JP3832061B2 - Ultrasonic dimension measuring device - Google Patents

Ultrasonic dimension measuring device Download PDF

Info

Publication number
JP3832061B2
JP3832061B2 JP34861597A JP34861597A JP3832061B2 JP 3832061 B2 JP3832061 B2 JP 3832061B2 JP 34861597 A JP34861597 A JP 34861597A JP 34861597 A JP34861597 A JP 34861597A JP 3832061 B2 JP3832061 B2 JP 3832061B2
Authority
JP
Japan
Prior art keywords
measured
wave
ultrasonic
end faces
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34861597A
Other languages
Japanese (ja)
Other versions
JPH11160056A (en
Inventor
健一 岡島
健 稲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP34861597A priority Critical patent/JP3832061B2/en
Publication of JPH11160056A publication Critical patent/JPH11160056A/en
Application granted granted Critical
Publication of JP3832061B2 publication Critical patent/JP3832061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超音波を用いた寸法測定装置に関するものである。
【0002】
【従来の技術】
セラミック基板などの表面に溝を加工したり、細幅にカットする場合、その溝と溝の間の幅やカット幅を高精度に測定する必要が生じることがある。従来ではこのような寸法測定を光学顕微鏡を用いて行なっている。
【0003】
【発明が解決しようとする課題】
しかしながら、光学顕微鏡では高精度な寸法測定は難しく、例えば1μm以下の寸法測定は不可能である。そのため、電子部品などの寸法測定では、その寸法に依存した電気特性をみることで良否を判定していたが、この方法では、寸法測定に手間がかかるため、加工中に寸法を測定して加工幅を修正することができなかった。
【0004】
そこで、本発明の目的は、被測定物の寸法を高精度に測定でき、かつ加工中でも瞬時に測定が可能な超音波寸法測定装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明は、平行な対向する二端面を有する被測定物を液体中に浸漬し、この被測定物の二端面間の寸法を測定する装置であって、被測定物に平面波を送信し、被測定物の表面に弾性表面波を生じさせるとともに、上記平面波の送信方向の被測定物表面への投影線が上記被測定物の対向する二端面に対して垂直方向とされた超音波送信器と、被測定物の表面の所定点で反射した反射超音波と、被測定物の表面を伝播する弾性表面波が被測定物の対向する二端面で反射した後、上記所定点から放射される放射超音波とを受信する超音波受信器と、上記反射超音波と放射超音波との受信時間差から被測定物の二端面間の寸法を求める手段と、を備えたものである。
【0006】
超音波送信器から平面波を液体中に浸漬された被測定物に対して斜め方向より送信する。超音波送信器としては、例えば圧電素子と平面レンズとの組み合わせで構成できる。被測定物を液体中に浸漬するのは、送信器から被測定物へ超音波を伝えるためであり、粘性係数の比較的小さい液体(例えば水)が用いられる。送信器から平面波を被測定物の表面に入射させると、平面波の一部が表面で反射して超音波受信器で受信される。これが反射超音波である。一方、平面波の入射角を所定の臨界角に設定すると、弾性表面波が励起され、この弾性表面波が被測定物の表面を伝播する。平面波の送信方向の被測定物表面への投影線が被測定物の対向する二端面に対して垂直方向に設定されているので、弾性表面波は被測定物の一方の端面で反射した後、対向する端面でも反射し、平面波が入射した所定点まで戻ってくる。この弾性表面波は液中に超音波を放射しつつ被測定物の表面を伝播する。そして、超音波受信器の焦点を平面波が入射された所定点に合わせておくことで、所定点まで戻ってきた弾性表面波から放射される放射超音波を正確に受信できる。超音波受信器としては、例えば圧電素子と球面レンズとの組み合わせで構成できる。
このようにして求めた反射超音波と放射超音波との到達時間差から被測定物の二端面間の寸法を求めることができる。つまり、反射超音波の到達時間をt1 、放射超音波の到達時間をt2 、弾性表面波の速度をVとすると、被測定物の寸法L(対向する二端面の距離)は次式で求めることができる。
L=V×(t2 −t1 )/2
【0007】
また、請求項2のように、上記送信器から平面波を連続的に送信するとともに、送信する平面波の波長を変化させて入射された弾性表面波と反射した弾性表面波とを干渉させ、最も強度の大きい放射超音波が発生する超音波の波長から被測定物の二端面間の寸法を求めてもよい。この場合には、超音波一波長分の違いを検出できるので、分解能を一波長以内まで高めることができる。
【0008】
【発明の実施の形態】
図1は本発明にかかる超音波寸法測定装置の原理説明図である。
図において、1は貯留槽であり、その中には例えば粘度が4.0×10-3Pa・S(4CP)以下の液体2が貯留され、この液体2の中に被測定物3が浸漬されている。この実施例では、被測定物3として例えば方形の圧電セラミック基板が用いられている。
【0009】
4は超音波送信器であり、一部が液体2に浸漬された平面レンズよりなる圧電素子5とパルスジェネレータ6とで構成されている。パルスジェネレータ6から出力されるパルスによって圧電素子5が励振され、平面波(数十MHz以上の超音波)U1 が被測定物3に向かって発せられる。また、7は超音波受信器であり、一部が液体2に浸漬された球面レンズよりなる圧電素子8とオシロスコープ9とで構成され、被測定物3で反射した超音波を受信する。
【0010】
上記平面レンズ5と球面レンズ8は、レンズホルダ10によって所定の向きで保持されている。すなわち、平面レンズ5は平面波U1 を被測定物3の入射点Pを含む所定の領域に照射できるようになっており、入射点Pからの反射波が球面レンズ8で最も強く受信されるように、球面レンズ8の焦点が調整されている。レンズホルダ10は入射点Pを中心として矢印A方向に角度調整可能となっており、平面レンズ5から被測定物3の表面に入射される平面波U1 の入射角θを可変としている。なお、平面波U1 の送信方向の被測定物3表面への投影線が、被測定物3の対向する二端面3a,3bに対して常に垂直方向となるように、平面レンズ5の向きが設定されている。また、この実施例では、受信器7の受信方向の被測定物3表面への投影線も、被測定物3の対向する2端面に対して垂直に設定されている。
【0011】
ここで、上記構成の超音波寸法測定装置の測定方法について説明する。
まず、レンズホルダ10を回動させて、平面レンズ5から被測定物3の表面に入射される平面波U1 の入射角θを可変する。そして、入射角θがある臨界角に到達すると、平面波U1 によって被測定物3の表面に弾性表面波が生じるが、この表面波が生じる角度でレンズホルダ10を位置決めする。平面レンズ5から照射された平面波U1 の一部は、被測定物3の表面で反射し(反射超音波U2 )、球面レンズ8で受信される。一方、平面波U1 によって励起された弾性表面波E1 は、図2に示すように被測定物3の表面に沿って一方の端面3a方向に伝搬し、端面3aで反射した後、他方の端面3b方向へ伝播する。この弾性表面波は液中に超音波を放射しながら被測定物3の表面を伝播するレーリー波である。端面3bで反射した弾性表面波E2 が照射点Pに戻ってくると、ここで液中に放射された超音波(放射超音波U3 )が球面レンズ8で受信される。
【0012】
図2は反射超音波U2 と放射超音波U3 の受信波形を示したものであり、反射超音波U2 の到達時刻はt1 、放射超音波U3 の到達時刻はt2 である。
両波U2 ,U3 の時間差t2 −t1 は、弾性表面波E1 ,E2 が伝播した距離2Lに比例し、弾性表面波E1 ,E2 の伝播速度Vに反比例する。したがって、被測定物3の端面3a,3b間の距離Lは次式によって求められる。
L=V×(t2 −t1 )/2
【0013】
また、弾性表面波E1 ,E2 の伝播速度Vは、被測定物3の弾性定数Mと密度ρとによって次式で与えられる。
V=√(M/ρ)
【0014】
上記測定方法に加えて、あるいは上記測定方法とは別個に、次のような測定方法を実施してもよい。
すなわち、送信器4から平面波U1 を被測定物3に連続的に送信しながら、送信する平面波U1 の波長を変化させる。図3(a)は入射した弾性表面波E1 と反射した弾性表面波E2 とが共振していない状態の波形であり、実際の弾性表面波は実線のようになる。送信する平面波U1 の波長がある波長になると、入射した表面波E1 と反射した表面波E2 とが共振(干渉)し、図3(b)のように実際の弾性表面波は急激に大きくなる。そのため、共振した弾性表面波によって被測定物3の表面から振幅を増した超音波U3 が放射され、球面レンズ8で受信される。つまり、被測定物3の寸法2Lが超音波の波長λの整数倍の時に、最も強度の大きな共振が起こるので、最も強度の大きい共振が発生した時の波長λを求めることで、距離2Lを知ることができる。
2L=n・λ (n:正の整数)
この方法は、超音波一波長λを越える大凡の寸法が既知である場合に、分解能を一波長以内まで高めた測定が可能である。
【0015】
図4は本発明の寸法測定装置を溝加工に応用した例を示す。
被測定物3の表面には砥石20によって一定間隔で溝21が加工される。液体2を貯留した貯留槽1は左右方向に移動自在なXY軸可動テーブル22上に載置されている。可動テーブル22はモータなどの駆動装置(図示せず)によってXY軸方向に駆動される。可動テーブル22は砥石20の加工中はY軸方向にのみ移動し、1本の溝21の加工が終了すると、所定幅だけX軸方向に移動する。
【0016】
パルスジェネレータ6およびオシロスコープ9はそれぞれコントローラ23に接続され、上記駆動装置はコントローラ23からの加工位置指令信号に基づいて駆動される。すなわち、コントローラ23は反射超音波U2 と放射超音波U3 との時間差(t2 −t1 )から上記と同様にして被測定物3の溝21の間隔Dを求め、この間隔Dが規格範囲内であればG(良)、規格範囲外であればNG(不良)とし、NGの場合には可動テーブル22のX軸方向の移動量を調整する。
【0017】
このように加工中に被測定物3の寸法Dを高精度にかつ瞬時に測定できるので、一旦NGが発生しても、次の加工では加工位置指令信号を修正してGにすることができ、高精度の加工が可能になるとともに、その精度を維持することができる。
【0018】
被測定物の形状は、少なくとも表面の一部に弾性表面波が反射する平行な二端面部分を有するものであればよく、対向する二端面全体が平行である必要はない。なお、本発明で平行とは、厳密な平行をいうだけでなく、反射波が散乱せずに反射できる程度の平行度を持つものであればよく、多少の角度バラツキは含むものである。
被測定物の材質は、弾性表面波が表面を伝播し、かつ両端面で反射しうるだけの弾性係数を有するものであばよく、表面部分は均質であるのが望ましい。
受信器の受信点は、送信器から送信される平面波が被測定物に到達する領域内であればよい。また、受信器の受信方向の被測定物表面への投影線は、必ずしも被測定物の対向する2端面に対して垂直である必要はなく、球面レンズの性能による。
【0019】
また、本発明は被測定物の寸法だけでなく、被測定物の端部に生じているチッピングなどの表面状態を測定することも可能である。すなわち、被測定物の端部にチッピングなどがあると、反射波に乱れが生じるので、受信波形の歪みを検出することで、表面状態を検出できる。
【0020】
【発明の効果】
以上の説明で明らかなように、本発明によれば、被測定物の表面で反射した反射超音波と、被測定物の表面を伝播し両端面で反射した弾性表面波による放射超音波との到達時間差から被測定物の二端面間の寸法を求めるようにしたので、被測定物の寸法を高精度に測定できる。しかも、溝加工や切断加工などの加工中でも瞬時に測定ができるので、加工誤差を修正して高精度な加工を実現できる。
【図面の簡単な説明】
【図1】本発明の超音波寸法測定装置の原理説明図である。
【図2】超音波と被測定物を伝わる弾性表面波を挙動を示す図である。
【図3】弾性表面波の非共振時および共振時の波形図である。
【図4】本発明の超音波寸法測定装置を溝加工機に適用した図である。
【符号の説明】
1 貯留槽
2 液体
3 被測定物
4 超音波送信器
5 圧電素子(平面レンズ)
6 パルスジェネレータ
7 超音波受信器
8 圧電素子(球面レンズ)
9 オシロスコープ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dimension measuring apparatus using ultrasonic waves.
[0002]
[Prior art]
When a groove is processed on a surface of a ceramic substrate or the like or cut into a narrow width, it may be necessary to measure the width between the grooves or the cut width with high accuracy. Conventionally, such dimension measurement is performed using an optical microscope.
[0003]
[Problems to be solved by the invention]
However, with an optical microscope, it is difficult to measure dimensions with high accuracy, and for example, it is impossible to measure dimensions of 1 μm or less. For this reason, in measuring dimensions of electronic parts, etc., the quality was determined by looking at the electrical characteristics depending on the dimensions. However, this method requires time and effort, so the dimensions are measured during processing. The width could not be corrected.
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to provide an ultrasonic dimension measuring apparatus that can measure the dimension of an object to be measured with high accuracy and can measure instantaneously even during processing.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an apparatus for immersing a measurement object having two parallel opposite end surfaces in a liquid and measuring the dimension between the two end surfaces of the measurement object. A plane wave is transmitted to the surface of the object to be measured, and a surface acoustic wave is generated on the surface of the object to be measured, and a projection line on the surface of the object to be measured in the transmission direction of the plane wave is perpendicular to the two opposite end faces of the object to be measured. The reflected ultrasonic wave reflected at a predetermined point on the surface of the object to be measured and the surface acoustic wave propagating on the surface of the object to be measured are reflected on the two opposite end surfaces of the object to be measured, and then An ultrasonic receiver for receiving radiated ultrasonic waves radiated from a predetermined point, and means for obtaining a dimension between two end faces of the object to be measured from a reception time difference between the reflected ultrasonic waves and the radiated ultrasonic waves It is.
[0006]
A plane wave is transmitted from the ultrasonic transmitter to the object to be measured immersed in the liquid from an oblique direction. As an ultrasonic transmitter, it can comprise by the combination of a piezoelectric element and a plane lens, for example. The object to be measured is immersed in the liquid in order to transmit ultrasonic waves from the transmitter to the object to be measured, and a liquid having a relatively small viscosity coefficient (for example, water) is used. When a plane wave is incident on the surface of the object to be measured from the transmitter, a part of the plane wave is reflected by the surface and received by the ultrasonic receiver. This is reflected ultrasound. On the other hand, when the incident angle of the plane wave is set to a predetermined critical angle, the surface acoustic wave is excited, and this surface acoustic wave propagates through the surface of the object to be measured. Since the projection line on the surface of the object to be measured in the transmission direction of the plane wave is set in a direction perpendicular to the two opposite end faces of the object to be measured, after the surface acoustic wave is reflected by one end face of the object to be measured, The light is also reflected at the opposite end faces and returns to a predetermined point where the plane wave is incident. This surface acoustic wave propagates through the surface of the object to be measured while radiating ultrasonic waves into the liquid. Then, by adjusting the focal point of the ultrasonic receiver to a predetermined point where the plane wave is incident, the radiated ultrasonic wave radiated from the surface acoustic wave returning to the predetermined point can be accurately received. For example, the ultrasonic receiver can be configured by a combination of a piezoelectric element and a spherical lens.
The dimension between the two end faces of the object to be measured can be obtained from the difference in arrival time between the reflected ultrasonic wave and the emitted ultrasonic wave. That is, when the arrival time of the reflected ultrasonic wave is t 1 , the arrival time of the emitted ultrasonic wave is t 2 , and the velocity of the surface acoustic wave is V, the dimension L of the object to be measured (distance between two opposite end surfaces) is Can be sought.
L = V × (t 2 −t 1 ) / 2
[0007]
In addition, as described in claim 2, the plane wave is continuously transmitted from the transmitter, and the incident surface acoustic wave and the reflected surface acoustic wave are caused to interfere with each other by changing the wavelength of the plane wave to be transmitted. The dimension between the two end surfaces of the object to be measured may be obtained from the wavelength of the ultrasonic wave that generates a large radiated ultrasonic wave. In this case, since the difference for one ultrasonic wave can be detected, the resolution can be increased to within one wavelength.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram illustrating the principle of an ultrasonic dimension measuring apparatus according to the present invention.
In the figure, reference numeral 1 denotes a storage tank in which a liquid 2 having a viscosity of, for example, 4.0 × 10 −3 Pa · S (4CP) or less is stored, and an object to be measured 3 is immersed in the liquid 2. Has been. In this embodiment, for example, a rectangular piezoelectric ceramic substrate is used as the DUT 3.
[0009]
Reference numeral 4 denotes an ultrasonic transmitter, which includes a piezoelectric element 5 and a pulse generator 6 each of which is a flat lens partly immersed in the liquid 2. The piezoelectric element 5 is excited by a pulse output from the pulse generator 6, and a plane wave (ultrasonic wave of several tens of MHz or more) U 1 is emitted toward the DUT 3. Reference numeral 7 denotes an ultrasonic receiver, which is composed of a piezoelectric element 8 made of a spherical lens partially immersed in the liquid 2 and an oscilloscope 9 and receives ultrasonic waves reflected by the object to be measured 3.
[0010]
The planar lens 5 and the spherical lens 8 are held in a predetermined direction by a lens holder 10. That is, the planar lens 5 can irradiate a predetermined area including the incident point P of the DUT 3 with the plane wave U 1 so that the reflected wave from the incident point P is received most strongly by the spherical lens 8. In addition, the focal point of the spherical lens 8 is adjusted. The lens holder 10 can adjust the angle in the direction of arrow A around the incident point P, and the incident angle θ of the plane wave U 1 incident on the surface of the DUT 3 from the plane lens 5 is variable. Note that the orientation of the planar lens 5 is set so that the projection line of the plane wave U 1 in the transmission direction onto the surface of the object 3 to be measured is always perpendicular to the opposing two end faces 3a and 3b of the object 3 to be measured. Has been. In this embodiment, the projection line on the surface of the device under test 3 in the receiving direction of the receiver 7 is also set perpendicular to the two opposing end faces of the device under test 3.
[0011]
Here, a measuring method of the ultrasonic dimension measuring apparatus having the above-described configuration will be described.
First, the lens holder 10 is rotated to vary the incident angle θ of the plane wave U 1 incident on the surface of the DUT 3 from the plane lens 5. When the incident angle θ reaches a certain critical angle, a surface acoustic wave is generated on the surface of the DUT 3 by the plane wave U 1. The lens holder 10 is positioned at an angle at which the surface wave is generated. A part of the plane wave U 1 irradiated from the plane lens 5 is reflected by the surface of the object to be measured 3 (reflected ultrasonic wave U 2 ) and received by the spherical lens 8. On the other hand, the surface acoustic wave E 1 excited by the plane wave U 1 propagates in the direction of one end face 3a along the surface of the object to be measured 3 as shown in FIG. 2, reflects on the end face 3a, and then the other end face. Propagates in the 3b direction. This surface acoustic wave is a Rayleigh wave that propagates through the surface of the object 3 while radiating ultrasonic waves into the liquid. When the surface acoustic wave E 2 reflected by the end face 3 b returns to the irradiation point P, the ultrasonic wave (radiated ultrasonic wave U 3 ) radiated in the liquid is received by the spherical lens 8.
[0012]
FIG. 2 shows received waveforms of the reflected ultrasonic wave U 2 and the emitted ultrasonic wave U 3 , and the arrival time of the reflected ultrasonic wave U 2 is t 1 and the arrival time of the emitted ultrasonic wave U 3 is t 2 .
Both waves U 2, the time difference t 2 -t 1 of the U 3, the surface acoustic wave E 1, E 2 is proportional to the distance 2L propagated and is inversely proportional to the propagation velocity V of the surface acoustic wave E 1, E 2. Therefore, the distance L between the end surfaces 3a and 3b of the DUT 3 is obtained by the following equation.
L = V × (t 2 −t 1 ) / 2
[0013]
Further, the propagation velocity V of the surface acoustic waves E 1 and E 2 is given by the following equation according to the elastic constant M and the density ρ of the DUT 3.
V = √ (M / ρ)
[0014]
In addition to the above measuring method or separately from the above measuring method, the following measuring method may be carried out.
That is, the wavelength of the plane wave U 1 to be transmitted is changed while continuously transmitting the plane wave U 1 from the transmitter 4 to the DUT 3. FIG. 3A shows a waveform in a state where the incident surface acoustic wave E 1 and the reflected surface acoustic wave E 2 do not resonate, and the actual surface acoustic wave becomes a solid line. When the wavelength of the plane wave U 1 to be transmitted reaches a certain wavelength, the incident surface wave E 1 and the reflected surface wave E 2 resonate (interfere), and the actual surface acoustic wave rapidly changes as shown in FIG. growing. Therefore, the ultrasonic wave U 3 whose amplitude is increased from the surface of the DUT 3 by the resonated surface acoustic wave is radiated and received by the spherical lens 8. That is, when the dimension 2L of the object to be measured 3 is an integral multiple of the wavelength λ of the ultrasonic wave, the resonance with the highest intensity occurs. Therefore, by obtaining the wavelength λ when the resonance with the highest intensity occurs, the distance 2L is obtained. I can know.
2L = n · λ (n: positive integer)
In this method, when an approximate dimension exceeding one ultrasonic wavelength λ is known, the measurement can be performed with the resolution increased to within one wavelength.
[0015]
FIG. 4 shows an example in which the dimension measuring apparatus of the present invention is applied to the groove processing.
Grooves 21 are machined on the surface of the DUT 3 at regular intervals by the grindstone 20. The storage tank 1 storing the liquid 2 is placed on an XY-axis movable table 22 that is movable in the left-right direction. The movable table 22 is driven in the X and Y axis directions by a driving device (not shown) such as a motor. The movable table 22 moves only in the Y-axis direction during the processing of the grindstone 20, and when the processing of one groove 21 is completed, the movable table 22 moves in the X-axis direction by a predetermined width.
[0016]
The pulse generator 6 and the oscilloscope 9 are each connected to a controller 23, and the driving device is driven based on a machining position command signal from the controller 23. That is, the controller 23 obtains the interval D of the groove 21 of the object to be measured 3 from the time difference (t 2 −t 1 ) between the reflected ultrasonic wave U 2 and the emitted ultrasonic wave U 3 in the same manner as described above. If it is within the range, it is G (good), and if it is out of the standard range, it is NG (bad). In the case of NG, the amount of movement of the movable table 22 in the X-axis direction is adjusted.
[0017]
Thus, since the dimension D of the DUT 3 can be measured with high accuracy and instantaneously during machining, even if NG occurs once, the machining position command signal can be corrected to G in the next machining. High-precision processing becomes possible, and the accuracy can be maintained.
[0018]
The shape of the object to be measured may be any shape as long as it has two parallel end surface portions that reflect surface acoustic waves on at least a part of the surface, and the entire facing two end surfaces do not need to be parallel. In the present invention, the term “parallel” is not limited to strict parallelism, but may have any degree of parallelism that allows the reflected wave to be reflected without being scattered, and includes some angle variation.
The material of the object to be measured only needs to have an elastic coefficient that allows surface acoustic waves to propagate through the surface and be reflected at both end faces, and the surface portion is preferably homogeneous.
The receiving point of the receiver may be in an area where the plane wave transmitted from the transmitter reaches the device under test. In addition, the projection line on the surface of the object to be measured in the receiving direction of the receiver does not necessarily need to be perpendicular to the two opposing end surfaces of the object to be measured, and depends on the performance of the spherical lens.
[0019]
Further, the present invention can measure not only the dimension of the object to be measured but also the surface condition such as chipping generated at the end of the object to be measured. That is, if there is chipping or the like at the end of the object to be measured, the reflected wave is disturbed, so the surface state can be detected by detecting the distortion of the received waveform.
[0020]
【The invention's effect】
As is clear from the above description, according to the present invention, the reflected ultrasonic wave reflected by the surface of the object to be measured and the radiated ultrasonic wave by the surface acoustic wave propagated through the surface of the object to be measured and reflected by both end surfaces are obtained. Since the dimension between the two end faces of the object to be measured is obtained from the arrival time difference, the dimension of the object to be measured can be measured with high accuracy. In addition, since measurement can be performed instantaneously even during machining such as grooving or cutting, high-precision machining can be realized by correcting machining errors.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of an ultrasonic dimension measuring apparatus according to the present invention.
FIG. 2 is a diagram showing the behavior of an ultrasonic wave and a surface acoustic wave transmitted through an object to be measured.
FIG. 3 is a waveform diagram of a surface acoustic wave at non-resonance and at resonance.
FIG. 4 is a diagram in which the ultrasonic dimension measuring device of the present invention is applied to a groove processing machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Liquid 3 Measured object 4 Ultrasonic transmitter 5 Piezoelectric element (planar lens)
6 Pulse generator 7 Ultrasonic receiver 8 Piezoelectric element (spherical lens)
9 Oscilloscope

Claims (2)

平行な対向する二端面を有する被測定物を液体中に浸漬し、この被測定物の二端面間の寸法を測定する装置であって、
被測定物に平面波を送信し、被測定物の表面に弾性表面波を生じさせるとともに、上記平面波の送信方向の被測定物表面への投影線が上記被測定物の対向する二端面に対して垂直方向とされた超音波送信器と、
被測定物の表面の所定点で反射した反射超音波と、被測定物の表面を伝播する弾性表面波が被測定物の対向する二端面で反射した後、上記所定点から放射される放射超音波とを受信する超音波受信器と、
上記反射超音波と放射超音波との受信時間差から被測定物の二端面間の寸法を求める手段と、を備えたことを特徴とする超音波寸法測定装置。
An apparatus for measuring a dimension between two end faces of a measurement object by immersing the measurement object having two opposite end faces in parallel in a liquid,
A plane wave is transmitted to the object to be measured, a surface acoustic wave is generated on the surface of the object to be measured, and a projection line on the surface of the object to be measured in the transmission direction of the plane wave is directed to the two opposite end faces of the object to be measured. An ultrasonic transmitter that is vertically oriented;
The reflected ultrasonic wave reflected at a predetermined point on the surface of the object to be measured and the surface acoustic wave propagating on the surface of the object to be measured are reflected at the two opposite end faces of the object to be measured, and then radiated from the predetermined point. An ultrasonic receiver for receiving sound waves;
Means for determining a dimension between two end faces of the object to be measured from a reception time difference between the reflected ultrasonic wave and the emitted ultrasonic wave.
平行な対向する二端面を有する被測定物を液体中に浸漬し、この被測定物の二端面間の寸法を測定する装置であって、
被測定物に平面波U1を送信し、被測定物の表面に弾性表面波E1を生じさせるとともに、上記平面波の送信方向の被測定物表面への投影線が上記被測定物の対向する二端面に対して垂直方向とされた超音波送信器と、
上記平面波U1の入射により、被測定物の表面を伝播する弾性表面波E1が被測定物の対向する二端面で反射した後、被測定物の表面の所定点から放射される放射超音波U3を受信する超音波受信器と、
上記平面波U1と放射超音波U3とから被測定物の二端面間の寸法を求める手段とを備え、
上記送信器から平面波U1を連続的に送信するとともに、送信する平面波U1の波長λを変化させて入射された弾性表面波E1と反射した弾性表面波E2とを干渉させ、最も強度の大きい放射超音波U3が発生するときの平面波U1の波長λから被測定物の二端面間の寸法を求めることを特徴とする超音波寸法測定装置。
An apparatus for measuring a dimension between two end faces of a measurement object by immersing the measurement object having two opposite end faces in parallel in a liquid,
A plane wave U1 is transmitted to the object to be measured, and a surface acoustic wave E1 is generated on the surface of the object to be measured, and projection lines on the surface of the object to be measured in the transmission direction of the plane wave are formed on two opposite end surfaces of the object to be measured. An ultrasonic transmitter that is oriented perpendicular to the
After the surface wave U1 propagating on the surface of the object to be measured is reflected by the two opposite end faces of the object to be measured by the incidence of the plane wave U1, the radiated ultrasonic wave U3 radiated from a predetermined point on the surface of the object to be measured is generated. An ultrasonic receiver to receive,
Means for obtaining a dimension between two end faces of the object to be measured from the plane wave U1 and the radiation ultrasonic wave U3,
The plane wave U1 is continuously transmitted from the transmitter, and the incident surface acoustic wave E1 and the reflected surface acoustic wave E2 are caused to interfere with each other by changing the wavelength λ of the plane wave U1 to be transmitted. An ultrasonic dimension measuring apparatus for obtaining a dimension between two end faces of an object to be measured from a wavelength λ of a plane wave U1 when a sound wave U3 is generated.
JP34861597A 1997-12-02 1997-12-02 Ultrasonic dimension measuring device Expired - Fee Related JP3832061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34861597A JP3832061B2 (en) 1997-12-02 1997-12-02 Ultrasonic dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34861597A JP3832061B2 (en) 1997-12-02 1997-12-02 Ultrasonic dimension measuring device

Publications (2)

Publication Number Publication Date
JPH11160056A JPH11160056A (en) 1999-06-18
JP3832061B2 true JP3832061B2 (en) 2006-10-11

Family

ID=18398203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34861597A Expired - Fee Related JP3832061B2 (en) 1997-12-02 1997-12-02 Ultrasonic dimension measuring device

Country Status (1)

Country Link
JP (1) JP3832061B2 (en)

Also Published As

Publication number Publication date
JPH11160056A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
US6400449B2 (en) Optical stress generator and detector
Deutsch et al. Self-focusing of Rayleigh waves and Lamb waves with a linear phased array
JP2541012B2 (en) Ultrasonic spectrum microscope
JPS589063A (en) Ultrasonic microscope
KR101447392B1 (en) Apparatus and method for measuring metal structure and material
JP2020502531A (en) Steel grain size measuring device
JP4888484B2 (en) Metallic tissue material measuring device
US4967873A (en) Acoustic lens apparatus
AU2012274665B2 (en) Ultrasonic testing method and ultrasonic array probe.
JP3832061B2 (en) Ultrasonic dimension measuring device
Moss et al. Investigation of ultrasonic transducers using optical techniques
Smolorz et al. Focusing PVDF transducers for acoustic microscopy
Ishikawa et al. Surface acoustic waves on a sphere–analysis of propagation using laser ultrasonics–
Felix et al. 1D ultrasound array: Performance evaluation and characterization by laser interferometry
Radziszewski Propagation parameters of ultrasonic waves in polymer composites
JPH0668487B2 (en) Acoustic transducer for ultrasonic microscope
JPH0611385A (en) Measuring instrument for acoustic velocity of transverse wave and young's modulus and/or poisson ratio measuring instrument using the device
JPH0731169Y2 (en) Ultrasonic probe
JP2003232778A (en) Method for measuring physical property of sample
Ameri et al. Laser detection and imaging techniques for surface examination
SU1698750A1 (en) Method of measuring the entry angle of the sloped ultrasonic oscillation transducers
KR20230140199A (en) Apparatus for measuring thin film thickness and thereof method
JP2580766B2 (en) Ultrasonic microscope lens and reflected wave sampling method using the lens
SU1569696A1 (en) Transducer for ultrasonic inspection
SU1404925A1 (en) Device for certifying ultrasonic transducers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees