JP3831987B2 - Process for producing 1,1,1,3,3-pentafluoropropane - Google Patents

Process for producing 1,1,1,3,3-pentafluoropropane Download PDF

Info

Publication number
JP3831987B2
JP3831987B2 JP25348396A JP25348396A JP3831987B2 JP 3831987 B2 JP3831987 B2 JP 3831987B2 JP 25348396 A JP25348396 A JP 25348396A JP 25348396 A JP25348396 A JP 25348396A JP 3831987 B2 JP3831987 B2 JP 3831987B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
hydrogen fluoride
fluorination
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25348396A
Other languages
Japanese (ja)
Other versions
JPH10101593A (en
Inventor
啓一 大西
秀一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP25348396A priority Critical patent/JP3831987B2/en
Publication of JPH10101593A publication Critical patent/JPH10101593A/en
Application granted granted Critical
Publication of JP3831987B2 publication Critical patent/JP3831987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は1,1,1,3,3−ペンタフルオロプロパン(以下、R245faと略す)の改良された製造方法に関する。R245faは、発泡剤などとして有用なオゾン層を破壊しないヒドロフルオロカーボン(HFC)である。
【0002】
【従来の技術】
245faの製造方法としては、(1)CF3 CH=CF2 にPd触媒の存在下で水素付加する方法(Izvest.Akad.Nauk S.S.S.R.,Otdel.Khim.Nauk.1960,1412 )、(2)CF3 CCl2 CClF2 をPd触媒の存在下に水素還元する方法(米国特許第2942036号明細書)、(3)CF3 CClHCClF2 をPd触媒の存在下に水素還元する方法(特開平6−256235号公報)、(4)CCl3 CH2 CCl3 をフッ化水素でフッ素化し、CF3 CH2 CClF2 を生成させた後に、水素化触媒存在下に水素により還元する方法(特開平7−138194号公報)、(5)CFy Cl3-y CH2 CHFw Cl2-w (y:0〜3の整数、w:0〜2の整数)で示される化合物を触媒存在下に50〜175℃の温度範囲でフッ化水素によりフッ素化する方法(WO 96/01797)、および(6)CCl3 CH2 CHCl2 を触媒存在下液相中でフッ化水素によりフッ素化する方法(特開平8−104655号公報)が知られている。
【0003】
【発明が解決しようとする課題】
前記(1)の方法は原料を工業的に入手することが困難である。(2)、(3)の方法はいずれも還元触媒にPdを用いているが、反応活性および耐熱性が不充分であり工業的製法として適しない。(4)の方法はフッ素化によって選択的にCF3 CH2 CClF2 のみを生成させることが困難であり、最終的にR245faの収率を上げることが困難である。(5)、(6)の方法では、出発原料のCCl3 CH2 CHCl2 などは化学的に不安定で副反応による収率低下が顕著になり、触媒も失活しやすい。
【0004】
【課題を解決するための手段】
本発明は、従来法にみられる欠点を克服したR245faの製造方法であり、1,1,1,3,3−ペンタクロロプロパン(以下、R240fと略す)をフッ素化触媒の不存在下、フッ化水素によりフッ素化して得られる部分フッ素化反応物を、アンチモン、ニオブおよびタンタルから選ばれる1種以上の元素のハロゲン化物を含むフッ素化触媒の存在下、フッ化水素によりフッ素化することを特徴とするR245faの製造方法である。
【0005】
R240fは、汎用のモノマーである塩化ビニルと四塩化炭素のラジカル的な付加反応によって、容易に合成できることが知られている(浅原照三他, 工業化学雑誌,72,1516(1969)、T.A.Onishchenko et.al.,Izv.Akad.Nauk SSSR,Ser.Khim.,1972,1770 、M.Kotora et.al.,React.Kinet.Catal.Lett.,44,415(1991)、M.Kotora et.al.,J.Mol.Catal.,77,51(1992))。
【0006】
フッ素化触媒の不存在下、フッ化水素によりR240fをフッ素化して部分フッ素化反応物を得るフッ素化反応(以下、前段反応と略す)、および、得られる部分フッ素化反応物を、フッ素化触媒の存在下、フッ化水素によりフッ素化してR245faを得るフッ素化反応(以下、後段反応と略す)は、常圧または加圧下の液相反応が好ましい。
【0007】
前段反応で得られる部分フッ素化反応物とは、好ましくは平均で1〜4個、より好ましくは平均で1〜3個の割合でフッ素原子を有する部分フッ素化プロパン、および好ましくは平均で1〜4個、より好ましくは平均で1〜3個の割合でフッ素原子を有する部分フッ素化プロペンなどを含む混合物を意味する。
【0008】
上記部分フッ素化プロパンとは、R240f中の塩素原子がフッ素原子に置換された化合物、またはR240fの脱塩化水素物である1,3,3,3−テトラクロロプロペンなどの副生塩素化プロペン中の二重結合にフッ素原子が付加した付加化合物、またはこの付加化合物中の塩素原子がフッ素原子に置換された化合物などを意味する。
【0009】
また、上記部分フッ素化プロペンとは、塩素原子を有する部分フッ素化プロパンの脱塩化水素物、またはR240fの脱塩化水素物である1,3,3,3−テトラクロロプロペンなどの副生塩素化プロペン中の塩素原子がフッ素原子に置換され化合物などを意味する。
【0010】
この部分フッ素化反応物中の個々の化合物としては、R240f、1,3,3,3−テトラクロロプロペンなどのフッ素化されていない化合物またはR245faなどの5個の塩素原子が完全にフッ素原子に置換された化合物が含まれていてもよい。
【0011】
部分フッ素化反応物としては、1,1,3,3−テトラクロロ−1−フルオロプロパン(R241fa)、1,1,3−トリクロロ−1,3−ジフルオロプロパン(R242fb)、1,3,3−トリクロロ−1,1−ジフルオロプロパン(R242fa)、3,3−ジクロロ−1,1,1−トリフルオロプロパン(R243fa)、1,3−ジクロロ−1,1,3−トリフルオロプロパン(R243fb)、1,1−ジクロロ−1,3,3−トリフルオロプロパン(R243fc)、3−クロロ−1,1,1,3−テトラフルオロプロパン(R244fa)などの部分フッ素化プロパン、1−クロロ−3,3,3−トリフルオロプロペン(R1233zd)、1,3−ジクロロ−3,3−ジフルオロプロペン(R1232zd)、3,3−ジクロロ−1,3−ジフルオロプロペン(R1232ze)、1,3,3−トリクロロ−3−フルオロプロペン(R1231zd)、1,3,3,3−テトラフルオロプロペン(R1234ze)などの部分フッ素化プロペンが挙げられる。
【0012】
これらの部分フッ素化反応物は、R240fに比べて安定であり、後段反応において触媒活性低下の原因となる分解生成物を副生しにくい。
【0013】
前段反応の反応温度は通常50℃〜300℃、好ましくは80℃〜250℃、特に好ましくは100℃〜200℃である。後段反応の反応温度と同等またはより高い反応温度で行うことが好ましい。
【0014】
後段反応の反応温度は前段反応のフッ素化で得られる部分フッ素化反応物の組成によっても異なるが、通常は0℃〜200℃、好ましくは30℃〜150℃である。部分フッ素化反応物中に部分フッ素化プロペンが多く含まれる場合はより高温で反応を行うことが好ましい。
【0015】
前段反応においてR240fに対するフッ化水素の供給モル比は、反応容器効率やフッ化水素の回収によるロスなどを考えると、R240f:フッ化水素=1:1〜1:30の範囲が好ましく、1:10の範囲がより好ましい。未反応のフッ化水素は回収分離後リサイクルしてもよく、また部分フッ素化反応物とともに後段反応に用いることもできる。
【0016】
前段反応で得られた部分フッ素化反応物に対するフッ化水素の供給モル比は、化学量論量以上であれば特に限定されない。反応容器効率やフッ化水素の回収によるロスなどを考えると、化学量論量に対して1〜10倍モルの範囲が好ましく、1〜5倍モルの範囲がより好ましい。後段で供給されるフッ化水素は、前段反応の未反応フッ化水素と併用してもよく、後段でフッ化水素を新たに供給することなく前段反応の未反応フッ化水素を用いてもよい。
【0017】
前段または後段反応において、フッ化水素は反応前にあらかじめ仕込んでおいてもよく、また反応時に液相へ吹き込む方法でもよい。
【0018】
前段反応の反応圧は、反応温度、加えるフッ化水素の供給モル比などにもよるが、通常0〜100kg/cm2 ・G、好ましくは0〜40kg/cm2 ・Gである。
【0019】
後段反応の反応圧は通常0〜40kg/cm2 ・Gであるが、前段反応で得られた部分フッ素化反応物中に部分フッ素化プロペンが多く含まれる場合は5kg/cm2 ・G以上の高い圧力が好ましい。また、溶媒を用いる場合は溶媒の種類などによっても異なる。
【0020】
前段反応で得られる部分フッ素化反応物は通常の分離操作、例えば蒸留精製などによって副生する塩化水素、過剰のフッ化水素などを除いた後、後段反応に用いてもよいが、前段反応で得られる塩化水素、フッ化水素、部分フッ素化反応物などからなる反応混合物を分離操作を経ることなく、そのまま後段の反応に用いる方が好ましい。分離操作を経る場合、少なくとも塩化水素を除くことが好ましい。
【0021】
後段反応に用いるフッ素化触媒の存在量は特に限定されない。フッ素化触媒としてはSb、NbおよびTaから選ばれる元素のハロゲン化物を含む触媒、またはこれらの触媒を主触媒とし、助触媒としての他の金属ハロゲン化物を含む触媒が好ましい。ハロゲン化Sbは、5価Sbのハロゲン化物、例えば一般式SbClxy (x、yはx+y=5、0≦x≦5および0≦y≦5を満足する正数)で表されるハロゲン化Sbなどが好ましい。
【0022】
助触媒として働く金属ハロゲン化物触媒としては、Cr、Fe、Ni、Cu、Zn、Ti、Zr、Hf、Sn、PbおよびAsから選ばれる金属のハロゲン化物、3価Sbのハロゲン化物などから選ばれる1種以上のハロゲン化物が好ましい。
【0023】
具体的にはCrCl3 、FeCl3 、NiCl2 、CuCl2 、ZnCl2 、TiCl4 、TiF4 、ZrCl4 、ZrF4 、HfCl4 、HfF4 、SnCl4 、SnF4 、SnCl2 、PbCl4 、AsCl5 、SbCl3 およびSbF3 から選ばれる1種以上のハロゲン化物が好ましく、特にはSnCl4 、SnF4 、SnCl2 、TiCl4 、TiF4 、SbCl3 およびSbF3 から選ばれる1種以上のハロゲン化物が好ましい。
【0024】
フッ素化触媒がハロゲン化Sbを含む場合は、ハロゲン化Sbに対して常に過剰量のフッ化水素を共存させることにより得られる一般式SbClxy (xは0〜1の正数、yは4〜5の正数、かつx+y=5)で表されるハロゲン化Sbが早期の触媒失活を抑制できるため特に好ましい。
【0025】
また、SbCl5 、SbCl23 などの塩素含有量の多い触媒を初期触媒として用いた場合は、あらかじめ過剰のフッ化水素と反応させることにより、触媒中のフッ素量(上記一般式中のy値)を4以上にした後に原料供給を開始し、反応を行うとよい。
【0026】
前段および後段反応は、通常、反応原料や生成物を反応溶媒とするが、その他の反応溶媒を用いてもよく、この場合に用いられる溶媒は、原料を溶かし込み、さらに溶媒自身が原料よりフッ素化されにくいものであれば特に限定されない。このような溶媒としては、ヒドロフルオロカーボン類、ペルフルオロオクタンなどのペルフルオロカーボン類、ペルフルオロポリエーテル類などが挙げられる。
【0027】
生成物R245faとともに反応器より留出する部分フッ素化反応物としては、R241fa、R242fb、R242fa、R243fc、R243fa、R243fb、R243fc、R244fa、R1233zd、R1232zd、R1232ze、R1231zd、R1234zeなどが挙げられる。
【0028】
これらの部分フッ素化反応物は、原料であるR240fに比べてフッ素化触媒存在下でも安定であり、触媒活性低下の原因となる分解生成物を副生しにくいので、R245faと分離精製後、前段または後段の反応系に戻しR245faの原料として使用できる。
【0029】
前段および後段反応は、バッチ反応または連続反応で行いうる。連続反応器としては原料とフッ化水素が充分に混合可能な完全混合槽型、スタティックミキサーなどを用いたピストンフロー型のいずれを用いてもよい。
【0030】
反応器の材質としては、SUS304、SUS316などのステンレス系材料、ハステロイ(商品名)、インコネル(商品名)、モネル(商品名)などのニッケル系合金などの通常の材料が使用できる。上記ステンレス系材料はアルミニウムを含まず、上記ニッケル系材料のアルミニウム含有率は最大で4重量%程度であることが知られている。
【0031】
上記ニッケル系合金は、ステンレス系材料に比べ腐食性は低減されるが、アルミニウムからなる耐食金属材料またはアルミニウムを10重量%以上含む耐食金属材料はより腐食性が低減されるため好ましい。
【0032】
耐食金属材料中のアルミニウムの好ましい割合は、20重量%以上、特には30重量%以上である。アルミニウムの割合の上限は、耐食金属材料が実質的にアルミニウムからなる割合である。耐食金属材料が実質的にアルミニウムからなるとは、製造上混入するアルミニウム以外の微量の金属不純物を含んでもよいことを意味する。
【0033】
この耐食金属材料からなる内表面を有する反応器を用いることにより腐食による装置の劣化を低減し、触媒活性を損なうことなく、長期に亙って好成績で反応を継続できる。
【0034】
この耐食金属材料はそのまま反応器の材料として、または耐食金属材料の1つ以上を表面材(以下、クラッド材という)とし、それ以外の材料の1種以上を耐食金属材料の下地となる基材(以下、コア材という)とする複合材料としても使用できる。
【0035】
コア材としては、耐食性以外の反応器に要求される諸特性、例えば強度、溶接性、熱伝導性などを満足するものであれば特に限定されず、通常炭素鋼、ステンレス鋼、ニッケル系合金、アルミニウムなどが用いられる。コア材と耐食金属材料の接着性などを改善するため、コア材を2層以上にしてもよい。複合材料の製作方法としては、耐食金属材料をコア材へメッキ、溶射、爆着などの方法で複合化する方法が挙げられる。
【0036】
クラッド材として用いる耐食金属材料はコア材を腐食性の環境から保護するためにクラックのない緻密な層を形成しているのが好ましく、その厚みは製作方法および選ぶ耐食金属材料にもより、特に限定されないが、材料の耐久性、機械的強度を考慮するとある程度の厚みを有すること、すなわち、好ましくは10μm〜30mm、さらに好ましくは30μm〜10mm、特に好ましくは100μm〜10mmが適当である。
【0037】
一般に耐食性の金属材料の表面は金属酸化物に覆われ、不動態が形成されている。本フッ素化反応においては、耐食金属材料の表面の少なくとも一部が金属フッ化物を含む保護皮膜により覆われていることが望ましい。特にアルミニウム、マグネシウムなどの比較的標準酸化電位の低い金属成分を含む耐食金属材料においては、より望ましい。金属フッ化物を含む保護皮膜に覆われることにより、より安定な不動態が形成され本フッ素化反応系のような超強酸の環境下においても優れた耐食性が発現する。
【0038】
金属フッ化物を含む保護皮膜は反応の前に形成させることが望ましいが、反応中に保護皮膜を形成させることもできる。反応前に少なくとも金属フッ化物を含む保護皮膜を形成させるためには、内表面が耐食金属材料に覆われた反応器を適当なフッ素化剤で処理すればよい。
【0039】
フッ素化剤は特に限定されず、例えばフッ素ガス、フッ化水素、五フッ化アンチモンなどが用いられる。処理温度は使用する耐食金属材料にもよるがフッ素ガスの場合は好ましくは0℃〜300℃、特に好ましくは室温〜200℃であり、フッ素ガスは通常不活性ガス、例えば窒素、でフッ素ガス濃度を20〜100体積%に調整して用いる。
【0040】
フッ化水素の場合は好ましくは0℃〜300℃、特に好ましくは室温〜300℃であり無水のフッ化水素を液状またはガス状にて用いる。五フッ化アンチモンの場合は好ましくは0℃〜200℃、特に好ましくは室温〜120℃である。これらフッ素化剤は単独で用いてもよく、2種以上を同時または段階的に用いてもよい。
【0041】
アルミニウムを耐食成分として含む耐食金属材料において、本フッ素化反応環境下における耐食成分は、本質的には耐食金属材料の最外面に存在するアルミニウムを含むフッ化物であるので、耐食金属材料表面にこれらフッ化物の保護皮膜を形成するために必要なアルミニウムの成分量は少なくてもよく、耐食金属材料中に金属成分として10重量%程度の含有量でも充分効果を発揮できる。
【0042】
本発明における耐食金属材料としては工業用純アルミニウムでもよく、アルミニウムを10重量%以上含み、かつ鉄、銅、マンガン、マグネシウム、コバルトおよびクロムから選ばれる1種以上を副成分として含む材料でもよく、例えばFe−Cr−Al系合金、Cu−Al系合金などが挙げられる。上記副成分を含むアルミニウムは工業用純アルミニウムに比べて強度などの特性が改良され、反応器のクラッド材のみならずコア材としても使用できる。
【0043】
【実施例】
例1(実施例)
2リットルのハステロイC製オートクレーブにR240fを500g、HFを460gを仕込んだ。オートクレーブを120℃まで加熱し、110℃に保温した冷却管より反応で副生するHClなどをパージし、反応圧を22kg/cm2 ・G以下に維持しながら5時間反応を行い、R241faおよびR1233zdを含む反応混合物を得た。R240fの転化率は99モル%、R241faの選択率は45モル%およびR1233zdの選択率は55モル%であった。
【0044】
次いで、ポリテトラフルオロエチレンでライニングした1リットルのオートクレーブ内に、SbF5 を360g、HFを330gを仕込んだ。オートクレーブを80℃に昇温した後、HFを20g/hr(1.0mol/hr)の平均供給速度で、また上記R241faおよびR1233zdを含む反応混合物を、平均供給速度が50g/hr(0. 31mol/hr)となるように供給し、反応を開始した。
【0045】
反応圧を7. 5〜8. 5kg/cm2 ・Gに制御し、70℃に保温した冷却管より反応で副生するHCl、未反応のHFとともに生成物を連続的に留出させた。24時間後の留出ガス中の有機成分を表1に示す。
【0046】
例2(実施例)
触媒としてSbF5 を360g、SnCl4 を40g使用する以外は例1と同様に反応を行った。24時間後の留出ガス中の有機成分を表2に示す。
【0047】
例3(実施例)
触媒としてSbF5 を360g、SbF3 を40g使用する以外は例1と同様に反応を行った。24時間後の留出ガス中の有機成分を表2に示す。
【0048】
例4(実施例)
触媒としてSbF5 を360g、TiCl4 を40g使用する以外は例1と同様に反応を行った。24時間後の留出ガス中の有機成分を表2に示す。
【0049】
例5(実施例)
触媒としてNbCl5 を360gを使用する以外は例1と同様に反応を行った。24時間後の留出ガス中の有機成分を表1に示す。
【0050】
例6(実施例)
触媒としてTaCl5 を360gを使用する以外は例1と同様に反応を行った。24時間後の留出ガス中の有機成分を表1に示す。
【0051】
例7(実施例)
例1の反応において、24時間後の留出ガスの代わりに180時間後の留出ガス中の有機成分を表1に示す。
【0052】
例8(比較例)
ポリテトラフルオロエチレンでライニングした1リットルのオートクレーブ内に、SbF5 を360g、HFを330gを仕込んだ。オートクレーブを80℃に昇温した後、HFを20g/hr(1.0mol/hr)の平均供給速度で、またR240fを40g/hr(0. 18mol/hr)の平均供給速度で供給し、反応を開始した。
【0053】
反応圧を7. 5〜8. 5kg/cm2 ・Gに制御し、70℃に保温した冷却管より反応で副生するHCl、未反応のHFとともに生成物を連続的に留出させた。180時間後の留出ガス中の有機成分を表1に示す。
【0054】
【表1】

Figure 0003831987
【0055】
【表2】
Figure 0003831987
【0056】
【発明の効果】
本反応に用いる原料R240fは熱的、化学的に不安定な化合物であり、脱塩酸などの分解反応により1,3,3,3−テトラクロロプロペンなどの化合物に分解しやすく、さらにはタール化、オレフィンなどの分解生成物による触媒の還元により触媒の活性低下を引き起こしやすい。
【0057】
本発明に従い、原料R240fとフッ化水素を触媒の非存在下に反応させて適度にフッ素化された中間体を得た後、この中間体を触媒の存在下フッ化水素によりさらにフッ素化することにより、触媒の耐久性を向上させ、触媒を失活させることなく長期に亙って容易に高収率でR245faを製造できる。本発明は、工業的スケールで製造が困難であったR245faを、簡便に、また触媒の失活を抑制することにより長期間高収率で製造しうるという効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved process for producing 1,1,1,3,3-pentafluoropropane (hereinafter abbreviated as R245fa). R245fa is a hydrofluorocarbon (HFC) that does not destroy the ozone layer useful as a foaming agent or the like.
[0002]
[Prior art]
As a method for producing 245fa, (1) a method of hydrogenating CF 3 CH═CF 2 in the presence of a Pd catalyst (Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk. 1960, 1412), (2) CF 3 CCl 2 CClF 2 how to hydrogen reduction in the presence of a Pd catalyst (U.S. Pat. No. 2,942,036), (3) a method of the CF 3 CClHCClF 2 to hydrogen reduction in the presence of a Pd catalyst (JP-a-6-256235 (4) CCl 3 CH 2 CCl 3 is fluorinated with hydrogen fluoride to form CF 3 CH 2 CClF 2 and then reduced with hydrogen in the presence of a hydrogenation catalyst (Japanese Patent Laid-Open No. 7-138194). JP), (5) CF y Cl 3-y CH 2 CHF w Cl 2-w (y: 0~3 integer, w: a compound represented by the integer from 0 to 2) in the presence of a catalyst 50-175 Method of fluorination with hydrogen fluoride in the temperature range of ℃ ( O 96/01797), and (6) a method of fluorinating (JP-A-8-104655) are known from the hydrogen fluoride CCl 3 CH 2 CHCl 2 with the presence of a catalyst under liquid phase.
[0003]
[Problems to be solved by the invention]
In the method (1), it is difficult to obtain raw materials industrially. In both methods (2) and (3), Pd is used as the reduction catalyst, but the reaction activity and heat resistance are insufficient, and it is not suitable as an industrial production method. In the method (4), it is difficult to selectively produce only CF 3 CH 2 CClF 2 by fluorination, and it is difficult to finally increase the yield of R245fa. In the methods (5) and (6), the starting material CCl 3 CH 2 CHCl 2 and the like are chemically unstable and the yield reduction due to side reactions becomes remarkable, and the catalyst is easily deactivated.
[0004]
[Means for Solving the Problems]
The present invention is a method for producing R245fa that overcomes the disadvantages found in conventional methods, and 1,1,1,3,3-pentachloropropane (hereinafter abbreviated as R240f) is fluorinated in the absence of a fluorination catalyst. A partial fluorination reaction product obtained by fluorination with hydrogen is fluorinated with hydrogen fluoride in the presence of a fluorination catalyst containing a halide of one or more elements selected from antimony, niobium and tantalum. This is a manufacturing method of R245fa.
[0005]
It is known that R240f can be easily synthesized by radical addition reaction of vinyl chloride and carbon tetrachloride, which are general-purpose monomers (Takezo Asahara et al., Industrial Chemical Journal, 72, 1516 (1969), TAOnishchenko et al. .al., Izv.Akad.Nauk SSSR, Ser.Khim., 1972,1770, M.Kotora et.al., React.Kinet.Catal.Lett., 44,415 (1991), M.Kotora et.al., J. Mol. Catal., 77, 51 (1992)).
[0006]
In the absence of a fluorination catalyst, R240f is fluorinated with hydrogen fluoride to obtain a partially fluorinated reaction product (hereinafter abbreviated as a pre-stage reaction), and the resulting partially fluorinated reaction product is converted into a fluorination catalyst. The fluorination reaction (hereinafter abbreviated as a post-reaction) to obtain R245fa by fluorination with hydrogen fluoride in the presence of is preferably a liquid phase reaction under normal pressure or pressure.
[0007]
The partially fluorinated reactant obtained in the preceding reaction is preferably an average of 1 to 4, more preferably an average of 1 to 3 partially fluorinated propanes having fluorine atoms, and an average of 1 to 1 It means a mixture containing four, more preferably a partially fluorinated propene having fluorine atoms in an average ratio of 1 to 3 and the like.
[0008]
The partially fluorinated propane is a compound in which a chlorine atom in R240f is substituted with a fluorine atom, or a by-product chlorinated propene such as 1,3,3,3-tetrachloropropene which is a dehydrochloride of R240f. An addition compound in which a fluorine atom is added to the double bond, or a compound in which a chlorine atom in the addition compound is substituted with a fluorine atom.
[0009]
The partially fluorinated propene is a by-product chlorination such as dehydrochloride of partially fluorinated propane having a chlorine atom or 1,3,3,3-tetrachloropropene which is a dehydrochloride of R240f. It means a compound in which a chlorine atom in propene is substituted with a fluorine atom.
[0010]
As individual compounds in this partially fluorinated reaction product, non-fluorinated compounds such as R240f, 1,3,3,3-tetrachloropropene or five chlorine atoms such as R245fa are completely converted to fluorine atoms. Substituted compounds may be included.
[0011]
As the partial fluorination reaction product, 1,1,3,3-tetrachloro-1-fluoropropane (R241fa), 1,1,3-trichloro-1,3-difluoropropane (R242fb), 1,3,3 -Trichloro-1,1-difluoropropane (R242fa), 3,3-dichloro-1,1,1-trifluoropropane (R243fa), 1,3-dichloro-1,1,3-trifluoropropane (R243fb) 1,1-dichloro-1,3,3-trifluoropropane (R243fc), partially fluorinated propane such as 3-chloro-1,1,1,3-tetrafluoropropane (R244fa), 1-chloro-3 , 3,3-trifluoropropene (R1233zd), 1,3-dichloro-3,3-difluoropropene (R1232zd), 3,3- Partially fluorinated propenes such as chloro-1,3-difluoropropene (R1232ze), 1,3,3-trichloro-3-fluoropropene (R1231zd), 1,3,3,3-tetrafluoropropene (R1234ze) It is done.
[0012]
These partially fluorinated reactants are more stable than R240f, and are unlikely to by-produce decomposition products that cause a decrease in catalyst activity in the subsequent reaction.
[0013]
The reaction temperature of the first stage reaction is usually 50 ° C to 300 ° C, preferably 80 ° C to 250 ° C, particularly preferably 100 ° C to 200 ° C. It is preferable to carry out the reaction at a reaction temperature equal to or higher than the reaction temperature of the subsequent reaction.
[0014]
The reaction temperature of the latter reaction varies depending on the composition of the partially fluorinated reaction product obtained by the fluorination of the former reaction, but is usually 0 ° C to 200 ° C, preferably 30 ° C to 150 ° C. When the partially fluorinated reactant contains a large amount of partially fluorinated propene, it is preferable to carry out the reaction at a higher temperature.
[0015]
In the preceding reaction, the molar ratio of hydrogen fluoride to R240f is preferably in the range of R240f: hydrogen fluoride = 1: 1 to 1:30, considering the reaction vessel efficiency, loss due to the recovery of hydrogen fluoride, and the like. A range of 10 is more preferred. Unreacted hydrogen fluoride may be recycled after recovery and separation, and can also be used in the subsequent reaction together with the partially fluorinated reactant.
[0016]
The supply molar ratio of hydrogen fluoride to the partially fluorinated reactant obtained in the previous reaction is not particularly limited as long as it is at least the stoichiometric amount. Considering the reaction vessel efficiency, loss due to hydrogen fluoride recovery, and the like, the range of 1 to 10 moles relative to the stoichiometric amount is preferable, and the range of 1 to 5 moles is more preferable. The hydrogen fluoride supplied in the latter stage may be used in combination with the unreacted hydrogen fluoride in the former stage, or the unreacted hydrogen fluoride in the former stage may be used without newly supplying hydrogen fluoride in the latter stage. .
[0017]
In the pre-stage or post-stage reaction, hydrogen fluoride may be charged in advance before the reaction, or may be blown into the liquid phase during the reaction.
[0018]
The reaction pressure of the first stage reaction is usually 0 to 100 kg / cm 2 · G, preferably 0 to 40 kg / cm 2 · G, although it depends on the reaction temperature and the molar ratio of hydrogen fluoride to be added.
[0019]
The reaction pressure of the latter reaction is usually 0 to 40 kg / cm 2 · G, but when the partially fluorinated propene contained in the partially fluorinated reaction product obtained in the former reaction is 5 kg / cm 2 · G or more. High pressure is preferred. Moreover, when using a solvent, it changes also with the kind etc. of solvent.
[0020]
The partially fluorinated reactant obtained in the first stage reaction may be used in the second stage reaction after removing the hydrogen chloride by-produced by normal separation operations such as distillation purification, excess hydrogen fluoride, etc. It is preferable to use the obtained reaction mixture composed of hydrogen chloride, hydrogen fluoride, partially fluorinated reactant, etc. as it is for the subsequent reaction without undergoing a separation operation. When undergoing the separation operation, it is preferable to remove at least hydrogen chloride.
[0021]
The amount of the fluorination catalyst used in the subsequent reaction is not particularly limited. As the fluorination catalyst, a catalyst containing a halide of an element selected from Sb, Nb and Ta, or a catalyst containing such a catalyst as a main catalyst and another metal halide as a co-catalyst is preferable. The halogenated Sb is a pentavalent Sb halide, for example, a halogen represented by the general formula SbCl x F y (x and y are positive numbers satisfying x + y = 5, 0 ≦ x ≦ 5 and 0 ≦ y ≦ 5). Sb or the like is preferable.
[0022]
The metal halide catalyst acting as a promoter is selected from a metal halide selected from Cr, Fe, Ni, Cu, Zn, Ti, Zr, Hf, Sn, Pb and As, a trivalent Sb halide, and the like. One or more halides are preferred.
[0023]
Specifically, CrCl 3 , FeCl 3 , NiCl 2 , CuCl 2 , ZnCl 2 , TiCl 4 , TiF 4 , ZrCl 4 , ZrF 4 , HfCl 4 , HfF 4 , SnCl 4 , SnF 4 , SnCl 2 , PbCl 4 , AsCl 5 , one or more halides selected from SbCl 3 and SbF 3 are preferable, and in particular, one or more halides selected from SnCl 4 , SnF 4 , SnCl 2 , TiCl 4 , TiF 4 , SbCl 3 and SbF 3. Is preferred.
[0024]
When the fluorination catalyst contains halogenated Sb, the general formula SbCl x F y (x is a positive number from 0 to 1, y is obtained by always allowing an excess amount of hydrogen fluoride to coexist with the halogenated Sb. A positive number of 4 to 5, and a halogenated Sb represented by x + y = 5) is particularly preferable because early catalyst deactivation can be suppressed.
[0025]
Further, when a catalyst having a high chlorine content such as SbCl 5 or SbCl 2 F 3 is used as the initial catalyst, the amount of fluorine in the catalyst (y in the above general formula) is obtained by reacting with excess hydrogen fluoride in advance. After the value) is set to 4 or more, the raw material supply is started and the reaction is performed.
[0026]
In the former stage and latter stage reactions, the reaction raw materials and products are usually used as the reaction solvent, but other reaction solvents may be used. In this case, the solvent dissolves the raw materials, and the solvent itself is more fluorine than the raw materials. There is no particular limitation as long as it is difficult to form. Examples of such a solvent include hydrofluorocarbons, perfluorocarbons such as perfluorooctane, and perfluoropolyethers.
[0027]
Examples of the partially fluorinated reactant distilled from the reactor together with the product R245fa include R241fa, R242fb, R242fa, R243fc, R243fa, R243fb, R243fc, R244fa, R1233zd, R1232ze, R123zze, R123zze, and R123zze.
[0028]
These partially fluorinated reactants are more stable in the presence of a fluorination catalyst than the raw material R240f, and are difficult to by-produce decomposition products that cause a decrease in catalytic activity. Therefore, after separation and purification with R245fa, Alternatively, it can be returned to the subsequent reaction system and used as a raw material for R245fa.
[0029]
The pre-stage and post-stage reactions can be performed as a batch reaction or a continuous reaction. As the continuous reactor, either a complete mixing tank type in which raw materials and hydrogen fluoride can be sufficiently mixed, or a piston flow type using a static mixer or the like may be used.
[0030]
As the material of the reactor, a normal material such as a stainless steel material such as SUS304 or SUS316, or a nickel alloy such as Hastelloy (trade name), Inconel (trade name), or Monel (trade name) can be used. The stainless steel material does not contain aluminum, and the nickel content of the nickel material is known to be about 4% by weight at maximum.
[0031]
The nickel-based alloy is less corrosive than a stainless steel material, but a corrosion-resistant metal material made of aluminum or a corrosion-resistant metal material containing 10 wt% or more of aluminum is preferable because the corrosion resistance is further reduced.
[0032]
A desirable ratio of aluminum in the corrosion-resistant metal material is 20% by weight or more, and particularly 30% by weight or more. The upper limit of the ratio of aluminum is a ratio in which the corrosion-resistant metal material is substantially made of aluminum. The fact that the corrosion-resistant metal material is substantially made of aluminum means that a trace amount of metal impurities other than aluminum mixed in production may be contained.
[0033]
By using the reactor having the inner surface made of the corrosion-resistant metal material, the deterioration of the apparatus due to the corrosion is reduced, and the reaction can be continued with good results for a long period without impairing the catalytic activity.
[0034]
The corrosion-resistant metal material is used as it is as a material for the reactor, or one or more of the corrosion-resistant metal materials is used as a surface material (hereinafter referred to as a clad material), and one or more other materials are used as a base material for the corrosion-resistant metal material. It can also be used as a composite material (hereinafter referred to as a core material).
[0035]
The core material is not particularly limited as long as it satisfies various properties required for a reactor other than corrosion resistance, such as strength, weldability, thermal conductivity, etc., usually carbon steel, stainless steel, nickel-based alloy, Aluminum or the like is used. In order to improve the adhesion between the core material and the corrosion-resistant metal material, the core material may have two or more layers. As a method for producing the composite material, there is a method in which a corrosion-resistant metal material is composited by a method such as plating, thermal spraying, and explosion deposition on the core material.
[0036]
In order to protect the core material from the corrosive environment, the corrosion-resistant metal material used as the clad material preferably forms a dense layer without cracks, and its thickness depends on the manufacturing method and the selected corrosion-resistant metal material. Although not limited, it is appropriate to have a certain thickness considering the durability and mechanical strength of the material, that is, preferably 10 μm to 30 mm, more preferably 30 μm to 10 mm, and particularly preferably 100 μm to 10 mm.
[0037]
In general, the surface of a corrosion-resistant metal material is covered with a metal oxide, and a passive state is formed. In this fluorination reaction, it is desirable that at least a part of the surface of the corrosion-resistant metal material is covered with a protective film containing a metal fluoride. In particular, it is more desirable in a corrosion-resistant metal material containing a metal component having a relatively low standard oxidation potential such as aluminum and magnesium. By being covered with a protective film containing a metal fluoride, a more stable passivation is formed, and excellent corrosion resistance is exhibited even in an environment of a super strong acid as in the present fluorination reaction system.
[0038]
Although it is desirable to form the protective film containing a metal fluoride before the reaction, it is also possible to form a protective film during the reaction. In order to form a protective film containing at least a metal fluoride before the reaction, a reactor whose inner surface is covered with a corrosion-resistant metal material may be treated with a suitable fluorinating agent.
[0039]
The fluorinating agent is not particularly limited, and for example, fluorine gas, hydrogen fluoride, antimony pentafluoride and the like are used. The treatment temperature depends on the corrosion-resistant metal material used, but in the case of fluorine gas, it is preferably 0 ° C. to 300 ° C., particularly preferably room temperature to 200 ° C., and the fluorine gas is usually an inert gas such as nitrogen, and the fluorine gas concentration Is adjusted to 20 to 100% by volume.
[0040]
In the case of hydrogen fluoride, it is preferably 0 ° C. to 300 ° C., particularly preferably room temperature to 300 ° C., and anhydrous hydrogen fluoride is used in liquid or gaseous form. In the case of antimony pentafluoride, it is preferably 0 ° C to 200 ° C, particularly preferably room temperature to 120 ° C. These fluorinating agents may be used alone, or two or more of them may be used simultaneously or stepwise.
[0041]
In a corrosion-resistant metal material containing aluminum as a corrosion-resistant component, the corrosion-resistant component in the present fluorination reaction environment is essentially a fluoride containing aluminum existing on the outermost surface of the corrosion-resistant metal material. The amount of the aluminum component necessary for forming the protective film of fluoride may be small, and even if the content is about 10% by weight as a metal component in the corrosion-resistant metal material, the effect can be sufficiently exerted.
[0042]
The corrosion-resistant metal material in the present invention may be industrial pure aluminum, may be a material containing 10% by weight or more of aluminum, and one or more selected from iron, copper, manganese, magnesium, cobalt and chromium as subcomponents, For example, Fe-Cr-Al alloy, Cu-Al alloy, etc. are mentioned. Aluminum containing the subcomponents has improved properties such as strength as compared with industrial pure aluminum, and can be used not only as a cladding material for a reactor but also as a core material.
[0043]
【Example】
Example 1 (Example)
A 2-liter Hastelloy C autoclave was charged with 500 g of R240f and 460 g of HF. The autoclave is heated to 120 ° C., HCl generated as a by-product in the reaction is purged from a cooling tube kept at 110 ° C., and the reaction is carried out for 5 hours while maintaining the reaction pressure at 22 kg / cm 2 · G or less. R241fa and R1233zd A reaction mixture containing was obtained. The conversion rate of R240f was 99 mol%, the selectivity of R241fa was 45 mol%, and the selectivity of R1233zd was 55 mol%.
[0044]
Next, 360 g of SbF 5 and 330 g of HF were charged into a 1 liter autoclave lined with polytetrafluoroethylene. After raising the temperature of the autoclave to 80 ° C., the reaction mixture containing HF at an average feed rate of 20 g / hr (1.0 mol / hr) and R241fa and R1233zd was added at an average feed rate of 50 g / hr (0.31 mol). / Hr) to start the reaction.
[0045]
The reaction pressure was controlled to 7.5 to 8.5 kg / cm 2 · G, and the product was continuously distilled together with HCl and unreacted HF produced as by-products in the reaction from a cooling tube kept at 70 ° C. Table 1 shows organic components in the distillate gas after 24 hours.
[0046]
Example 2 (Example)
The reaction was conducted in the same manner as in Example 1 except that 360 g of SbF 5 and 40 g of SnCl 4 were used as the catalyst. Table 2 shows the organic components in the distillate gas after 24 hours.
[0047]
Example 3 (Example)
The reaction was conducted in the same manner as in Example 1 except that 360 g of SbF 5 and 40 g of SbF 3 were used as the catalyst. Table 2 shows the organic components in the distillate gas after 24 hours.
[0048]
Example 4 (Example)
The reaction was performed in the same manner as in Example 1 except that 360 g of SbF 5 and 40 g of TiCl 4 were used as catalysts. Table 2 shows the organic components in the distillate gas after 24 hours.
[0049]
Example 5 (Example)
The reaction was carried out in the same manner as in Example 1 except that 360 g of NbCl 5 was used as the catalyst. Table 1 shows organic components in the distillate gas after 24 hours.
[0050]
Example 6 (Example)
The reaction was carried out in the same manner as in Example 1 except that 360 g of TaCl 5 was used as the catalyst. Table 1 shows organic components in the distillate gas after 24 hours.
[0051]
Example 7 (Example)
Table 1 shows the organic components in the distillate gas after 180 hours instead of the distillate gas after 24 hours in the reaction of Example 1.
[0052]
Example 8 (comparative example)
In a 1 liter autoclave lined with polytetrafluoroethylene, 360 g of SbF 5 and 330 g of HF were charged. After raising the temperature of the autoclave to 80 ° C., HF was fed at an average feed rate of 20 g / hr (1.0 mol / hr), and R240f was fed at an average feed rate of 40 g / hr (0.18 mol / hr). Started.
[0053]
The reaction pressure was controlled to 7.5 to 8.5 kg / cm 2 · G, and the product was continuously distilled together with HCl and unreacted HF produced as by-products in the reaction from a cooling tube kept at 70 ° C. Table 1 shows the organic components in the distillate gas after 180 hours.
[0054]
[Table 1]
Figure 0003831987
[0055]
[Table 2]
Figure 0003831987
[0056]
【The invention's effect】
The raw material R240f used in this reaction is a thermally and chemically unstable compound, and is easily decomposed into a compound such as 1,3,3,3-tetrachloropropene by a decomposition reaction such as dehydrochlorination. Reduction of the catalyst by a decomposition product such as olefin tends to cause a decrease in the activity of the catalyst.
[0057]
According to the present invention, a raw material R240f and hydrogen fluoride are reacted in the absence of a catalyst to obtain a moderately fluorinated intermediate, and then this intermediate is further fluorinated with hydrogen fluoride in the presence of a catalyst. Thus, the durability of the catalyst can be improved, and R245fa can be easily produced in a high yield over a long period of time without deactivating the catalyst. INDUSTRIAL APPLICABILITY The present invention has an effect that R245fa, which has been difficult to produce on an industrial scale, can be produced in a high yield for a long period of time simply and by suppressing the deactivation of the catalyst.

Claims (4)

1,1,1,3,3−ペンタクロロプロパンをフッ素化触媒の不存在下、フッ化水素によりフッ素化して得られる部分フッ素化反応物を、アンチモン、ニオブおよびタンタルから選ばれる1種以上の元素のハロゲン化物を含むフッ素化触媒の存在下、フッ化水素によりフッ素化することを特徴とする1,1,1,3,3−ペンタフルオロプロパンの製造方法。 One or more elements selected from antimony, niobium and tantalum as a partially fluorinated reactant obtained by fluorinating 1,1,1,3,3-pentachloropropane with hydrogen fluoride in the absence of a fluorination catalyst A process for producing 1,1,1,3,3-pentafluoropropane, characterized by fluorination with hydrogen fluoride in the presence of a fluorination catalyst containing a halide of フッ素化触媒の不存在下、フッ化水素によるフッ素化における反応温度が50℃〜300℃である請求項1の製造方法。  The process according to claim 1, wherein the reaction temperature in the fluorination with hydrogen fluoride is 50 ° C to 300 ° C in the absence of the fluorination catalyst. フッ素化触媒の不存在下、フッ化水素によるフッ素化における1,1,1,3,3−ペンタクロロプロパンに対するフッ化水素の供給モル比が1,1,1,3,3−ペンタクロロプロパン:フッ化水素=1:1〜1:30の範囲である請求項1または2の製造方法。  In the absence of a fluorination catalyst, the molar ratio of hydrogen fluoride to 1,1,1,3,3-pentachloropropane in fluorination with hydrogen fluoride is 1,1,1,3,3-pentachloropropane: The process according to claim 1 or 2, wherein hydrogen fluoride is in the range of 1: 1 to 1:30. フッ素化触媒の存在下、フッ化水素によるフッ素化における反応温度が0℃〜200℃である請求項1、2または3の製造方法。  The process according to claim 1, 2 or 3, wherein the reaction temperature in fluorination with hydrogen fluoride is 0 to 200 ° C in the presence of a fluorination catalyst.
JP25348396A 1996-09-25 1996-09-25 Process for producing 1,1,1,3,3-pentafluoropropane Expired - Fee Related JP3831987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25348396A JP3831987B2 (en) 1996-09-25 1996-09-25 Process for producing 1,1,1,3,3-pentafluoropropane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25348396A JP3831987B2 (en) 1996-09-25 1996-09-25 Process for producing 1,1,1,3,3-pentafluoropropane

Publications (2)

Publication Number Publication Date
JPH10101593A JPH10101593A (en) 1998-04-21
JP3831987B2 true JP3831987B2 (en) 2006-10-11

Family

ID=17252017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25348396A Expired - Fee Related JP3831987B2 (en) 1996-09-25 1996-09-25 Process for producing 1,1,1,3,3-pentafluoropropane

Country Status (1)

Country Link
JP (1) JP3831987B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740132B1 (en) * 1995-10-23 1997-12-19 Solvay PROCESS FOR THE PREPARATION OF 1,1,1,3,3-PENTAFLUOROPROPANE
BE1011765A3 (en) * 1998-02-26 2000-01-11 Solvay HYDROCARBONS hydrofluorination process.
CN1680232A (en) * 1998-12-18 2005-10-12 索尔维公司 Method for synthesis of hydrofluoroalkane
JP4617522B2 (en) * 1999-10-01 2011-01-26 旭硝子株式会社 Method for purifying 1,1,1,3,3-pentafluoropropane
EP2093187A1 (en) 2001-06-01 2009-08-26 Honeywell International Inc. Process for the Removal of 1,1,1,3,3-Pentafluorobutane
US6362382B1 (en) 2001-07-20 2002-03-26 Atofina Chemicals, Inc. Uncatalyzed fluorination of 240fa
WO2009114398A1 (en) * 2008-03-07 2009-09-17 Arkema Inc. Use of r-1233 in liquid chillers
US20110001080A1 (en) 2008-03-07 2011-01-06 Arkema Inc. Stable formulated systems with chloro-3,3,3-trifluoropropene
US8519200B1 (en) * 2012-02-23 2013-08-27 Honeywell International Inc. Azeotropic compositions of 1,1,3,3-tetrachloro-1-fluoropropane and hydrogen fluoride
US8999909B2 (en) * 2012-02-23 2015-04-07 Honeywell International Inc. Azeotropic compositions of 1,1,1,3,3-pentachloropropane and hydrogen fluoride
US20160332935A1 (en) * 2015-05-12 2016-11-17 Honeywell International Inc. Integrated Process for Making HCFO-1233zd and HFC-245fa

Also Published As

Publication number Publication date
JPH10101593A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
JP3389251B2 (en) Liquid phase catalytic fluorination of hydrochlorocarbon and hydrochlorofluorocarbon
US7230146B2 (en) Process for producing fluoropropenes
AU688925B2 (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
EP0931043B1 (en) Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene
KR100744982B1 (en) Process for producing hydrogen -containing fluorinated hydrocarbon
US6362383B1 (en) Hydro-fluorination of chlorinated hydrocarbons
WO2019216239A1 (en) Method for preparing 1,2-difluoroethylene and/or 1,1,2-trifluoroethane
JP3290668B2 (en) Method for producing hydrofluorocarbon
WO1995004021A1 (en) Process for the preparation of hydrofluorocarbons having 3 to 7 carbon atoms
JP4077032B2 (en) Process for the preparation of halogenated propane containing fluorine bonded to terminal carbon atoms.
US20090105510A1 (en) Fluorination catalysts, method for their preparation, and method for producing fluorinated compounds using the catalysts
JP3831987B2 (en) Process for producing 1,1,1,3,3-pentafluoropropane
JPH04503215A (en) Production of 1,1,1,2-tetrafluoroethane
JPH11158089A (en) Synthesis of 1,1,1,3,3-pentafluoropropane
JP3130656B2 (en) Method for producing 1,1-dichloro-1,3,3,3-tetrafluoropropane
KR100481761B1 (en) Method for producing a hydrogen-containing fluorinated alkane
JPH10101594A (en) Production of 1,1,1,3,3-pentafluoropropane
US10343962B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
JPH08239334A (en) Production of 1,1,1,3,3-pentafluoropropane
JPH0873385A (en) Production of 1, 1, 1, 3, 3-pentafluoropropane
US5910616A (en) Vapor phase process for preparing fluorinated aliphatic compounds
EP1313687B1 (en) Production of hydrofluoroalkanes
JPH1072382A (en) Production of 1,1,1,3,3-pentafluoropropane
CA2192843C (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
IE65277B1 (en) Process for the recovery of antimony-based catalysts used for the fluorination of halogenated hydrocarbons

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees