイズするようにしたから、鋳枠内の鋳型の密度をほぼ均一にしかつ鋳型におけるキャビティ面の背面にあたる面が鋳枠の表面とほぼ同一になるように、鋳物砂を模型板上の鋳枠内に容易かつ確実に充填することができるなどの優れた実用的効果を奏する。
【0018】
また、請求項の鋳型造型装置における遮蔽部材の位置制御システムは、模型板と、この模型板上に載置可能な鋳枠と、この鋳枠上に載置可能な盛枠と、少なくともこの盛枠に進入可能でありかつ表面がこの表面に相対向する前記模型板の模型部とで所要の間隔を成す位置に一時維持可能な複数の遮蔽部材を有する分割型遮蔽機構と、前記模型板、前記鋳枠、前記盛枠及び前記分割型遮蔽機構により画成された砂充填空間に鋳物砂を供給する砂供給手段と、を備えた鋳型造型装置において、前記鋳枠内の鋳型の密度をほぼ均一にしかつ前記鋳型におけるキャビティ面の背面にあたる面が前記鋳枠の表面とほぼ同一になるようにすべく前記遮蔽部材の位置を制御するシステムであって、前記砂充填空間の鋳物砂をスクイズして前記分割型遮蔽機構の複数の遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさをそれぞれ測定する反力測定手段と、この反力測定手段の測定結果に基づき、前記遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさを相互に同じにすべく、前記模型板の模型部の高さが高い部分では遮蔽部材が下降して圧縮される鋳物砂の量を少なくし、前記模型板の模型部の高さが低い部分では前記遮蔽部材は上昇したままで圧縮される鋳物砂の量を多くするように、次回の鋳物砂供給時の前記砂充填空間における前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔を長くまたは短くなるように補正した、次回の鋳物砂供給時における前記砂充填空間に関連する前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔をそれぞれ演算する間隔演算手段と、を有しているから、鋳枠内の鋳型の密度をほぼ均一にしかつ鋳型におけるキャビティ面の背面にあたる面が鋳枠の表面とほぼ同一になる鋳型を容易かつ確実に造型することができ、しかも、別途スクイズヘッドが必要がないため、このための鋳型造型装置は、全体的にはコンパクトになるなどの優れた実用的効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施例の主要部の縦断面図であって、砂供給時の砂供給空間の形状を示す。
【図2】図1の主要部の拡大詳細図である。
【図3】本発明の一実施例の主要部の縦断面図であって、スクイズ時の砂供給空間の形状を示す。
【符号の説明】
2 模型板
3 鋳枠
4 盛枠
5 分割型遮蔽機構
8 遮蔽部材
15 圧力センサ
コンピュータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a position control method and system for a shielding member in a mold making apparatus, and more specifically, a model plate, a cast frame, a fill frame, a split type shielding mechanism having a plurality of shielding members, and the model. And a sand supply means for supplying foundry sand to a sand-filled space defined by the plate, the casting frame, the filling frame, and the split-type shielding mechanism, and a mold density in the casting frame. The present invention relates to a method and a system for controlling the position of the shielding member so that the surface corresponding to the back surface of the cavity surface in the mold is substantially the same as the surface of the casting frame.
[0002]
[Prior art]
In general, in a conventional mold making apparatus for a mold with a casting frame, the casting sand is filled into the casting frame on the model plate by feeding the casting sand into the casting frame by gravity dropping from the hopper, and then feeding the foundry sand. The upper surface was scratched by an appropriate means to make it flat.
[0003]
[Problems to be solved by the invention]
However, in such a conventional casting sand filling method, the casting sand is supplied into the casting frame regardless of the height of the model portion of the model plate. Therefore, the mold formed by squeezing the casting sand is a model. There was a problem that the mold density was different depending on the height of the part.
[0004]
Moreover, in the conventional casting sand filling method, the amount of foundry sand discharged from the hopper is almost constant even though the amount of foundry sand supplied to the casting frame varies depending on the shape of the model plate. As the shape of the plate model changes, the filling state of the foundry sand into the casting frame changes. Along with this, when the foundry sand is squeezed, the mold may protrude from the casting frame. In this case, it is necessary to scrape the mold to bring the mold surface to the same level as that of the casting frame. As a result, a large amount of wasted sand is generated, a sand cutting device is required, or scraping is performed. There was also a problem that the foundry sand was scattered.
[0005]
The present invention has been made in view of the above circumstances, and its purpose is to provide a model plate, a cast frame, a fill frame, a split type shielding mechanism having a plurality of shielding members, the model plate, the cast frame, A mold making apparatus comprising: a sand supply means for supplying foundry sand to a sand filling space defined by the filling frame and the split-type shielding mechanism, wherein the density of the mold in the cast frame is substantially uniform and It is an object of the present invention to provide a method and a system for controlling the position of the shielding member so that the surface corresponding to the back surface of the cavity surface in the mold is substantially the same as the surface of the casting frame.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the method for controlling the position of the shielding member in the mold making apparatus according to claim 1 is a model plate, a cast frame that can be placed on the model plate, and a model frame that can be placed on the cast frame. A split type having a plurality of shielding members that can be temporarily maintained at a position that forms a predetermined interval between the frame and a model part of the model plate that is capable of entering at least the frame and whose surface is opposed to the surface. In the mold making apparatus, comprising: a shielding mechanism; and a sand supply means for supplying foundry sand to a sand filling space defined by the model plate, the casting frame, the filling frame, and the divided shielding mechanism. a method for controlling the position of the shielding member to be such back falls face of the cavity surface is substantially the same as the drag flask of the surface at substantially uniform life-and-death the mold a density of the mold within the frame, the model Shield the part where the height of the model part of the plate is high. The amount of the foundry sand to be compressed by lowering the shielding member is reduced, and the amount of the foundry sand to be compressed is increased while the shielding member is raised at the portion where the height of the model portion of the model plate is low. , Squeeze the foundry sand in the sand-filled space after moving the shield member and supplying the foundry sand to the sand-filled space constituted by the model plate, the casting frame, the filling frame and the plurality of shielding members. And measuring the magnitude of the reaction force of the foundry sand acting on each of the plurality of shielding members of the split type shielding mechanism, and the reaction of the foundry sand acting on the shielding member based on the measurement result. In order to make the magnitude of the force equal to each other, an interval formed by each of the plurality of shielding members related to the sand filling space at the next casting sand supply with the model portion of the model plate facing the sand filling space is set. Correct each Each a model part of the model plate opposed thereto and a process for the longer or shorter intervals that form in the plurality of shielding members in the next said sand filling space during foundry sand supplied, include, foundry sand After filling, the foundry sand filled in the casting frame or the like is squeezed by an appropriate conventional mold making machine.
[0007]
According to a second aspect of the present invention, there is provided a position control system for a shielding member in a mold making apparatus, a model plate, a cast frame that can be placed on the model plate, a fill frame that can be placed on the cast frame, A split type shielding mechanism having a plurality of shielding members capable of entering a filling frame and having a surface temporarily maintained at a position that forms a predetermined interval with a model portion of the model plate facing the surface; and the model plate A mold supply device for supplying casting sand to a sand filling space defined by the casting frame, the filling frame, and the split type shielding mechanism. A system for controlling the position of the shielding member so that the surface corresponding to the back surface of the cavity surface in the mold is substantially the same as the surface of the casting frame, and squeezes the foundry sand in the sand-filled space. The split type shielding machine A reaction force measuring means for measuring a plurality of reaction force of the molding sand which acts respectively on the shielding member size, respectively, based on the measurement result of the reaction force measuring means, of the molding sand which acts respectively on the shielding member In order to make the magnitudes of the reaction forces equal to each other, in the portion where the height of the model portion of the model plate is high, the shielding member is lowered and the amount of molding sand to be compressed is reduced, and the model portion of the model plate is reduced. Each of the plurality of shielding members in the sand-filling space at the next casting sand supply is relative to this so that the amount of the molding sand to be compressed is increased while the shielding member is raised while the height is low. Each of the plurality of shielding members related to the sand filling space at the time of the next casting sand supply is corrected so that the interval formed with the model portion of the model plate facing is longer or shorter. Model part of model board Characterized in that it has a, a distance calculation means for calculating each interval formed by.
[0008]
[Example 1]
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. FIG. 1 is a longitudinal sectional view showing a required portion of an embodiment of the present invention, and shows an apparatus having a squeeze function and filling of casting sand into a casting frame or the like. A model plate 2 is set on the upper surface of the movable surface plate 1 that is arranged to be horizontally movable intermittently by appropriate conventional means (not shown), and at a predetermined position where the movable surface plate 1 is temporarily stopped. The cast frame 3 is moved up and down by a frame conveying device (not shown) and moved up and down above the model plate 2. Further, a split type shielding mechanism 5 that is suspended at a lower end portion so that the filling frame 4 can be moved up and down by a predetermined distance is arranged at a position above the casting frame 3 at the predetermined position so that it can be moved up and down by an actuator (not shown). It is.
[0009]
The split type shielding mechanism 5 also has a squeeze head function. Further, in this split type shielding mechanism 5, an inverted box-like support member 6 is provided so that the filling frame 4 can be moved up and down by a predetermined distance, and sand supply means is provided on the upper surface of the support member 6. A square cylindrical sand hopper 7 is provided. In the lower space of the support member 6, a plurality of shielding members 8, 8 are arranged in a grid pattern and are movable up and down. Each of the shielding members 8, 8 is shown in FIG. Thus, a cylinder structure is formed in which the lower end is closed by a plate material and the upper end is closed by a square member with a hole 9, and a piston rod 11 in which a piston 10 is integrally provided inside each of these shielding members 8, 8. Is mounted so as to be slidable vertically through the hole 9 of the plate with holes, and the upper end portion of the piston rod 11 is mounted on the support member 6.
[0010]
Each of the piston rods 11, 11 has a first through hole 12 extending along the piston rod 11 and penetrating the piston 10, and a second through hole 13 extending along the piston rod 11 but does not penetrate the piston 10. And the first and second through holes 12 and 13 are connected to a hydraulic unit (not shown) via a direction switching valve 14. Each between the first through hole 12 and each directional control valves 14, SunaTakashi Hama anti acting respectively foundry sand space into a plurality of shielding members 8, 8 of the split-type shielding mechanism 5 and squeeze A pressure sensor 15 serving as a reaction force measuring means for measuring the magnitude of the force and a flow rate adjusting valve 17 for adjusting the flow rate of the pressure oil to the first through hole 12 are mounted. Each of the plurality of pressure sensors 15 and 15 and the flow rate adjusting valves 17 and 17 has a large reaction force of the foundry sand acting on the shielding members 8 and 8 based on the measurement results of the pressure sensors 15 and 15 , respectively. In order to make the thicknesses equal to each other, an interval formed between each of the plurality of shielding members 8 and 8 in the sand filling space at the next casting sand supply with the model portion of the model plate facing each other is increased or Interval calculation for calculating the interval formed by each of the plurality of shielding members related to the sand filling space at the time of the next casting sand supply with the model portion of the model plate opposed to the same, which is corrected to be shortened A microcomputer 18 as means is electrically connected.
[0011]
Accordingly, as shown in FIG. 1, the plurality of shielding members 8 and 8 are squeezed before and after squeezing with respect to a plurality of intervals formed by the model portions of the model plate 2 facing the shielding members 8 and 8. The subsequent proportions can be kept in close proximity to each other. That is, let A and B be a plurality of intervals formed by the shielding members 8 and 8 before squeezing and the model portion of the model plate 2 facing each other, and a and b after squeezing (see FIG. 2). These ratios a / A and b / B are controlled to be as close as possible to the relationship of a / A = b / B.
[0012]
Further, as shown in FIGS. 1 and 3, sand discharge holes 16 are formed in the spaces surrounded by the plurality of shielding members 8 and 8 in the support member 6, and each sand discharge hole 16 is It has a funnel shape. Reference numeral 17 in the figure denotes a safety valve.
[0013]
Next, a description will be given of a mold making procedure in which the density of the mold in the casting frame 3 is made substantially uniform and the surface corresponding to the back surface of the cavity surface in the casting mold is substantially the same as the surface of the casting frame 3 using the above-described apparatus. First, as shown in FIG. 1, the casting frame 3 is overlaid on the model plate 2, and the filling frame 4 and the divided shielding mechanism 5 are overlaid on the casting frame 3, and then the direction switching valves 14 and 14 are switched appropriately. Pressure oil is respectively supplied to the lower side of the pistons 10 and 10 that can reach the plurality of shielding members 8 and 8 through the plurality of first through holes 12 and 12 to lower the plurality of shielding members 8 and 8. The shielding members 8 and 8 are maintained at positions A and B such that the ratios before and after squeezing approach each other as much as possible with respect to a plurality of intervals formed by the model portions of the model plate 2 facing each other. In other words, in the portion where the height of the model portion is high, the shielding member 8 descends to reduce the amount of molding sand to be compressed, and in the portion where the height of the model portion is low, the shielding member 8 remains elevated and is compressed. By moving so as to increase the amount of foundry sand, the model board 2, the casting frame 3, the filling frame 4, and the plurality of shielding members 8 and 8 constitute a sand filling space.
[0014]
Next, the foundry sand is thrown into the sand hopper 7 by a sand throwing mechanism (not shown), and the foundry sand is supplied from the sand hopper 7 of the split type shielding mechanism 5 into the sand filling space through the plurality of sand discharge holes 16 and 16. Then, as shown in FIG. 3, the divided shielding mechanism 5 is lowered by an actuator (not shown) to squeeze the foundry sand in the sand-filled space by the plurality of shielding members 8 and 8. When the reaction force of the casting sand to the shielding members 8 and 8 becomes larger than the descending force of the shielding members 8 and 8 with the squeeze operation of the plurality of shielding members 8 and 8, the shielding members 8 and 8 are separated from each other. As 5 is lowered, it is relatively pushed up to the rising end. Thus, when the split type shielding mechanism 5 is lowered to a predetermined position and the foundry sand is uniformly squeezed, all the shielding members 8 and 8 are moved to the ascending end and the squeeze surface is uniformly squeezed in a flat state. Molds can be made.
[0015]
Further, when the squeeze is completed, the magnitude of the reaction force (mold density) of the foundry sand acting on each of the shielding members 8 and 8 is measured by the pressure sensor 15, and based on the measurement result, the action on each of the shielding members 8 and 8 is performed. In order to make the magnitude of the reaction force of the foundry sand to be the same, a plurality of flow control valves 17 and 17 are appropriately operated according to a command from the computer 18 and a plurality of sand filling spaces at the time of the previous foundry sand supply. These are lowered while correcting the descending positions of the shielding members 8 and 8, and in the portion where the height of the model portion of the model plate 2 is high, the shielding members 8 and 8 are lowered and the amount of molding sand to be compressed is reduced. In the part where the height of the model part of the model plate 2 is low, the shielding members 8 and 8 are kept in the ascending state, so as to increase the amount of the molding sand to be compressed, a plurality of sand filling spaces in the next casting sand supply Each of the shielding members 8 and 8 The distance between the model portions of the model plate 2 facing each other is increased or decreased, and thereby the casting sand to be supplied to the intervals formed by the plurality of shielding members 8 and 8 and the model portion of the model plate 2 is reduced. increase or decrease the supply amount, the magnitude of the reaction force of the molding sand to act in a plurality of shielding members 8, 8 into the mold density or when squeezing completed after squeezing is controlled to be the same to each other.
[0016]
In the above-described embodiment, the squeeze molding of the foundry sand was performed by the foundry sand filling device. After the required amount of foundry sand was supplied into the casting frame on the model plate by this foundry sand filling device, A desired mold may be formed by squeezing the foundry sand with a conventional mold making machine.
[0017]
【The invention's effect】
As is apparent from the above description, the method for controlling the position of the shielding member in the mold making apparatus according to claim 1 is a model plate, a cast frame that can be placed on the model plate, and can be placed on the cast frame. A split having a plurality of shielding members that can be temporarily maintained at a position that forms a predetermined interval between a large filling frame and at least a model portion of the model plate that can enter the filling frame and have a surface facing the surface. A mold making apparatus comprising: a mold shielding mechanism; and sand supply means for supplying foundry sand to a sand filling space defined by the model plate, the casting frame, the filling frame, and the split shielding mechanism. A method of controlling the position of the shielding member so that the density of the mold in the casting frame is substantially uniform and the surface corresponding to the back of the cavity surface in the casting mold is substantially the same as the surface of the casting frame. The part where the height of the model part of the model plate is high In minutes, the shielding member descends to reduce the amount of foundry sand to be compressed, and in the portion of the model plate where the height of the model portion is low, the shielding member remains raised and the amount of foundry sand to be compressed is increased. As described above, after moving the shielding member to supply foundry sand to the sand filling space constituted by the model plate, the casting frame, the filling frame and the plurality of shielding members, the foundry sand in the sand filling space Squeeze and measure the magnitude of the reaction force of the foundry sand acting on each of the plurality of shielding members of the divided shielding mechanism, and the foundry sand acting on the shielding member based on the measurement result Each of the plurality of shielding members related to the sand filling space at the time of the next casting sand supply is formed with a model portion of the model plate facing each other so that the magnitude of the reaction force is equal to each other. Each interval Correct and, comprise the steps of a longer or shorter interval formed between the model part of pattern plate, each of said plurality of shielding members in the sand filling space for the next molding sand supplying opposed thereto After filling the foundry sand, squeeze the foundry sand filled in the casting frame etc. with an appropriate conventional mold making machine, and after filling the foundry sand, the foundry sand filled in the foundry frame etc. Squeeze with a conventional mold making machine, so that the density of the mold in the casting frame is made almost uniform and the surface corresponding to the back of the cavity surface in the casting mold is almost the same as the surface of the casting frame. Excellent practical effects such as easy and reliable filling into the casting frame on the model plate can be achieved.
[0018]
According to a second aspect of the present invention, there is provided a position control system for a shielding member in a mold making apparatus, a model plate, a cast frame that can be placed on the model plate, a fill frame that can be placed on the cast frame, A split type shielding mechanism having a plurality of shielding members capable of entering a filling frame and having a surface temporarily maintained at a position that forms a predetermined interval with a model portion of the model plate facing the surface; and the model plate A mold supply device for supplying casting sand to a sand filling space defined by the casting frame, the filling frame, and the split type shielding mechanism. A system for controlling the position of the shielding member so that the surface corresponding to the back surface of the cavity surface in the mold is substantially the same as the surface of the casting frame, and squeezes the foundry sand in the sand-filled space. The split type shielding machine A reaction force measuring means for measuring a plurality of reaction force of the molding sand which acts respectively on the shielding member size, respectively, based on the measurement result of the reaction force measuring means, of the molding sand which acts respectively on the shielding member In order to make the magnitudes of the reaction forces equal to each other, in the portion where the height of the model portion of the model plate is high, the shielding member is lowered and the amount of molding sand to be compressed is reduced, and the model portion of the model plate is reduced. Each of the plurality of shielding members in the sand-filling space at the next casting sand supply is relative to this so that the amount of the molding sand to be compressed is increased while the shielding member is raised while the height is low. Each of the plurality of shielding members related to the sand filling space at the time of the next casting sand supply is corrected so that the interval formed with the model portion of the model plate facing is longer or shorter. Model part of model board And a distance calculating means for calculating the distance formed by each of the molds, so that the density of the mold in the casting mold is almost uniform and the surface corresponding to the back of the cavity surface in the casting mold is substantially the same as the surface of the casting mold. Can be easily and reliably formed, and there is no need for a separate squeeze head. Therefore, the mold making apparatus for this purpose has excellent practical effects such as compactness as a whole.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a main part of an embodiment of the present invention, and shows the shape of a sand supply space when sand is supplied.
FIG. 2 is an enlarged detail view of a main part of FIG.
FIG. 3 is a longitudinal sectional view of the main part of one embodiment of the present invention, showing the shape of the sand supply space during squeezing.
[Explanation of symbols]
2 Model plate 3 Casting frame 4 Filling frame 5 Split type shielding mechanism 8 Shielding member 15 Pressure sensor computer

Claims (2)

模型板と、この模型板上に載置可能な鋳枠と、この鋳枠上に載置 可能な盛枠と、少なくともこの盛枠に進入可能でありかつ表面がこの表面に相対 向する前記模型板の模型部とで所要の間隔を成す位置に一時維持可能な複数の遮 蔽部材を有する分割型遮蔽機構と、前記模型板、前記鋳枠、前記盛枠及び前記分 割型遮蔽機構により画成された砂充填空間に鋳物砂を供給する砂供給手段と、を 備えた鋳型造型装置において、前記鋳枠内の鋳型の密度をほぼ均一にしかつ前記 鋳型におけるキャビティ面の背面にあたる面が前記鋳枠の表面とほぼ同一になる ようにすべく前記遮蔽部材の位置を制御する方法であって、
前記模型板の模型部の高さが高い部分では遮蔽部材が下降して圧縮される鋳物砂の量を少なくし、前記模型板の模型部の高さが低い部分では前記遮蔽部材は上昇したままで圧縮される鋳物砂の量を多くするように、前記遮蔽部材をそれぞれ移動させて、前記模型板、前記鋳枠、前記盛枠および前記複数の遮蔽部材により構成した砂充填空間に鋳物砂を供給した後、前記砂充填空間の鋳物砂をスクイズして前記分割型遮蔽機構の複数の遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさをそれぞれ測定する工程と、
この測定結果に基づき、前記遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさを相互に同じにすべく、次回の鋳物砂供給時における前記砂充填空間に関連する前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔をそれぞれ補正して、次回の鋳物砂供給時の前記砂充填空間における前記複数の遮蔽部材のそれぞれがこれに相対向する模型板の模型部とで成す間隔を長くまたは短くする工程と、
を含むことを特徴とする鋳型造型装置における遮蔽部材の位置制御方法。
A model plate, a cast frame that can be placed on the model plate, a fill frame that can be placed on the cast frame, and at least the model that can enter the fill frame and whose surface is opposed to the surface A split type shielding mechanism having a plurality of shielding members that can be temporarily maintained at a position that forms a required interval with the model part of the plate, and the model plate, the cast frame, the fill frame, and the split type shielding mechanism. And a sand supply means for supplying foundry sand to the sand filling space formed, wherein the density of the mold in the casting frame is made substantially uniform, and the surface corresponding to the back of the cavity surface in the mold is the casting mold. A method of controlling the position of the shielding member so as to be substantially the same as the surface of the frame,
The part of the model board where the height of the model part is high reduces the amount of molding sand which the shielding member descends and compresses, and the part of the model board where the height of the model part is low keeps the shielding member raised. In order to increase the amount of molding sand to be compressed in the above, the respective shielding members are moved, and the molding sand is placed in the sand filling space constituted by the model plate, the casting frame, the filling frame and the plurality of shielding members. After squeezing the foundry sand in the sand-filled space and measuring the magnitude of the reaction force of the foundry sand acting on each of the plurality of shielding members of the split-type shielding mechanism,
Based on this measurement result, in order to make the magnitudes of the reaction forces of the foundry sand acting on the shielding members equal to each other, the plurality of shielding members related to the sand filling space at the time of the next foundry sand supply . Each of the plurality of shielding members in the sand filling space at the time of the next casting sand supply is corrected by correcting the interval between the model plate and the model portion of the model plate facing each other. A process of lengthening or shortening an interval formed with the model part of
The position control method of the shielding member in the mold making apparatus characterized by including.
模型板と、この模型板上に載置可能な鋳枠と、この鋳枠上に載置可能な盛枠と 、少なくともこの盛枠に進入可能でありかつ表面がこの表面に相対向する前記模 型板の模型部とで所要の間隔を成す位置に一時維持可能な複数の遮蔽部材を有す る分割型遮蔽機構と、前記模型板、前記鋳枠、前記盛枠及び前記分割型遮蔽機構 により画成された砂充填空間に鋳物砂を供給する砂供給手段と、を備えた鋳型造 型装置において、前記鋳枠内の鋳型の密度をほぼ均一にしかつ前記鋳型における キャビティ面の背面にあたる面が前記鋳枠の表面とほぼ同一になるようにすべく 前記遮蔽部材の位置を制御するシステムであって、
前記砂充填空間の鋳物砂をスクイズして前記分割型遮蔽機構の複数の遮蔽部材に それぞれ作用する前記鋳物砂の反力の大きさをそれぞれ測定する反力測定手段と 、
この反力測定手段の測定結果に基づき、前記遮蔽部材にそれぞれ作用する前記鋳物砂の反力の大きさを相互に同じにすべく、前記模型板の模型部の高さが高い部分では遮蔽部材が下降して圧縮される鋳物砂の量を少なくし、前記模型板の模型部の高さが低い部分では前記遮蔽部材は上昇したままで圧縮される鋳物砂の量を多くするように、次回の鋳物砂供給時の前記砂充填空間における前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔を長くまたは短くなるように補正した、次回の鋳物砂供給時における前記砂充填空間に関連する前記複数の遮蔽部材のそれぞれがこれに相対向する前記模型板の模型部とで成す間隔をそれぞれ演算する間隔演算手段と、
を有することを特徴とする鋳型造型装置における遮蔽部材の位置制御システム。
A model plate, a cast frame that can be placed on the model plate, a fill frame that can be placed on the cast frame, and at least the model that can enter the fill frame and whose surface is opposed to the surface. A split type shielding mechanism having a plurality of shielding members that can be temporarily maintained at a position that forms a required interval with the model portion of the template, and the model plate, the cast frame, the fill frame, and the split type shielding mechanism. And a sand supply means for supplying foundry sand to a defined sand filling space, wherein the density of the mold in the casting frame is made substantially uniform and the surface corresponding to the back of the cavity surface in the mold is A system for controlling the position of the shielding member so as to be substantially the same as the surface of the casting frame,
Reaction force measuring means for squeezing the foundry sand in the sand-filled space and measuring the magnitude of the reaction force of the foundry sand acting on each of the plurality of shielding members of the split shielding mechanism;
Based on the measurement result of the reaction force measuring means, in order to make the magnitude of the reaction force of the foundry sand acting on the shielding member equal to each other, the shielding member is used in a portion where the height of the model portion of the model plate is high. The amount of foundry sand to be compressed by lowering is reduced, and the amount of foundry sand to be compressed is increased at the portion where the height of the model portion of the model plate is low while the shielding member is raised. At the next casting sand supply time , the interval between the plurality of shielding members in the sand filling space at the time of casting sand supply and the model portion of the model plate facing each other is corrected to be longer or shorter. and spacing computing means, each of said plurality of shielding members to be associated with the sand filling space respectively calculating the spacing formed between the model part of the model plate opposing thereto in,
The position control system of the shielding member in the mold making apparatus characterized by having.
JP23849199A 1999-08-25 1999-08-25 Method and system for controlling position of shielding member in mold making apparatus Expired - Fee Related JP3833015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23849199A JP3833015B2 (en) 1999-08-25 1999-08-25 Method and system for controlling position of shielding member in mold making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23849199A JP3833015B2 (en) 1999-08-25 1999-08-25 Method and system for controlling position of shielding member in mold making apparatus

Publications (2)

Publication Number Publication Date
JP2001062544A JP2001062544A (en) 2001-03-13
JP3833015B2 true JP3833015B2 (en) 2006-10-11

Family

ID=17031046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23849199A Expired - Fee Related JP3833015B2 (en) 1999-08-25 1999-08-25 Method and system for controlling position of shielding member in mold making apparatus

Country Status (1)

Country Link
JP (1) JP3833015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416445B (en) * 2011-11-23 2013-12-11 徐水县兴华铸造有限公司 Clay sand molding equipment and method

Also Published As

Publication number Publication date
JP2001062544A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP3413798B2 (en) Molding method and molding system for molding machine with frame
US6684933B2 (en) Method and apparatus for compacting molding sand
EP1738847A1 (en) Method for manufacturing sandmold
EP2716385B1 (en) Method for manufacturing casting moulds and apparatus for carrying out said method
JP2701002B2 (en) Method and apparatus for producing a mold or mold part by compacting granular material
JP3833015B2 (en) Method and system for controlling position of shielding member in mold making apparatus
US3200449A (en) Contour squeeze molding machine
US3620293A (en) Press molding machine with adjustable feed device
US3648759A (en) Machine for making sand molds
JP3119334B2 (en) Mold making equipment
US3744551A (en) Machine for producing moulds consisting of identical mould parts that are lined up against each other
JP4296483B2 (en) Mold making method
JP2001038451A (en) Method and device for charging casting sand and, method and device for molding main die
JP3802358B2 (en) Casting sand compression method and casting sand molding method
JP6665935B2 (en) Mold making method
US2951270A (en) taccone
JPH0428453A (en) Method for molding mold and pressurizing compressing apparatus
JPS6321577B2 (en)
JP3119329B2 (en) Molding method for green sand mold
JP4203839B2 (en) Mold making method and apparatus
JP4096314B2 (en) Molding method of sand mold with frame
JPS60115346A (en) Device and method for forming casting mold
JPH03142038A (en) Molding machine
JPS5973149A (en) Forming device of casting mold
US1281129A (en) Molding-machine.

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040908

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Ref document number: 3833015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees