JP3832741B2 - Wavelength tap circuit - Google Patents

Wavelength tap circuit Download PDF

Info

Publication number
JP3832741B2
JP3832741B2 JP2002263536A JP2002263536A JP3832741B2 JP 3832741 B2 JP3832741 B2 JP 3832741B2 JP 2002263536 A JP2002263536 A JP 2002263536A JP 2002263536 A JP2002263536 A JP 2002263536A JP 3832741 B2 JP3832741 B2 JP 3832741B2
Authority
JP
Japan
Prior art keywords
optical waveguide
waveguide
optical
slab
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002263536A
Other languages
Japanese (ja)
Other versions
JP2004101861A (en
Inventor
隆志 才田
勤 鬼頭
亮一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002263536A priority Critical patent/JP3832741B2/en
Publication of JP2004101861A publication Critical patent/JP2004101861A/en
Application granted granted Critical
Publication of JP3832741B2 publication Critical patent/JP3832741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光信号の一部を取り出して波長により合分波する波長タップ回路に関する。
【0002】
【従来の技術】
インターネットの爆発的進展に伴い、波長多重光通信システムの導入が世界的に進んでいる。
このような波長多重光通信システムの保守・運営では、各波長での光信号をそれぞれモニタするデバイスが必須である。
従来の波長多重された光信号をモニタするための光導波路デバイスの構成を図3に示す。
【0003】
基板100上に、入力用光導波路101と、導波路型光カプラ102と、アレイ導波路格子フィルタ103と、主出力用光導波路104と、分波出力用光導波路105が設けられており、入力された光信号を導波路型光カプラ102で分岐して、大部分は主出力用光導波路104に導き、一部はアレイ光導波路格子フィルタ103で波長毎に分けて、その出力強度を分波出力用光導波路105でモニタする構成である。
この出願の発明に関連する先行技術文献情報としては次のものがある。
【0004】
【非特許文献1】
H. Suzuki, and N. Takachio, "Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes," Electronics Letters , Volume: 35 Issue: 10 , 13 May 1999, Page(s): 836-837
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来の波長多重された光信号のモニタでは、以下に示す問題があった。
第一に、導波路型光カプラの分岐比は例えば99:1といった非対称な値にする必要があるが、このような導波路型光カプラでは、結合比が作製条件の僅かな変化などによってばらつき、また結合比の偏波依存性が大きくなる問題があった。
第二に、波長を分波するためのアレイ導波路格子フィルタで例えば100を超える波長チャネルを分波しようとすると、光回路のサイズが大きくなり、また作製条件の僅かな変化に極めて敏感となる問題があった。
【0006】
【課題を解決するための手段】
上記の課題を解決する本発明の波長タップ回路は、基板上に、入力用光導波路と、前記入力用光導波路に光学的に接続された第一のスラブ光導波路と、前記第一のスラブ光導波路に光学的に接続された互いに光路の等しいアレイ光導波路と、前記アレイ光導波路に光学的に接続された第二のスラブ光導波路と、前記第二のスラブ光導波路に光学的に接続された主出力用光導波路と分波出力用光導波路群とを備えており、前記アレイ光導波路と前記第二のスラブ光導波路の光学的接続部近傍に設けたクラッド領域の幅が周期的に変調されていることを特徴としている。
このような構成とすることで、作製誤差に不感で小型な波長タップ回路を提供することができる。
【0007】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。
ただし、説明の反復を避けるために、図中では同じ機能を有する光学回路には同じ番号を付与している。
また、以下の説明では、光導波路はシリコン基板上に形成された石英系光導波路である。
これは、安定で信頼性に優れた波長タップ回路を実現できるからである。
しかしながら、本発明はこの構成に限定されるものではなく、半導体光導波路や誘電体光導波路など、他の材料による光導波路を用いても勿論構わないし、石英基板上に形成された石英系光導波路を用いても勿論構わない。
【0008】
本発明の実施形態に係る波長タップ回路の構成を図1に示す。
図1に示すように、基板10上には、入力用光導波路11、第一のスラブ光導波路12、互いに長さの等しいアレイ光導波路13、第二のスラブ光導波路14、主出力用光導波路15、分波出力用光導波路16a及び16bがこの順に接続されており、アレイ光導波路13と第二のスラブ光導波路14の光学的接続部では幅が周期的に変調されたクラッド領域17が設けられている。
【0009】
ここで、互いに長さの等しいアレイ光導波路13は、S字型の導波路レイアウトで実現した(特願平06−27339号「光デバイス」参照)。
これは、この構成が互いに長さの等しいアレイ光導波路を小型に実現できるからである。
しかしながら、本発明はこの構成に限定されるものではなく、例えばW字型の導波路レイアウト(特願平9−211698号「アレイ導波路格子」参照)を用いても勿論構わない。
【0010】
また、本実施形態に係る波長タップ回路では、分波出力用光導波路16a,16bを2群用いるとした。
しかしながら、これはどちらか一方だけ用いるとしても、勿論構わない。
また、本実施形態に係る波長タップ回路では、第一のスラブ光導波路12と第二のスラブ光導波路14が同じ長さであるとしたが、大きさが異なっていても、本発明の請求範囲を逸脱するものではない。
【0011】
アレイ光導波路13とスラブ導波路14の接続部の拡大図を図4に示す。
図4に示すように、アレイ導波路13の端部は、光が主出力用光導波路15に集光するように傾けて配置されている。
本実施形態に係る波長タップ回路では、第二のスラブ光導波路14の形状を変化させて、クラッド領域17の幅を変調するとしたが、これは、アレイ光導波路13の長さを変調して実現しても、もちろん構わない。
次に、式及び図を用いて図1に示す本実施形態に係る導波路型光フィルタの効果を説明する。
【0012】
いま、入力用光導波路11の最低次モードの空間分布をa(x,y)とする。
ここで、xは入力用光導波路11の光伝播方向に直交し、基板に平行な軸であり、yは入力用光導波路11の光伝播方向に直交し、基板に垂直な軸である。
このとき、第一のスラブ光導波路12を伝播後の光電界の空間分布A(w,y)は、位相項を無視して次式で表される。
【0013】
【数1】

Figure 0003832741
【0014】
ここで、nはスラブ導波路の群屈折率、λは光波長、Lは第一及び第二のスラブ光導波路の長さ、wは第一のスラブ光導波路出射側端部において光伝播方向に直交し基板に平行な軸である。
第一のスラブ光導波路12伝搬後の光電界A(w,y)は、互いに長さの等しいアレイ導波路13によって位相関係も含めて第二のスラブ光導波路14端部へと導かれる。
アレイ導波路13の端部は、光が主出力用光導波路15に集光するように傾けて配置されている。
幅が空間的に変調されたクラッド領域17により位相変調される。
このときの位相変調量を次式で表す。
【0015】
【数2】
Figure 0003832741
【0016】
ここで、P0は位相変調の振幅、Qは位相変調の空間周期である。
0が1より十分小さいとすれば、位相変調を受けた第二のスラブ光導波路のアレイ光導波路13側でのフィールドB(w,y)は、位相項を無視して次式で表すことができる。
【0017】
【数3】
Figure 0003832741
【0018】
ここに、Jk(x)はベッセル関数である。
従って、第二のスラブ光導波路14を伝搬後の光電界b(x,y)は、次式で与えられる。
【0019】
【数4】
Figure 0003832741
【0020】
即ち、第二のスラブ光導波路14の主出力用光導波路15側では、入力用光導波路11と同じ位置に元のフィールドa(x,y)が得られ、そこから波長λに比例してシフトした位置±Lλ/nQに、元のフィールドと同じ形状のフィールドが得られることがわかる。
【0021】
従って、入力用光導波路11と鏡像の位置に主出力用光導波路15を配置し、±Lλ/nQの位置に各光波長に応じた分波出力用光導波路16a,16bを備えるので、入力用光導波路11に導かれた大部分の光は主出力用光導波路15より出力し、一部が波長に応じて分波出力用光導波路16a,16bから波長に応じて出力することとなり、波長タップ回路が実現できる。
【0022】
本実施形態に係る波長タップ回路は、シリコン基板上に形成した石英系光導波路により作製した。
スラブ長は30mm、光周波数間隔は100GHz、クラッド領域の変調周期は1μmとし、チャネル数は80chとした。
作製した波長タップ回路の、クラッド領域の幅の最大値と、主出力と波長分波出力の出力光強度の関係を図2に示す。
図2より判るように、本発明の波長タップ回路ではクラッド領域17の変調幅によってタップ率を変化できるので、安定にタップ係数を実現することができる。
また、クラッド領域17の屈折率は偏波依存性が極めて小さいので、偏波依存性の小さなタップを実現できる。
【0023】
このように説明したように、本発明は、平面基板上に作成された光導波同路(PLC)で回折格子による光の分波を実現したものである。
アレイ導波路格子回路(Arrayed Waveguide Grating :AWG)では長さの異なる複数のアレイ導波路が回折格子の役目を果たしていまたが、本願発明では出力側スラブ導波路14の端面に設けられた周期的な構造であるクラッド領域17が回折格子の役割を果たすものである。
【0024】
入力用光導波路11を伝搬してきた光a(x,y)は、第一のスラブ導波路12を経て式(1)で示されるA(w,y)に変換される。
wは第一のスラブ導波路12の出力側端部における、基板10と平行な方向の座標である。
A(w,y)を回折格子であるクラッド領域17に入射する際には、回折後の光の大部分が主出力用光導波路15に集光するように光を入射させる。
これは、アレイ導波路13から出射する光が主出力用光導波路15に向かって進むように、アレイ導波路13の出射端をそれぞれ傾けて配置することで実現される。
【0025】
つまり、アレイ導波路13は、光が主出力用光導波路15に集光するように、回折格子にA(w,y)を入射させるために用いられる。
回折格子の働きによって、A(w,y)の一部は主出力用光導波路15と異なる位置にある分波出力用光導波路16a,16bに集光するので、波長タップ回路が実現される。
従って、本発明の波長タップ回路によれば、図2に示す通り、出力側スラブ導波路14に設けた周期的構造であるクラッド領域17の周期によってタップ率を変えることができるので、安定なタップ係数が実現される。
【0026】
【発明の効果】
以上、図面を参照して詳細に説明したように、本発明の波長タップ回路を用いれば、小型で再現性の良好な波長タップ回路を提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る波長タップ回路の構成を表す概略図である。
【図2】本発明の実施形態に係る波長タップ回路の、クラッド領域の変調幅と主出力と波長分波出力の関係を表すグラフである。
【図3】従来の波長多重された光信号をモニタするための光導波路デバイスの構成を表す図である。
【図4】アレイ光導波路とスラブ導波路の接続部の拡大図である。
【符号の説明】
10 基板
11 入力用光導波路
12 第一のスラブ光導波路
13 アレイ光導波路
14 第二のスラブ光導波路
15 主出力用光導波路
16 分波出力用光導波路
17 幅の変調されたクラッド領域
100 基板
101 入力用光導波路
102 光カプラ
103 アレイ導波路格子フィルタ
l04 主出力用光導波路
105 分波出力用光導波路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength tap circuit that extracts a part of an optical signal and multiplexes / demultiplexes the optical signal according to the wavelength.
[0002]
[Prior art]
With the explosive progress of the Internet, the introduction of wavelength division multiplexing optical communication systems is progressing worldwide.
In the maintenance and operation of such a wavelength division multiplexing optical communication system, a device that monitors each optical signal at each wavelength is essential.
A configuration of a conventional optical waveguide device for monitoring a wavelength-multiplexed optical signal is shown in FIG.
[0003]
An input optical waveguide 101, a waveguide optical coupler 102, an arrayed waveguide grating filter 103, a main output optical waveguide 104, and a demultiplexing output optical waveguide 105 are provided on the substrate 100. The branched optical signal is branched by the waveguide type optical coupler 102, most of which is guided to the main output optical waveguide 104, and part of the optical signal is divided by wavelength by the array optical waveguide grating filter 103, and the output intensity is demultiplexed. The output optical waveguide 105 is used for monitoring.
Prior art document information related to the invention of this application includes the following.
[0004]
[Non-Patent Document 1]
H. Suzuki, and N. Takachio, "Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes," Electronics Letters, Volume: 35 Issue: 10, 13 May 1999, Page (s) : 836-837
[0005]
[Problems to be solved by the invention]
However, the conventional wavelength-multiplexed optical signal monitor described above has the following problems.
First, the branching ratio of the waveguide type optical coupler needs to be an asymmetric value such as 99: 1. However, in such a waveguide type optical coupler, the coupling ratio varies depending on a slight change in manufacturing conditions. In addition, there is a problem that the polarization dependency of the coupling ratio increases.
Secondly, when an arrayed waveguide grating filter for demultiplexing wavelengths is used to demultiplex, for example, more than 100 wavelength channels, the size of the optical circuit increases, and it becomes extremely sensitive to slight changes in fabrication conditions. There was a problem.
[0006]
[Means for Solving the Problems]
The wavelength tap circuit of the present invention that solves the above problems includes an input optical waveguide, a first slab optical waveguide optically connected to the input optical waveguide, and the first slab optical light on a substrate. An array optical waveguide optically connected to the waveguide and having the same optical path, a second slab optical waveguide optically connected to the array optical waveguide, and an optical connection to the second slab optical waveguide A main output optical waveguide and a demultiplexing output optical waveguide group, and the width of the cladding region provided in the vicinity of the optical connection between the array optical waveguide and the second slab optical waveguide is periodically modulated. It is characterized by having.
With such a configuration, a small wavelength tap circuit that is insensitive to manufacturing errors can be provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
However, in order to avoid repetition of the description, the same numbers are assigned to optical circuits having the same function in the drawing.
In the following description, the optical waveguide is a silica-based optical waveguide formed on a silicon substrate.
This is because a stable and reliable wavelength tap circuit can be realized.
However, the present invention is not limited to this configuration. Of course, an optical waveguide made of another material such as a semiconductor optical waveguide or a dielectric optical waveguide may be used, and a silica-based optical waveguide formed on a quartz substrate may be used. Of course, it does not matter.
[0008]
A configuration of a wavelength tap circuit according to an embodiment of the present invention is shown in FIG.
As shown in FIG. 1, an input optical waveguide 11, a first slab optical waveguide 12, an array optical waveguide 13 having the same length, a second slab optical waveguide 14, and a main output optical waveguide are disposed on a substrate 10. 15, optical waveguides 16a and 16b for demultiplexing output are connected in this order, and a cladding region 17 whose width is periodically modulated is provided at the optical connection between the array optical waveguide 13 and the second slab optical waveguide 14. It has been.
[0009]
Here, the arrayed optical waveguides 13 having the same length are realized by an S-shaped waveguide layout (see Japanese Patent Application No. 06-27339 “Optical Device”).
This is because the array optical waveguides having the same length can be realized in a small size.
However, the present invention is not limited to this configuration. For example, a W-shaped waveguide layout (see Japanese Patent Application No. 9-21698 “Arrayed waveguide grating”) may be used.
[0010]
In the wavelength tap circuit according to the present embodiment, two groups of optical waveguides 16a and 16b for demultiplexing output are used.
However, it does not matter if only one of these is used.
In the wavelength tap circuit according to the present embodiment, the first slab optical waveguide 12 and the second slab optical waveguide 14 have the same length. However, even if the sizes are different, the scope of the present invention It does not deviate from.
[0011]
FIG. 4 shows an enlarged view of a connection portion between the array optical waveguide 13 and the slab waveguide 14.
As shown in FIG. 4, the end portion of the arrayed waveguide 13 is disposed so as to be inclined so that light is condensed on the main output optical waveguide 15.
In the wavelength tap circuit according to the present embodiment, the width of the cladding region 17 is modulated by changing the shape of the second slab optical waveguide 14, but this is realized by modulating the length of the array optical waveguide 13. But of course.
Next, the effect of the waveguide type optical filter according to the present embodiment shown in FIG. 1 will be described using equations and drawings.
[0012]
Now, let the spatial distribution of the lowest order mode of the input optical waveguide 11 be a (x, y).
Here, x is an axis perpendicular to the light propagation direction of the input optical waveguide 11 and parallel to the substrate, and y is an axis perpendicular to the light propagation direction of the input optical waveguide 11 and perpendicular to the substrate.
At this time, the spatial distribution A (w, y) of the optical electric field after propagating through the first slab optical waveguide 12 is expressed by the following equation while ignoring the phase term.
[0013]
[Expression 1]
Figure 0003832741
[0014]
Here, n is the group refractive index of the slab waveguide, λ is the optical wavelength, L is the length of the first and second slab optical waveguides, and w is in the light propagation direction at the output side end of the first slab optical waveguide. An axis that is orthogonal and parallel to the substrate.
The optical electric field A (w, y) after propagation through the first slab optical waveguide 12 is guided to the end of the second slab optical waveguide 14 including the phase relationship by the arrayed waveguides 13 having the same length.
The end portion of the arrayed waveguide 13 is disposed so as to be inclined so that light is condensed on the main output optical waveguide 15.
The phase is modulated by the cladding region 17 whose width is spatially modulated.
The phase modulation amount at this time is expressed by the following equation.
[0015]
[Expression 2]
Figure 0003832741
[0016]
Here, P 0 is the amplitude of phase modulation, and Q is the spatial period of phase modulation.
If P 0 is sufficiently smaller than 1, the field B (w, y) on the array optical waveguide 13 side of the second slab optical waveguide subjected to phase modulation should be expressed by the following equation, ignoring the phase term. Can do.
[0017]
[Equation 3]
Figure 0003832741
[0018]
Here, J k (x) is a Bessel function.
Therefore, the optical electric field b (x, y) after propagating through the second slab optical waveguide 14 is given by the following equation.
[0019]
[Expression 4]
Figure 0003832741
[0020]
That is, on the main output optical waveguide 15 side of the second slab optical waveguide 14, the original field a (x, y) is obtained at the same position as the input optical waveguide 11, and shifted in proportion to the wavelength λ therefrom. It can be seen that a field having the same shape as the original field is obtained at the position ± Lλ / nQ.
[0021]
Accordingly, the main output optical waveguide 15 is arranged at a position of a mirror image with the input optical waveguide 11, and the demultiplexing output optical waveguides 16a and 16b corresponding to each optical wavelength are provided at the positions of ± Lλ / nQ. Most of the light guided to the optical waveguide 11 is output from the main output optical waveguide 15, and a part of the light is output from the demultiplexing output optical waveguides 16a and 16b according to the wavelength. A circuit can be realized.
[0022]
The wavelength tap circuit according to the present embodiment was manufactured by a quartz optical waveguide formed on a silicon substrate.
The slab length was 30 mm, the optical frequency interval was 100 GHz, the modulation period of the cladding region was 1 μm, and the number of channels was 80 ch.
FIG. 2 shows the relationship between the maximum value of the width of the cladding region and the output light intensity of the main output and the wavelength demultiplexing output of the manufactured wavelength tap circuit.
As can be seen from FIG. 2, in the wavelength tap circuit of the present invention, the tap rate can be changed depending on the modulation width of the cladding region 17, so that the tap coefficient can be realized stably.
Further, since the refractive index of the cladding region 17 has extremely small polarization dependence, a tap having small polarization dependence can be realized.
[0023]
As described above, the present invention realizes light demultiplexing by a diffraction grating using an optical waveguide path (PLC) formed on a flat substrate.
In an arrayed waveguide grating circuit (AWG), a plurality of arrayed waveguides having different lengths serve as a diffraction grating. In the present invention, however, the arrayed waveguide grating (AWG) is periodically provided on the end face of the output-side slab waveguide 14. The cladding region 17 having a simple structure serves as a diffraction grating.
[0024]
The light a (x, y) propagating through the input optical waveguide 11 is converted into A (w, y) represented by the equation (1) through the first slab waveguide 12.
w is the coordinate in the direction parallel to the substrate 10 at the output side end of the first slab waveguide 12.
When A (w, y) is incident on the cladding region 17 that is a diffraction grating, the light is incident so that most of the diffracted light is condensed on the main output optical waveguide 15.
This is realized by arranging the exit ends of the arrayed waveguides 13 so that the light emitted from the arrayed waveguides 13 travels toward the main output optical waveguide 15.
[0025]
That is, the arrayed waveguide 13 is used to make A (w, y) incident on the diffraction grating so that the light is condensed on the main output optical waveguide 15.
Due to the action of the diffraction grating, a part of A (w, y) is condensed on the demultiplexing output optical waveguides 16a and 16b located at a different position from the main output optical waveguide 15, so that a wavelength tap circuit is realized.
Therefore, according to the wavelength tap circuit of the present invention, as shown in FIG. 2, the tap rate can be changed according to the period of the cladding region 17 which is a periodic structure provided in the output-side slab waveguide 14, so that a stable tap is obtained. The coefficient is realized.
[0026]
【The invention's effect】
As described above in detail with reference to the drawings, if the wavelength tap circuit of the present invention is used, a wavelength tap circuit having a small size and good reproducibility can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a configuration of a wavelength tap circuit according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the modulation width of the cladding region, the main output, and the wavelength demultiplexing output of the wavelength tap circuit according to the embodiment of the present invention.
FIG. 3 is a diagram illustrating a configuration of a conventional optical waveguide device for monitoring a wavelength-multiplexed optical signal.
FIG. 4 is an enlarged view of a connection portion between an array optical waveguide and a slab waveguide.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Substrate 11 Input optical waveguide 12 First slab optical waveguide 13 Array optical waveguide 14 Second slab optical waveguide 15 Main output optical waveguide 16 Demultiplexed output optical waveguide 17 Width-modulated clad region 100 Substrate 101 Input Optical waveguide 102 Optical coupler 103 Arrayed waveguide grating filter 104 Main output optical waveguide 105 Demultiplexed output optical waveguide

Claims (2)

基板上に、入力用光導波路と、前記入力用光導波路に光学的に接続された第一のスラブ光導波路と、前記第一のスラブ光導波路に光学的に接続された互いに光路の等しいアレイ光導波路と、前記アレイ光導波路に光学的に接続された第二のスラブ光導波路と、前記第二のスラブ光導波路に光学的に接続された主出力用光導波路と分波出力用光導波路群とを備えており、前記アレイ光導波路と前記第二のスラブ光導波路の光学的接続部近傍に設けたクラッド領域の幅が周期的に変調されていることを特徴とする波長タップ回路。On the substrate, an input optical waveguide, a first slab optical waveguide optically connected to the input optical waveguide, and an array light having an equal optical path optically connected to the first slab optical waveguide A waveguide, a second slab optical waveguide optically connected to the array optical waveguide, a main output optical waveguide optically connected to the second slab optical waveguide, and a demultiplexing output optical waveguide group And a width of a cladding region provided in the vicinity of an optical connection between the array optical waveguide and the second slab optical waveguide is periodically modulated. 請求項1に記載の波長タップ回路において、前記光導波路がシリコン基板乃至は石英基板上に形成された石英系光導波路であることを特徴とする波長タップ回路。2. The wavelength tap circuit according to claim 1, wherein the optical waveguide is a silica-based optical waveguide formed on a silicon substrate or a quartz substrate.
JP2002263536A 2002-09-10 2002-09-10 Wavelength tap circuit Expired - Fee Related JP3832741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263536A JP3832741B2 (en) 2002-09-10 2002-09-10 Wavelength tap circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263536A JP3832741B2 (en) 2002-09-10 2002-09-10 Wavelength tap circuit

Publications (2)

Publication Number Publication Date
JP2004101861A JP2004101861A (en) 2004-04-02
JP3832741B2 true JP3832741B2 (en) 2006-10-11

Family

ID=32263229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263536A Expired - Fee Related JP3832741B2 (en) 2002-09-10 2002-09-10 Wavelength tap circuit

Country Status (1)

Country Link
JP (1) JP3832741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300564A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Analyzing device and analyzer
JP2007155777A (en) * 2005-11-30 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> Monitoring circuit

Also Published As

Publication number Publication date
JP2004101861A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US8532446B2 (en) Scalable silicon photonic multiplexers and demultiplexers
JP5811273B2 (en) Optical element, optical transmitter element, optical receiver element, hybrid laser, optical transmitter
Chen et al. Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer
US8270789B2 (en) Optical waveguide element, chromatic dispersion compensator, methods for designing chromatic dispersion compensator, optical filter, methods for designing optical filter, optical resonator and methods for designing optical resonator
JP4385224B2 (en) Optical waveguide device and optical waveguide module
US6459829B1 (en) Multiple wavelength excitation optical multiplexing device, multiple wavelength excitation light source incorporating aforementioned device, and optical amplifier
US10495813B2 (en) Echelle grating multiplexer or demultiplexer
CN105655869A (en) Multi-channel tunable laser
CN1488079A (en) Segmented waveguide flattening the passband of a phasar
WO2005114280A1 (en) Optical multiplex-demultiplexer
JP4477260B2 (en) Waveguide-type optical coupler and optical multiplexer / demultiplexer using the waveguide-type optical coupler
US20120002922A1 (en) Optical multiplexer/demultiplexer
Rabus Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP/InP
US7200302B2 (en) Planar lightwave Fabry-Perot filter
US6845186B2 (en) Optical circuit with harmonic generator
JP3832741B2 (en) Wavelength tap circuit
JP2001221923A (en) Optical waveguide circuit
JP3029028B2 (en) Optical wavelength multiplexer / demultiplexer
US6973240B2 (en) Optical filter
JP2003207665A (en) Optical waveguide
US20060140541A1 (en) Integrated optical device
JP3797483B2 (en) Arrayed waveguide grating
Yen et al. Silicon photonics multi-channel Bragg reflectors based on narrowband cladding-modulated gratings
Biswas et al. A Review on Arrayed Waveguide Grating Multiplexer/De-multiplexer forDense Wavelength Division Multiplexing Systems
JP3238890B2 (en) Array waveguide type wavelength multiplexer / demultiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees