JP3832812B2 - Heat exchange plate and coating composition for fin material - Google Patents

Heat exchange plate and coating composition for fin material Download PDF

Info

Publication number
JP3832812B2
JP3832812B2 JP2001340772A JP2001340772A JP3832812B2 JP 3832812 B2 JP3832812 B2 JP 3832812B2 JP 2001340772 A JP2001340772 A JP 2001340772A JP 2001340772 A JP2001340772 A JP 2001340772A JP 3832812 B2 JP3832812 B2 JP 3832812B2
Authority
JP
Japan
Prior art keywords
coating composition
binder
heat exchange
stainless steel
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001340772A
Other languages
Japanese (ja)
Other versions
JP2003138221A (en
Inventor
進 小川
貴司 山口
修 谷田
進 中井
紘 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP2001340772A priority Critical patent/JP3832812B2/en
Publication of JP2003138221A publication Critical patent/JP2003138221A/en
Application granted granted Critical
Publication of JP3832812B2 publication Critical patent/JP3832812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、相互に温度の異なる複数の流体が、それらを隔てる金属や合金等を介して熱の交換を行う熱交換器の熱交換板、流体を内部に通すパイプやダクトの壁面等を構成する熱交換プレートに用いられる被覆組成物に関する。
【0002】
【従来の技術】
熱交換器や、流体を送るパイプやダクト等は、普通、金属により構成されている。金属は一般的に伝熱性に優れているから熱交換器用素材としては最適である。一方、液体や気体を送るパイプやダクトは強度の関係から金属で作られることが多い。
【0003】
ヒータコア、ラジエータ、コンデンサ等として使用する熱交換器は、それぞれが扁平管状に造られた多数の伝熱管と、コルゲート型の多数のフィンとを交互に重ね合わせたコア部を有する。上記多数の伝熱管の両端部は、それぞれ1対のヘッダ若しくはタンク内に連通させている。この様な熱交換器の使用時には、上記1対のヘッダ若しくはタンクの間で、冷却水或は冷媒等の流体を、上記多数の伝熱管を通じて流通させる。そして、この流体と、上記コア部を通過しつつ流れる空気又は液体との間で熱交換を行わせる。
【0004】
上述の様な熱交換器の伝熱管及びフィンを構成するために従来は、アルミニウム合金を使用していた。例えば、ヒータコア或はラジエータとして使用する熱交換器の場合には、伝熱管を、芯材の内周面側に犠牲材を、同じく外周面にろう材を、それぞれ積層(クラッド)した、所謂両面クラッド材により構成している。また、上記芯材を構成するアルミニウム合金としては3003材(JIS H 4000)を、上記犠牲材を構成するアルミニウム合金としては7072材(JIS H 4000)を、上記ろう材を構成するアルミニウム合金としては4343材を、一般的に使用している。更に、上記フィンを構成するアルミニウム合金としては、上記3003材のZn含有量を1.5重量%に増やして電位を卑としたものを、一般的に使用している。この様な組み合わせにより、上記芯材の腐蝕を抑制し、必要とする耐久性(耐蝕性)を確保している。
【0005】
伝熱管及びフィンを、総てアルミニウム合金により造ると、必要とする強度並びに耐久性を確保するためには、上記伝熱管の肉厚を極端に薄くすることはできない。このため、アルミニウム合金自体、比重が小さく伝熱率が良好な金属ではあるが、軽量化並びに熱交換性能の向上に限界がある。上記伝熱管を、アルミニウム合金に比べて遥かに優れた耐蝕性を有するステンレス鋼板により作製すれば、アルミニウム合金により造る場合に比べて、伝熱管の肉厚を遥かに薄くできて、軽量化と熱交換性能の向上とを図ることができる。
【0006】
高温流体から低温流体へ熱を伝達させる装置として各種の工業において熱交換器が広く使用されている。そうした熱交換器の形式には、多管式、二重管式、渦巻板式、ろう付けプレートフィン式、プレート式、かき面式等があり、用途に応じて適宜用いられている。
【0007】
これらのうち、ろう付けプレートフィン式とプレート式の熱交換器は、同一容積で比較すると、他の方式よりも広い伝熱面積を持ち、またプレートの増減によって容易に伝熱面積が変えられる等、設計上の融通性に優れることから、特に小規模な用途に適しており、小型の、例えば一般家庭用の機器にも用いられている。
【0008】
ところで、近年、こうした小型の熱交換器の分野では、更に高効率で、かつ低価格である製品への需要が高まっているが、現状のろう付けプレートフィン式では小型化に限界があり、他方、プレート式では耐圧力が低く、いずれの形式でも、大幅な価格の上昇なくしては小型で、かつ高効率の熱交換器は得難いという問題があった。
【0009】
【発明が解決しようとする課題】
本発明の目的は、このような現状に鑑み、ろう付けプレートフィン式より小型化が可能で、かつプレート式よりも高い耐圧力性能を有する熱交換プレート及びフィン材用被覆組成物を提供することである。
【0010】
【課題を解決するための手段】
本発明に従って、ポリビニルアセタール樹脂の結合剤とニッケル成分及び溶媒を成分とすることを特徴とする熱交換プレート用被覆組成物及びフィン材用被覆組成物が提供される。
【0011】
【発明の実施の形態】
本発明は、穴開け加工されたステンレス鋼板を積層して相互に接合し、該ステンレス鋼板に開けられた穴又はそれらの連結された空間を流体の流路となすステンレス鋼板積層体式熱交換器、並びに該ステンレス鋼板がロウ付けにより接合されていることを特徴とするステンレス鋼板積層体式熱交換器用被覆組成物を要旨とするものである。
【0012】
本発明者は、上記の課題を解決するために鋭意検討した結果、所定の結合剤とニッケル成分を主成分とすることにより、確実にステンレス鋼板表面にニッケル成分の被膜化できることを見出し、更にロウ付けにより接合することでニッケル箔を使用することよりも安価に、熱交換器を作製できることを見出し本発明を完成した。
【0013】
本発明に用いられる熱交換器に用いられる素材としては、特殊な用途に対するものを除けば、熱伝導性に優れる銅や銅合金、アルミニウムやアルミニウム合金、或は安価である炭素鋼や低合金鋼、及び使用される流体や環境に対する耐食性が問題となる場合にはステンレス鋼等が考えられる。これらの材料のうち、ステンレス鋼は、他の汎用材料と比較して強度が高いため、他の素材と同じ母材強度を、より小さい断面積の素材で得ることができる。従って、積層体をステンレス鋼で製作すれば熱交換器を小型化するのに最も有利である。また、ステンレス鋼は他の汎用素材に比べて耐食性に優れるため、使用できる熱媒体の選択肢が多くなり、そのため例えば、より潜熱の大きな物質の使用を可能にする等の利点もある。
【0014】
本発明において積層体に用いる素材をステンレス鋼としたのは、これらの点を考慮したためであり、より小型で、用途範囲の広い熱交換器を提供するためである。本発明に用いるステンレス鋼は、フェライト系、オーステナイト系、マルテンサイト系、二相系、析出硬化型のいずれでもよく、かつ、含有される不純物も一般商用鋼レベルでよい。
【0015】
本発明において用いられる結合剤は、ステンレス鋼板等の素材に密着し、熱分解を行った時に分解するものである。本発明で言う熱分解を行った時に分解するものとは、熱重量測定装置により熱分析において所定温度下(望ましくは500℃)において質量減量が95%以上するものである。
【0016】
具体例としては、公知の方法により合成されるポリビニルアセタール類(例えば重合度が200以上2500以下で、アセタール化度60〜70%又はブチラール化度60〜81.6%のもの、具体的なものとしてはホルマール樹脂やブチラール樹脂等)や、セルロース誘導体(例えばアセチルセルロースやニトロセルロース等のセルロースエステル類、メチルセルロース、エチルセルロース、ベンジルセルロース、カルボキシメチルセルロース等のセルロースエーテル類)、エポキシ樹脂(例えばアルキレングリコールポリエーテルのグリシジンエーテル類、例えばポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリオキシテトラメチレングリコールジグリシジルエーテル)、アクリル樹脂等が挙げられる。これらは、単独又は2種以上組み合わせて用いられる。
【0017】
本発明においては、特に結合剤の構成元素が炭素及び水素からなるか又は炭素、水素及び酸素からなりベンゼン環構造を持たない樹脂、具体的にはポリビニルアセタール樹脂用いられる。
【0018】
本発明の被覆組成物に用いられる結合剤は、500℃の熱により分解することが好ましい。これは、熱分解しない場合、結合剤成分が炭化し、ロウ付け後の接合力が低下するためである。
【0019】
本発明におけるニッケル成分は、ロウ付け時において溶融し熱交換プレート及びフィン材を接着するものである。ステンレス鋼板のロウ付け接合においてはニッケル成分以外に銅成分も考えられるが、銅成分はニッケル成分に比べ耐食性が劣るため本発明においては適さない。ロウ付け時の温度は低い方が作業効率が良く、ニッケル成分の溶融温度は、できるだけ低いものが望まれるため純ニッケルよりも合金化ニッケルが好ましい。具体例としては、金属接合用のニッケルロウ材用のBNi−1、BNi−1A、BNi−2、BNi−3、BNi−4、BNi−5、BNi−6、BNi−7及びBNi−8等が挙げることができる。特に、BNi−2、BNi−5及びBNi−7がロウ付け後の接合強度が大きいため特に好ましい。
【0020】
本発明で用いられるニッケル成分の形態としては、金属ニッケル粉末が代表的であるが、金属ニッケル粉末と水、溶剤、樹脂等でペースト状にしたもの等についても使用可能である。また、これらに限るものではない。ニッケル成分が粉末状の場合には均一に成膜させることを考慮した場合、平均粒径は20μm〜150μmであることが好ましい。
【0021】
本発明の被覆組成物は、上記結合剤と、上記ニッケル成分とを、結合剤:ニッケル成分=100:100〜100:5000(固形分比率)の割合で配合することが好ましい。より好ましくは、結合剤:ニッケル成分=100:500〜100:5000である。
【0022】
結合剤100部に対しニッケル成分が、100部より少ないと、該被覆組成物被膜がロウ付け時において結合剤成分が分解するため膜厚低下が大きく熱交換プレート及びフィン材の接合強度が低下するため好ましくない。一方、5000部を越えると結合剤量が少ないため、素材(ステンレス鋼板)への密着性が低下しハンドリング性が悪化するため好ましくない。
【0023】
本発明で用いる溶媒としては、結合剤を溶解し、ニッケル成分を分散させ被覆用組成物を液状化できるものであれば、水や有機溶剤等、特に制限なく使用できるが、塗装作業より、溶剤の沸点が80℃以上のものを使用するのが好ましい。溶剤においては、各種溶剤を混合して使用することも可能である。
【0024】
本発明の被覆組成物は、上記結合剤と上記ニッケル成分とを混合することにより作製することができる。
【0025】
本発明の被覆組成物には、必要により、顔料、添加剤等の、通常、塗料製造に使用される成分を任意に添加し、混合することにより液状化させることが好ましい。
【0026】
本発明の被覆組成物は、公知の塗装方法により塗装することができる。熱交換プレート及びフィン材を接合するには被塗物の加工精度にもよるが、ロウ付け後の接合力を維持するには本発明の被覆組成物は乾燥膜厚が30μm〜200μm塗装することが好ましい。塗装方法としては、ロール塗装やスクリーン塗装が好ましい塗装方法である。
【0027】
上記のような手法により本発明の被覆組成物被膜を有するステンレス材を真空下において1000℃以上の高温の雰囲気中に放置し、被膜中の結合剤を熱分解させることにより、ニッケル粉末だけが塗膜中に残ることになり被塗物間のロウ付け接合が可能となる。
【0028】
【実施例】
以下に、実施例及び比較例に基づいて本発明を更に詳細に説明する。
【0029】
(実施例1)
ポリビニルアセタール樹脂(積水化学社製;エスレックBM−2:分解ピーク温度364℃,500℃での分解減量率100%)100部をベンジルアルコール200部及びソルベッソ#150(シェル社製商品名:芳香族炭化水素系溶剤)200部を混合したものに撹拌しながら80℃において加温溶解する。得られた樹脂溶液中にニッケル粉末(進和社製;ニクロブレーズLM:BNi−2規格粉末)4900部を徐々に添加した。ベンジルアルコール/ソルベッソ#150=1/1溶液にて組成物粘度が150P/20℃になる様に調整した。
【0030】
得られた組成物をスクリーン印刷機を用いて、脱脂処理された厚さ0.8mmの加工されたステンレス鋼板(SUS316)に乾燥膜厚が120μmになる様に塗布し、200℃の雰囲気下で5分間加熱乾燥させ、被膜を有するステンレス鋼板を得た。得られたステンレス鋼板について、以下の評価を行った。結果を表1に示す。
【0031】
<塗面状態>
被膜の外観を目視にて観察し塗膜状態を下記基準にて評価した。
○:異常なし
×:塗膜欠陥あり
【0032】
<密着性>
素地面に達するX状の切傷(Xカット)をカッターナイフで付け、その上にセロハン粘着テープを貼りつけ引き剥がし付着性を下記基準にて評価した(JISK5400 8.5.3に準じる)。
○:被膜に剥がれがない
×:被膜に剥がれ発生
【0033】
<接合性>
ステンレス鋼板を工具を用いて仮止めし、真空炉を用いて10-5Torrの環境下にて1100℃まで徐々に温度を上げ真空ロウ付けを行い。ロウ付け部の接合性について下記基準にて評価した。
○:接合部が容易に剥離しない
×:接合部が容易に剥離する
【0034】
<耐食性>
上記接合性試験により作製したステンレス鋼板について、80℃の海水中に200時間浸漬しステンレス鋼板の耐食性について下記基準にて評価した。
○:耐食性良好
×:腐食が発生し、耐食性不良
【0035】
(実施例2)
実施例1において、ニッケル粉末4900部を500部に減らした以外は、同様にして被覆組成物を作製し、被膜の評価を行った。結果を表1に示す。
【0036】
(比較例1)
実施例1において、ニッケル粉末を銅粉末(進和社製;シンワブロンズブロートろう ブロート#1)に代えた以外は、同様にして被覆組成物を作製し、被膜の評価を行った。結果を表1に示す。
【0037】
(比較例2)
実施例1において、結合剤を用いずニッケル成分のみにした以外は、同様にして被覆組成物を作製し、被膜の評価を行った。結果を表1に示す。
【0038】
(比較例3)
実施例1において、ニッケル成分を用いず結合剤のみにした以外は、同様にして被覆組成物を作製し、被膜の評価を行った。結果を表1に示す。
【0039】
【表1】

Figure 0003832812
【0040】
【発明の効果】
上述したように、本発明によって、熱交換プレート及びフィン材表面にロウ付け用ニッケル被膜を安価に且つ精密に確実に形成することのできる被覆用組成物を提供することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention constitutes a heat exchange plate of a heat exchanger in which a plurality of fluids having different temperatures mutually exchange heat via a metal, an alloy, or the like that separates them, and a wall surface of a pipe or a duct through which the fluid passes. The present invention relates to a coating composition used for a heat exchange plate.
[0002]
[Prior art]
Heat exchangers, pipes and ducts for feeding fluid are usually made of metal. Since metal is generally excellent in heat transfer, it is optimal as a heat exchanger material. On the other hand, pipes and ducts for sending liquids and gases are often made of metal because of strength.
[0003]
A heat exchanger used as a heater core, a radiator, a condenser or the like has a core portion in which a large number of heat transfer tubes each formed in a flat tubular shape and a large number of corrugated fins are alternately stacked. Both end portions of the heat transfer tubes communicate with each other in a pair of headers or tanks. When such a heat exchanger is used, a fluid such as cooling water or a refrigerant is circulated through the plurality of heat transfer tubes between the pair of headers or tanks. And heat exchange is performed between this fluid and the air or liquid which flows through the said core part.
[0004]
Conventionally, an aluminum alloy has been used to configure the heat transfer tubes and fins of the heat exchanger as described above. For example, in the case of a heat exchanger used as a heater core or radiator, a so-called double-sided structure in which a heat transfer tube is laminated (clad) with a sacrificial material on the inner peripheral surface side of the core material and a brazing material on the outer peripheral surface. The clad material is used. As the aluminum alloy constituting the core material, 3003 material (JIS H 4000), as the aluminum alloy constituting the sacrificial material, 7072 material (JIS H 4000), and as the aluminum alloy constituting the brazing material, 4343 material is generally used. Further, as the aluminum alloy constituting the fin, generally used is one whose Zn content of the 3003 material is increased to 1.5% by weight and the potential is made lower. By such a combination, corrosion of the core material is suppressed, and necessary durability (corrosion resistance) is secured.
[0005]
If the heat transfer tubes and fins are all made of an aluminum alloy, the thickness of the heat transfer tubes cannot be extremely reduced in order to ensure the required strength and durability. For this reason, the aluminum alloy itself is a metal having a small specific gravity and a good heat transfer rate, but there is a limit in reducing the weight and improving the heat exchange performance. If the heat transfer tube is made of a stainless steel plate that has much better corrosion resistance than an aluminum alloy, the heat transfer tube can be made much thinner compared to the case made of an aluminum alloy, thus reducing weight and heat. The exchange performance can be improved.
[0006]
Heat exchangers are widely used in various industries as devices for transferring heat from a high temperature fluid to a low temperature fluid. Such heat exchanger types include a multi-tube type, a double-pipe type, a spiral plate type, a brazed plate fin type, a plate type, a shaved surface type, and the like, which are used appropriately depending on the application.
[0007]
Of these, the brazed plate fin type and plate type heat exchangers have a larger heat transfer area than other methods when compared with the same volume, and the heat transfer area can be easily changed by increasing or decreasing the number of plates. Since it is excellent in design flexibility, it is particularly suitable for small-scale applications, and is also used for small-sized devices such as general household devices.
[0008]
By the way, in recent years, in the field of such small heat exchangers, there is an increasing demand for products with higher efficiency and lower prices. However, the current brazed plate fin type has a limit to downsizing, and on the other hand, However, the plate type has a low pressure resistance, and in any type, there is a problem that it is difficult to obtain a heat exchanger with a small size and high efficiency without a significant increase in price.
[0009]
[Problems to be solved by the invention]
In view of the current situation, an object of the present invention is to provide a heat exchange plate and a fin material coating composition that can be made smaller than a brazed plate fin type and have higher pressure resistance than the plate type. It is.
[0010]
[Means for Solving the Problems]
According to the present invention, there are provided a coating composition for a heat exchange plate and a coating composition for a fin material, each comprising a binder of a polyvinyl acetal resin, a nickel component, and a solvent as components .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a stainless steel plate laminated heat exchanger in which stainless steel plates that have been perforated are laminated and joined to each other, and the holes formed in the stainless steel plates or their connected spaces serve as fluid flow paths, In addition, the gist of the coating composition for a stainless steel plate laminate heat exchanger, wherein the stainless steel plate is joined by brazing.
[0012]
As a result of intensive studies in order to solve the above problems, the present inventor has found that a nickel component can be reliably formed on the surface of a stainless steel plate by using a predetermined binder and a nickel component as main components. The present invention was completed by finding that a heat exchanger can be produced at a lower cost than by using nickel foil by bonding by attaching.
[0013]
As materials used for the heat exchanger used in the present invention, except for special applications, copper and copper alloys, aluminum and aluminum alloys having excellent thermal conductivity, or inexpensive carbon steel and low alloy steel are used. In the case where the corrosion resistance to the fluid and environment used is a problem, stainless steel or the like can be considered. Among these materials, stainless steel has higher strength than other general-purpose materials, so that the same base material strength as other materials can be obtained with a material having a smaller cross-sectional area. Therefore, if the laminate is made of stainless steel, it is most advantageous to reduce the size of the heat exchanger. In addition, since stainless steel is superior in corrosion resistance compared to other general-purpose materials, there are many choices of heat media that can be used. For this reason, for example, there is an advantage that a substance having a larger latent heat can be used.
[0014]
The reason why the material used for the laminate in the present invention is stainless steel is that these points are taken into consideration, and this is to provide a heat exchanger that is smaller and has a wide range of applications. The stainless steel used in the present invention may be any of ferritic, austenitic, martensitic, two-phase, and precipitation hardening types, and the impurities contained may be at the level of general commercial steel.
[0015]
The binder used in the present invention is in close contact with a material such as a stainless steel plate and decomposes when thermally decomposed. What is decomposed when performing thermal decomposition as referred to in the present invention means that mass loss is 95% or more at a predetermined temperature (preferably 500 ° C.) in a thermal analysis by a thermogravimetric measuring device.
[0016]
Specific examples include polyvinyl acetals synthesized by a known method (for example, those having a degree of polymerization of 200 to 2500 and an acetalization degree of 60 to 70% or a butyralization degree of 60 to 81.6%, and specific examples. Formal resins and butyral resins), cellulose derivatives (for example, cellulose esters such as acetylcellulose and nitrocellulose, cellulose ethers such as methylcellulose, ethylcellulose, benzylcellulose and carboxymethylcellulose), epoxy resins (for example, alkylene glycol polyethers) Glycidin ethers such as polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polyoxytetramethylene glycol diglycidyl ether), acrylic Butter, and the like can be mentioned. These may be used alone or in combination of two or more.
[0017]
In the present invention, a resin having a benzene ring structure, specifically, a polyvinyl acetal resin, which is composed of carbon and hydrogen or carbon, hydrogen and oxygen as constituent elements of the binder is used.
[0018]
The binder used in the coating composition of the present invention is preferably decomposed by heat at 500 ° C. This is because if the thermal decomposition does not occur, the binder component is carbonized and the bonding strength after brazing is reduced.
[0019]
The nickel component in the present invention melts at the time of brazing and bonds the heat exchange plate and the fin material. In the brazing joining of stainless steel plates, a copper component is also conceivable in addition to the nickel component, but the copper component is not suitable in the present invention because it has a lower corrosion resistance than the nickel component. The lower the brazing temperature, the better the working efficiency and the lower the melting temperature of the nickel component is desired, so alloyed nickel is preferable to pure nickel. Specific examples include BNi-1, BNi-1A, BNi-2, BNi-3, BNi-4, BNi-5, BNi-6, BNi-7, and BNi-8 for nickel brazing materials for metal bonding. Can be mentioned. In particular, BNi-2, BNi-5, and BNi-7 are particularly preferable because of high bonding strength after brazing.
[0020]
As a form of the nickel component used in the present invention, metallic nickel powder is representative, but it is also possible to use a metallic nickel powder and a paste made of water, a solvent, a resin or the like. Moreover, it is not restricted to these. In consideration of uniform film formation when the nickel component is in powder form, the average particle size is preferably 20 μm to 150 μm.
[0021]
The coating composition of the present invention preferably contains the binder and the nickel component in a ratio of binder: nickel component = 100: 100 to 100: 5000 (solid content ratio). More preferably, binder: nickel component = 100: 500 to 100: 5000.
[0022]
When the nickel component is less than 100 parts with respect to 100 parts of the binder, the binder component decomposes when the coating composition film is brazed, so that the film thickness is greatly reduced and the bonding strength between the heat exchange plate and the fin material is reduced. Therefore, it is not preferable. On the other hand, when the amount exceeds 5000 parts, the amount of the binder is small, so that the adhesion to the material (stainless steel plate) is lowered and the handling property is deteriorated, which is not preferable.
[0023]
The solvent used in the present invention is not particularly limited as long as it can dissolve the binder, disperse the nickel component, and liquefy the coating composition, such as water or an organic solvent. It is preferable to use those having a boiling point of 80 ° C. or higher. In the solvent, various solvents can be mixed and used.
[0024]
The coating composition of the present invention can be prepared by mixing the binder and the nickel component.
[0025]
It is preferable to liquefy the coating composition of the present invention by optionally adding components usually used in the production of paints such as pigments and additives as necessary.
[0026]
The coating composition of the present invention can be applied by a known application method. To join the heat exchange plate and the fin material, depending on the processing accuracy of the object to be coated, the coating composition of the present invention should be coated with a dry film thickness of 30 μm to 200 μm to maintain the bonding strength after brazing. Is preferred. As a coating method, roll coating or screen coating is a preferable coating method.
[0027]
The stainless steel material having the coating composition coating of the present invention is left in a high-temperature atmosphere of 1000 ° C. or higher under vacuum by the above-described method, and the binder in the coating is thermally decomposed, so that only nickel powder is applied. It remains in the film, and brazing between the objects to be coated becomes possible.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail based on examples and comparative examples.
[0029]
Example 1
Polyvinyl acetal resin (manufactured by Sekisui Chemical Co., Ltd .; SREC BM-2: decomposition peak temperature 364 ° C., decomposition loss rate 100% at 500 ° C.) 100 parts benzyl alcohol 200 parts and Solvesso # 150 (manufactured by Shell, trade name: aromatic A mixture of 200 parts of a hydrocarbon solvent is heated and dissolved at 80 ° C. with stirring. 4900 parts of nickel powder (manufactured by Shinwa Co., Ltd .; Niclo Blaze LM: BNi-2 standard powder) was gradually added to the obtained resin solution. The viscosity of the composition was adjusted to 150 P / 20 ° C. with a benzyl alcohol / solvesso # 150 = 1/1 solution.
[0030]
Using a screen printing machine, the obtained composition was applied to a degreased 0.8 mm-thick processed stainless steel plate (SUS316) so that the dry film thickness was 120 μm, and in an atmosphere of 200 ° C. A stainless steel plate having a coating was obtained by heating and drying for 5 minutes. The following evaluation was performed about the obtained stainless steel plate. The results are shown in Table 1.
[0031]
<Coating state>
The appearance of the coating was visually observed and the coating state was evaluated according to the following criteria.
○: No abnormality ×: Defect in coating film [0032]
<Adhesion>
An X-shaped cut (X cut) reaching the ground surface was attached with a cutter knife, and a cellophane adhesive tape was applied to the surface and peeled off, and the adhesion was evaluated according to the following criteria (according to JISK5400 8.5.3).
○: The film does not peel ×: The film is peeled off [0033]
<Jointability>
A stainless steel plate is temporarily fixed with a tool, and the temperature is gradually raised to 1100 ° C. in an environment of 10 −5 Torr using a vacuum furnace, followed by vacuum brazing. The bondability of the brazed part was evaluated according to the following criteria.
○: The joint does not peel easily ×: The joint peels easily [0034]
<Corrosion resistance>
About the stainless steel plate produced by the said joining test, it immersed in 80 degreeC seawater for 200 hours, and evaluated the corrosion resistance of the stainless steel plate on the following reference | standard.
○: Corrosion resistance is good ×: Corrosion occurs and corrosion resistance is poor.
(Example 2)
A coating composition was prepared in the same manner as in Example 1 except that 4900 parts of nickel powder was reduced to 500 parts, and the coating film was evaluated. The results are shown in Table 1.
[0036]
(Comparative Example 1)
A coating composition was prepared in the same manner as in Example 1 except that the nickel powder was replaced with a copper powder (manufactured by Shinwa Co., Ltd .; Shinwa Bronze Broat Wax Braut # 1), and the coating was evaluated. The results are shown in Table 1.
[0037]
(Comparative Example 2)
A coating composition was prepared in the same manner as in Example 1 except that only the nickel component was used without using a binder, and the coating was evaluated. The results are shown in Table 1.
[0038]
(Comparative Example 3)
A coating composition was prepared in the same manner as in Example 1 except that only the binder was used without using the nickel component, and the coating was evaluated. The results are shown in Table 1.
[0039]
[Table 1]
Figure 0003832812
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a coating composition capable of reliably and inexpensively forming a brazing nickel coating on the heat exchange plate and the fin material surface.

Claims (4)

ポリビニルアセタール樹脂の結合剤とニッケル成分及び溶媒を成分とすることを特徴とする熱交換プレート用被覆組成物。 A coating composition for a heat exchange plate, comprising a polyvinyl acetal resin binder, a nickel component, and a solvent as components . ポリビニルアセタール樹脂の結合剤とニッケル成分及び溶媒を成分とすることを特徴とする熱交換フィン材用被覆組成物。 A coating composition for a heat exchange fin material comprising a polyvinyl acetal resin binder, a nickel component, and a solvent as components . 結合剤が500℃で熱分解する請求項1又は2に記載の被覆組成物。The coating composition according to claim 1 or 2 , wherein the binder is thermally decomposed at 500 ° C. 結合剤100部(固形分)に対し、ニッケル成分を100部〜5000部(固形分)含有している請求項1〜のいずれかに記載の被覆組成物。The coating composition according to any one of claims 1 to 3 , comprising 100 parts to 5000 parts (solid content) of a nickel component with respect to 100 parts (solid content) of the binder.
JP2001340772A 2001-11-06 2001-11-06 Heat exchange plate and coating composition for fin material Expired - Fee Related JP3832812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340772A JP3832812B2 (en) 2001-11-06 2001-11-06 Heat exchange plate and coating composition for fin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340772A JP3832812B2 (en) 2001-11-06 2001-11-06 Heat exchange plate and coating composition for fin material

Publications (2)

Publication Number Publication Date
JP2003138221A JP2003138221A (en) 2003-05-14
JP3832812B2 true JP3832812B2 (en) 2006-10-11

Family

ID=19154921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340772A Expired - Fee Related JP3832812B2 (en) 2001-11-06 2001-11-06 Heat exchange plate and coating composition for fin material

Country Status (1)

Country Link
JP (1) JP3832812B2 (en)

Also Published As

Publication number Publication date
JP2003138221A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US20150027679A1 (en) Finned tube assemblies for heat exchangers
JP3893110B2 (en) Plate heat exchanger and manufacturing method thereof
US8152047B2 (en) Method of producing a corrosion resistant aluminum heat exchanger
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
US11504814B2 (en) Air cooled condenser and related methods
JPWO2012169622A1 (en) HEAT EXCHANGE MEMBER, ITS MANUFACTURING METHOD, AND HEAT EXCHANGER
JP2015504371A (en) Manufacturing method of tube plate fin type heat exchanger
EP3234490B1 (en) Aluminum alloy finned heat exchanger
JP3832812B2 (en) Heat exchange plate and coating composition for fin material
KR101646484B1 (en) Plate Heat Exchangers having copper connectors&#39;s manufacturing method
JPH08271175A (en) Stainless steel plate laminated heat exchanger, and its production
JP2000121286A (en) Manufacture of lamination type heat exchanger
JP3765533B2 (en) Brazing composite material and brazing product using the same
JP3915726B2 (en) Brazing composite material and brazing product using the same
KR20050084231A (en) Aluminum alloy brazing material, brazing member, brazed article and brazing method therefor using said material, brazing heat exchanging tube, heat exchanger and manufacturing method thereof using said brazing heat exchanging tube
JP4411803B2 (en) Brazing method for aluminum heat exchanger and aluminum member brazing solution
US11541484B2 (en) Brazing compositions and uses thereof
US20110139417A1 (en) Method for making brazed aluminum heat exchanger and apparatus
JP2005207728A (en) Heat exchanger and manufacturing method therefor
US20210348859A1 (en) Heat exchanger with aluminum alloy clad tube and method of manufacture
JP5469846B2 (en) Method of joining aluminum member and copper member
JP2010179310A (en) Method of manufacturing sheet-like brazing filler metal, sheet-like brazing filler metal manufactured by the method, method of using the same, and heat exchanger using the same
JP2004202579A (en) Aluminum alloy brazing filler metal, brazing material, article and manufacturing method using it, brazing heat exchange tube, heat exchanger using it and its manufacturing method
WO2021261005A1 (en) Heat exchanger and method for manufacturing same
JP2000034532A (en) Composite material for heat exchanger made of aluminum alloy

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees