JP3831724B2 - Radioactive chemical generator - Google Patents

Radioactive chemical generator Download PDF

Info

Publication number
JP3831724B2
JP3831724B2 JP2003425259A JP2003425259A JP3831724B2 JP 3831724 B2 JP3831724 B2 JP 3831724B2 JP 2003425259 A JP2003425259 A JP 2003425259A JP 2003425259 A JP2003425259 A JP 2003425259A JP 3831724 B2 JP3831724 B2 JP 3831724B2
Authority
JP
Japan
Prior art keywords
shield
radioactive
lead
container
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003425259A
Other languages
Japanese (ja)
Other versions
JP2004151117A (en
Inventor
栄 岡野
史哉 小畑
雅人 大屋
芳正 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Medi Physics Co Ltd
Original Assignee
Nihon Medi Physics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Medi Physics Co Ltd filed Critical Nihon Medi Physics Co Ltd
Priority to JP2003425259A priority Critical patent/JP3831724B2/en
Publication of JP2004151117A publication Critical patent/JP2004151117A/en
Application granted granted Critical
Publication of JP3831724B2 publication Critical patent/JP3831724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Description

本発明は、放射性物質用の遮蔽部材、特に医療用の放射性薬液輸送容器等に使用される遮蔽部材を備えた放射性薬液生成装置に関する。   TECHNICAL FIELD The present invention relates to a radioactive chemical production apparatus provided with a shielding member for a radioactive substance, particularly a shielding member used for a medical radioactive chemical transport container or the like.

放射性物質用遮蔽部材を備えた容器は、種々の形状及び材質のものが存在するが、医療用に使用される放射性薬液を封入したバイアルやアンプル、いわゆるプレフィルドシリンジと呼ばれる薬液充填済シリンジ等を輸送、保管するための放射性薬液輸送容器や、いわゆるジェネレーターと呼ばれる放射性薬液生成装置等に使用される遮蔽部材は、放射線遮蔽材として鉛のみを用いたものが一般に知られている(例えば特許文献1〜3参照。)。
これらの遮蔽部材は、収納する放射性物質の放射能が増加すると遮蔽体の厚みを増すことで遮蔽能力を確保しているのが現状である。また、遮蔽能力を確保するため、さらに大きな遮蔽部材内に収納して輸送することもある。
特開昭52−37697号公報 特開昭54−101094号公報 特開平2−95380号公報
There are various shapes and materials of containers equipped with radioactive material shielding members, but transport vials and ampoules filled with radioactive chemicals used for medical purposes, so-called prefilled syringes filled with chemicals, etc. In general, a shielding member used in a radioactive chemical transport container for storage, a so-called generator or a radioactive chemical generating apparatus called a generator, and the like using only lead as a radiation shielding material is generally known (for example, Patent Documents 1 to 3). 3).
At present, these shielding members ensure the shielding ability by increasing the thickness of the shielding body when the radioactivity of the radioactive material to be stored increases. Moreover, in order to ensure a shielding capability, it may be accommodated in a larger shielding member and transported.
JP 52-37697 A JP 54-101094 A JP-A-2-95380

しかし、遮蔽体の厚みを増加させると、遮蔽部材の外形が大きくなり、重量も増すため、当該遮蔽部材を備えた容器の取扱いに支障が生じる。また、通常の遮蔽部材をさらに大きな遮蔽部材に収納すると重量も体積も大幅に増加する等の欠点を有している。
鉛よりも放射線の遮蔽能力が高いタングステンを遮蔽体の材料として使用すれば、遮蔽部材は、鉛を用いる場合に比べて軽量、小型にすることができるが、タングステンは鉛に比べ高価なため、遮蔽体のすべてをタングステンで製するのは不経済であり、大型の遮蔽部材には用いられなかった。
さらに、収納する放射性物質の種類や放射能の強度の違いに応じて、異なる遮蔽能力を有する遮蔽部材を数々製造することは煩雑でもあり不経済でもある。
However, when the thickness of the shielding body is increased, the outer shape of the shielding member is increased and the weight is also increased, which hinders handling of the container provided with the shielding member. Further, when a normal shielding member is accommodated in a larger shielding member, there is a drawback that the weight and volume are greatly increased.
If tungsten, which has a higher radiation shielding ability than lead, is used as the shielding material, the shielding member can be made lighter and smaller than lead, but tungsten is more expensive than lead. It was uneconomical to make all of the shielding body of tungsten, and it was not used for a large shielding member.
Furthermore, it is both cumbersome and uneconomical to produce a number of shielding members having different shielding capabilities depending on the type of radioactive material to be stored and the difference in radioactivity intensity.

本発明は、上述したような問題点を解決するためになされたもので、従来と同じ遮蔽能力を維持しつつ、小型化、軽量化を達成でき、あるいは、同じ大きさであれば遮蔽能力を向上させ、より放射能の高い放射性物質を収納でき、又、製造が容易となり、さらには、収納する放射性物質の種類や放射能の変化に応じて、遮蔽能力を変化させることのできる放射性物質用遮蔽部材を使用した放射性薬液生成装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and while maintaining the same shielding ability as the conventional one, it can achieve a reduction in size and weight, or if the same size, the shielding ability can be achieved. For radioactive materials that can be improved, can store radioactive materials with higher radioactivity, can be manufactured easily, and can change the shielding ability according to the type of radioactive material to be stored and changes in radioactivity It aims at providing the radioactive chemical | medical solution production | generation apparatus which uses a shielding member.

上記目的を達成するため、本発明は以下のように構成する。
又、本発明の第1態様の放射性薬液生成装置は、放射性物質を収納する凹部を有し鉛を主材料とする容器部と、上記凹部の開口部分を覆い上記容器部に取り付けられ鉛を主材料とする蓋部とを有する放射性物質用遮蔽部材を備えた放射性薬液生成装置であって、
上記容器部には、
上記鉛以外の材料にてなる遮蔽体であり、上記凹部の底部に配置されタングステンにてなる底部遮蔽体と、
上記鉛以外の材料にてなる遮蔽体で上記凹部の軸方向に直交する方向に位置する上記凹部の側部を形成する遮蔽体であって上記開口部分の上面から上記凹部の全長の6割の長さにて軸方向に延在しタングステンにてなる側部遮蔽体と、
上記凹部の軸方向に沿って延在し上記凹部の側部を形成し上記側部遮蔽体と上記底部遮蔽体とを連結し、当該容器部を鋳造するとき、上記凹部を形成するための鋳型である円柱部分と該円柱部分の周面を覆う上記側部遮蔽体とのすき間への上記鉛の流入を防止する連結部材と、
上記凹部には親放射性核種を収納したカラムを収納し、
上記カラムに接続され上記カラムへ溶離液を供給する溶離液供給手段と、
上記カラムに接続され上記カラムにて溶離した娘放射性核種を含む放射性溶液を上記カラムから排出する放射性薬液排出手段と、を備え、
上記蓋部には、上記凹部の開口部分を対向する部分に配置されタングステンにてなる遮蔽体を備え、上記蓋部のその他の部分は鉛にてなる、
ことを特徴とする。
In order to achieve the above object, the present invention is configured as follows.
In addition, the radioactive chemical generation apparatus according to the first aspect of the present invention includes a container portion having a concave portion for containing a radioactive substance and containing lead as a main material, an opening portion of the concave portion being attached to the container portion, and the lead being mainly used. A radioactive chemical generator comprising a radioactive substance shielding member having a lid as a material,
In the container part,
A shield made of a material other than lead, and a bottom shield made of tungsten disposed at the bottom of the recess;
A shield made of a material other than lead and forming a side portion of the recess located in a direction orthogonal to the axial direction of the recess, which is 60% of the total length of the recess from the upper surface of the opening. Side shields extending in the axial direction in length and made of tungsten;
A mold for forming the recess when the container portion is cast by extending along the axial direction of the recess to form a side portion of the recess, connecting the side shield and the bottom shield, and casting the container portion. A connecting member that prevents the lead from flowing into the gap between the cylindrical portion and the side shield covering the circumferential surface of the cylindrical portion;
The recess contains a column containing the parent radionuclide,
An eluent supply means connected to the column for supplying an eluent to the column;
A radiochemical solution discharging means for discharging a radioactive solution containing a daughter radionuclide connected to the column and eluted from the column from the column;
The lid portion is provided with a shield made of tungsten and disposed in a portion facing the opening portion of the recess, and the other portion of the lid portion is made of lead.
It is characterized by that.

又、上記カラムに収納した親放射性核種がモリブデン−99であるように構成することもできる。   Moreover, it can also comprise so that the parent radionuclide accommodated in the said column may be molybdenum-99.

又、タングステンにてなる上記側部遮蔽体及び上記蓋部の上記遮蔽体は、上記容器部において上記鉛にてなる部分に対して独立した成形体であり、上記放射性物質の放射能量に応じて形状及び材質を交換可能であるように構成することもできる。   Further, the side shield made of tungsten and the shield of the lid part are formed independently of the lead part in the container part, and according to the radioactivity of the radioactive substance. It can also be configured such that the shape and material can be exchanged.

又、本出願人は、遮蔽能力の異なる2種以上の放射線遮蔽材を組み合わせることにより、容器からの漏洩線量を従来の基準と同一に保ちつつ、該容器の重量を小さくすることができること等を見いだし放射性薬液生成装置用の遮蔽部材を完成した。
本発明の他の態様における放射性物質用遮蔽部材は、放射性物質を収納する凹部を有する容器部と、上記凹部の開口部分を覆い上記容器部に取り付けられる蓋部とを有する放射性物質用遮蔽部材であって、
上記容器部は第1遮蔽体と該第1遮蔽体よりも放射線遮蔽能力の高い第2遮蔽体とを有し上記凹部を形成する領域の少なくとも一部を上記第2遮蔽体にて構成し、上記蓋部は少なくとも一種の放射線遮蔽材の遮蔽体にて構成されることを特徴とする。
In addition, the present applicant can reduce the weight of the container while keeping the leakage dose from the container the same as the conventional standard by combining two or more types of radiation shielding materials having different shielding capabilities. The shielding member for the found out radioactive chemical generator was completed.
The shielding member for radioactive substance in the other aspect of the present invention is a shielding member for radioactive substance having a container part having a recess for storing the radioactive substance and a lid part covering the opening part of the recess and attached to the container part. There,
The container portion includes a first shield and a second shield having a higher radiation shielding ability than the first shield, and at least a part of a region forming the concave portion is configured by the second shield. The lid is composed of at least one type of radiation shielding member.

又、本発明のさらに別の態様における放射性薬液生成装置は、放射性物質を収納する凹部を有する容器部と、上記凹部の開口部分を覆い上記容器部に取り付けられる蓋部とを有する放射性物質用遮蔽部材を備えた放射性薬液生成装置であって、
上記容器部において上記凹部の底部に配置する底部遮蔽体、及び上記凹部の軸方向に直交する方向に位置する上記凹部の側部を形成する遮蔽体であって上記凹部の全長若しくは全長に満たない長さにて軸方向に延在する側部遮蔽体、並びに上記蓋部において上記凹部の開口部分を対向する部分に配置する遮蔽体をタングステンにて作製し、その他の部分は鉛にて作製し、かつ、
上記凹部には親放射性核種を収納したカラムを収納し、上記カラムに接続され上記カラムへ溶離液を供給する溶離液供給手段と、上記カラムに接続され上記カラムにて溶離した娘放射性核種を含む放射性溶液を上記カラムから排出する放射性薬液排出手段とを備えたことを特徴とする。
According to still another aspect of the present invention, there is provided a radioactive chemical solution generating apparatus, comprising: a container part having a recess for storing a radioactive substance; and a shielding for radioactive substance having a cover part covering the opening part of the recess and attached to the container part. A radiopharmaceutical generating device provided with a member,
A bottom shield disposed at the bottom of the recess in the container portion, and a shield that forms a side of the recess positioned in a direction orthogonal to the axial direction of the recess, and is less than the full length or the full length of the recess. The side shield that extends in the axial direction by length, and the shield that arranges the opening portion of the recess in the lid portion in the facing portion are made of tungsten, and the other portions are made of lead. ,And,
The recess contains a column containing a parent radionuclide, and includes an eluent supply means connected to the column for supplying an eluent to the column, and a daughter radionuclide connected to the column and eluted from the column. And a radioactive chemical solution discharging means for discharging the radioactive solution from the column.

又、本発明のさらに別の態様における放射性物質用遮蔽部材の製造方法は、放射性物質を収納する凹部を有する容器部と、上記凹部の開口部分を覆い上記容器部に取り付けられる蓋部とを有する放射性物質遮蔽部材の製造方法において、上記容器部は、
上記容器部の外形に相当する鋳型を準備し、上記凹部を成形するための凸部の側面を上記凸部の軸方向に沿って上記凸部の全長に満たない長さにてなる側部遮蔽体にて覆い、上記凸部の先端部を底部遮蔽体にて覆い、上記凸部の軸方向に沿って上記側部遮蔽体と上記底部遮蔽体との間の上記凸部の側面を連結部材にて覆った後、上記側部遮蔽体、上記底部遮蔽体及び上記連結部材が溶融しない溶融温度を有する放射線遮蔽材を上記鋳型に注入することで製造されることを特徴とする。
According to still another aspect of the present invention, there is provided a method of manufacturing a shielding member for a radioactive substance, which includes a container part having a concave part that stores the radioactive substance, and a lid part that covers the opening part of the concave part and is attached to the container part. In the manufacturing method of the radioactive substance shielding member, the container portion is
The side part shielding which prepares the casting_mold | template corresponding to the external shape of the said container part, and the length of the convex part for shape | molding the said recessed part is the length which does not satisfy the full length of the said convex part along the axial direction of the said convex part. The body is covered, the tip of the convex is covered with a bottom shield, and the side surface of the convex between the side shield and the bottom shield along the axial direction of the convex is a connecting member. After the covering, the side shield, the bottom shield, and the connecting member are manufactured by pouring into the mold a radiation shielding material having a melting temperature that does not melt.

本発明の第1態様における放射性薬液生成装置は、容器部と蓋部とを有する放射性物質用遮蔽部材を備える。上記容器部は、鉛を主材料としながら、底部遮蔽体及び側部遮蔽体を鉛よりも放射線遮蔽能力の高いタングステンにて形成している。よって、従来と同じ遮蔽能力を維持しつつ放射性薬液生成装置の軽量化及び小型化を図ることができる。又、従来の放射性薬液生成装置と同じ大きさからなる場合には、放射線の遮蔽能力を増加することができ、上記凹部に収納する放射性物質の放射能を増加させることが可能となる。   The radioactive chemical generator in the first aspect of the present invention includes a radioactive substance shielding member having a container part and a lid part. The container portion is made of tungsten having a higher radiation shielding ability than lead while the bottom shield and the side shield are made of lead as a main material. Therefore, weight reduction and size reduction of a radioactive chemical | medical solution production | generation apparatus can be achieved, maintaining the same shielding capability as before. Moreover, when it consists of the same magnitude | size as the conventional radioactive chemical | medical-solution production | generation apparatus, the shielding capability of a radiation can be increased and it becomes possible to increase the radioactivity of the radioactive substance accommodated in the said recessed part.

又、上記容器部は、連結部材を有する。該連結部材は、上記容器部を鋳造するとき、凹部を形成するための凸状の鋳型である円柱部分と該円柱部分の周面を覆って配置される上記側部遮蔽体とのすき間に鉛が流入するのを防止する。よって、上記連結部材は、鋳造された容器部と上記円柱部分との離型を容易にする。従って放射性薬液生成装置の製造を容易にすることができる。   Moreover, the said container part has a connection member. When the container part is cast, the connecting member is a lead between the cylindrical part which is a convex mold for forming the concave part and the side shield disposed so as to cover the peripheral surface of the cylindrical part. Is prevented from flowing in. Therefore, the connecting member facilitates release of the cast container part and the cylindrical part. Therefore, it is possible to facilitate the production of the radioactive chemical solution generator.

さらに、上記側部遮蔽体及び蓋部の遮蔽体を、上記容器部の鉛部分に対して独立した成形体とし交換可能にしたことで、上記凹部に収納する放射性物質の種類や放射能量に応じて、上記側部遮蔽体及び上記蓋部の遮蔽体の厚みや材質を適宜選択した遮蔽体に交換することができる。よって、放射性物質用遮蔽部材の汎用性が増し、経済的となる。   Further, the side shield and the lid shield can be exchanged as an independent molded body with respect to the lead portion of the container, so that the type of radioactive substance stored in the recess and the amount of radioactivity can be changed. Thus, the thickness and material of the side shield and the lid shield can be replaced with a suitably selected shield. Therefore, the versatility of the radioactive substance shielding member is increased and it is economical.

本発明の一実施形態である、放射性物質用遮蔽部材を有する放射性薬液生成装置について、図を参照しながら以下に説明する。尚、各図において、共通する部材については共通の符号を付している。
遮蔽部材は、放射線遮蔽材で製した遮蔽体からなる蓋部および容器部を有し、上記蓋部は1あるいは複数の放射線遮蔽材からなり、上記容器部は複数の放射線遮蔽材からなることを特徴とする放射性物質用遮蔽部材である。
又、上記放射性物質用遮蔽部材は、上記蓋部と上記容器部との少なくとも一方が、遮蔽能力の異なる2種以上の放射線遮蔽材で製した複数の遮蔽体からなることを特徴とする。
さらには、上記放射性物質用遮蔽部材は、より遮蔽能力の高い放射線遮蔽材で製した遮蔽体を容器の内側に、上記遮蔽能力の高い放射線遮蔽材よりも遮蔽能力の低い放射線遮蔽材で製した遮蔽体をその外側に配したことを特徴とする。
遮蔽能力の異なる放射線遮蔽材として、鉛、タングステンおよび劣化ウランから選ばれた少なくとも2種以上の放射線遮蔽材を使用した放射性物質用遮蔽部材、特に、タングステンと鉛、あるいは、劣化ウランと鉛の組み合わせによる放射性物質用遮蔽部材は好適である。
又、上記放射性物質用遮蔽部材は、蓋部、容器部の少なくとも一方を形成する内側の遮蔽体の1ないし全てが、独立の成形体であり、交換可能なものとしてもよいし、蓋部、容器部の少なくとも一方を形成する複数の遮蔽体の一部ないし全部を、一体成形してあってもよい。
放射性薬液容器の収納部位を備えた放射性薬液輸送容器や、放射性物質用遮蔽部材に、少なくとも親放射性核種を収納したカラムと、溶離液供給手段と、放射性薬液排出手段とを備えた放射性薬液生成装置は、好ましい実施形態である。
さらに、他の実施形態は、放射性物質用遮蔽部材の容器部に対応する鋳型を準備し、該鋳型における放射性物質を収納するための空間に相当する凸部を、後に鋳型に注入する放射線遮蔽材よりも十分に高い溶融温度を有する放射線遮蔽材で予め製した遮蔽体によって被覆した後、前記放射線遮蔽材よりも低い溶融温度を有する放射線遮蔽材を鋳型に注入し、一体化して鋳造することを特徴とする上記放射性物質用遮蔽部材の容器部の製造方法に関するものである。
A radioactive chemical solution generating apparatus having a radioactive substance shielding member according to an embodiment of the present invention will be described below with reference to the drawings. In addition, in each figure, the common code | symbol is attached | subjected about the common member.
The shielding member has a lid part and a container part made of a shield made of a radiation shielding material, the lid part is made of one or a plurality of radiation shielding materials, and the container part is made of a plurality of radiation shielding materials. It is the shielding member for radioactive materials characterized.
In the radioactive substance shielding member, at least one of the lid part and the container part is composed of a plurality of shielding bodies made of two or more types of radiation shielding materials having different shielding capabilities.
Furthermore, the shielding member for the radioactive substance is made of a shielding body made of a radiation shielding material having a higher shielding ability and a radiation shielding material having a shielding ability lower than that of the radiation shielding material having a higher shielding ability inside the container. The shield is arranged on the outside thereof.
Shielding member for radioactive material using at least two kinds of radiation shielding materials selected from lead, tungsten and deteriorated uranium as radiation shielding materials having different shielding ability, especially tungsten and lead or a combination of deteriorated uranium and lead The shielding member for radioactive material is suitable.
The radioactive substance shielding member includes one or all of the inner shielding bodies forming at least one of the lid portion and the container portion, which are independent molded bodies, and may be replaceable. Some or all of the plurality of shields forming at least one of the container portions may be integrally formed.
Radiopharmaceutical liquid transport container provided with a radioactive chemical liquid container storage part, radioactive chemical shielding apparatus including a column containing at least a parent radionuclide in a radioactive substance shielding member, an eluent supply means, and a radioactive chemical liquid discharge means Is a preferred embodiment.
Further, in another embodiment, a radiation shielding material is prepared in which a mold corresponding to the container portion of the radioactive substance shielding member is prepared, and a convex portion corresponding to a space for accommodating the radioactive substance in the mold is injected into the mold later. After coating with a shield made in advance with a radiation shielding material having a melting temperature sufficiently higher than that, a radiation shielding material having a melting temperature lower than that of the radiation shielding material is injected into the mold, and integrated casting It is related with the manufacturing method of the container part of the said shielding member for radioactive substances characterized.

上記放射性物質用遮蔽部材は、収納される放射性物質の放射能が数mCi 〜数10mCi 程度のものに適用してもよいが、複数の放射線遮蔽材からなる遮蔽体を組み合わせて、放射能が低い放射性物質用の遮蔽部材を作ることは、製造上の煩雑さやコストの面から、上記小型化や軽量化等というメリットは少ない。よって、上記遮蔽部材は、例えば数100mCi以上の放射能の放射性物質を収納する遮蔽部材に適用することにより、一層効果的に目的を達成することができる。
図1に示すような、検定日当日において100〜300mCi(3.7〜11.1GBq)のテクネチウム−99m薬液を溶出するモリブデン−99を収納する医療用の放射性薬液生成装置(テクネチウム−99mジェネレータ)100用の遮蔽部材は好ましい実施形態の1つである。
The radioactive material shielding member may be applied to the radioactive material contained therein having a radioactivity of several mCi to several tens of mCi, but the radioactivity is low by combining a shield made of a plurality of radiation shielding materials. Making a shielding member for a radioactive substance has few merits such as downsizing and weight reduction in terms of manufacturing complexity and cost. Therefore, the object can be achieved more effectively by applying the shielding member to a shielding member that stores a radioactive substance having a radioactivity of several hundred mCi or more, for example.
As shown in FIG. 1, a medical radioactive chemical generator (technetium-99m generator) containing molybdenum-99 eluting 100-300 mCi (3.7-11.1 GBq) of technetium-99m chemical on the day of the test. A shielding member for 100 is one of the preferred embodiments.

上記遮蔽部材に使用する放射線遮蔽材としては、鉛、タングステン、劣化ウラン、ボロン鋼、ボロンステンレス鋼、カドミウム、ステンレス鋼、コンクリート、プラスチック等様々なものが考えられ、上記遮蔽部材内に収納される放射性物質の種類や放射能量に応じて遮蔽材は適宜選択される。しかし、医療用の放射性薬液輸送容器や放射性薬液生成装置に使用される遮蔽材としては、γ線遮蔽材、例えば鉛、タングステン及び劣化ウランの中から2種以上を組み合わせること、即ち、鉛とタングステン、あるいは鉛と劣化ウランの組み合わせは、遮蔽能力が良いことから好適である。特に、製造の容易さや取扱い易さ、コスト等の点から、医療用の放射性薬液生成装置用の遮蔽部材や医療用の放射性薬液輸送容器用の遮蔽部材に使用される遮蔽材としてはタングステンと鉛を使用することが望ましい。   As the radiation shielding material used for the shielding member, various materials such as lead, tungsten, deteriorated uranium, boron steel, boron stainless steel, cadmium, stainless steel, concrete, plastic, etc. are conceivable, and are stored in the shielding member. The shielding material is appropriately selected according to the type of radioactive substance and the amount of radioactivity. However, as a shielding material used in a radioactive chemical solution transport container or a radioactive chemical solution generator for medical use, a combination of two or more of γ-ray shielding materials such as lead, tungsten and depleted uranium, that is, lead and tungsten. Alternatively, a combination of lead and deteriorated uranium is preferable because of its good shielding ability. In particular, tungsten and lead are used as shielding materials for shielding members for medical radiopharmaceutical generators and medical radiopharmaceutical transport containers in terms of ease of manufacture, ease of handling, cost, etc. It is desirable to use

鉛の密度は11.3g/cm であるのに対し、タングステンの密度は19.3g/cm 、劣化ウランの密度は19.0g/cm と大きいため、遮蔽部材の軽量化の観点から遮蔽能力の高いタングステンあるいは劣化ウランを遮蔽部材の内側に配することが望ましい。 Lead density is 11.3 g / cm 3 , tungsten density is 19.3 g / cm 3 , and degraded uranium density is 19.0 g / cm 3 , so the shielding ability is reduced from the viewpoint of weight reduction of shielding members. It is desirable to place high tungsten or depleted uranium inside the shielding member.

タングステンと鉛の厚みと漏洩線量との関係を図9に示す。
図9に示すA−B線からも明らかなように、漏洩線量を一定とした場合、タングステンの厚みを増すことにより、鉛の厚みを減じることが可能である。
また、C−D線から明らかとなるように、タングステンと鉛とを組み合わせた遮蔽体の厚みを一定にした場合、タングステンの厚みを増すことにより漏洩線量は低下させることが可能である。
FIG. 9 shows the relationship between the tungsten and lead thicknesses and the leakage dose.
As is clear from the AB line shown in FIG. 9, when the leakage dose is constant, the thickness of lead can be reduced by increasing the thickness of tungsten.
Further, as is apparent from the CD line, when the thickness of the shield combining tungsten and lead is made constant, the leakage dose can be reduced by increasing the thickness of tungsten.

又、線源から荷電粒子が放出される場合には、まず、制動X線の発生を抑えるため、密度の低い物質で上記線源を遮蔽することが効果的である。又、遮蔽材には、鉛のように柔らかく衝撃に弱かったり、又、金属毒性を有するものもあり、又、運搬等の取扱いの容易性を考慮して、劣化ウランや鉛等の遮蔽材の場合には、その表面や露出面は、プラスチック等の材料で被覆することが望ましい。   In addition, when charged particles are emitted from a radiation source, it is effective to first shield the radiation source with a substance having a low density in order to suppress generation of braking X-rays. In addition, some shielding materials are soft and vulnerable to impacts, such as lead, and have metal toxicity. Considering the ease of handling such as transportation, shielding materials such as deteriorated uranium and lead In some cases, it is desirable to coat the surface and exposed surface with a material such as plastic.

又、詳細後述するように、遮蔽部材の内、内側の遮蔽体の1ないし全てが交換可能、即ち取り付け、取り外し可能なように、上記内側の遮蔽体とその他の遮蔽体とをそれぞれ独立した成形体として組み合わせて使用するのが好ましい。この場合は、遮蔽部材内の収納部に収められる放射性物質の種類や放射能量に応じて、上記収納部を形成する遮蔽体の厚さを変化させたり、放射線遮蔽材の種類を選択することで、放射性物質用遮蔽部材の外形寸法を変化させることなく、当該放射性物質用遮蔽部材からの漏洩線量を調節し、かつ当該放射性物質用遮蔽部材の軽量化を図ることができる。したがって、放射性物質用遮蔽部材内に収められる放射性物質の種類や放射能量が変化しても一つの放射性物質用遮蔽部材を使用することができ、汎用性が増し経済的にも有利である。   Further, as will be described in detail later, the inner shield and other shields are formed independently so that one or all of the inner shields of the shield members can be exchanged, that is, attached or detached. It is preferable to use in combination as a body. In this case, by changing the thickness of the shielding body that forms the housing part or selecting the type of radiation shielding material according to the type of radioactive substance and the amount of radioactivity stored in the housing part in the shielding member The radiation dose from the radioactive substance shielding member can be adjusted and the weight of the radioactive substance shielding member can be reduced without changing the external dimensions of the radioactive substance shielding member. Therefore, even if the kind of radioactive substance contained in the radioactive substance shielding member or the amount of radioactivity changes, one radioactive substance shielding member can be used, which increases the versatility and is economically advantageous.

以下に、図を参照し放射性物質用遮蔽部材について、放射性薬液生成装置に相当するテクネチウム−99mジェネレータに使用される放射性物質用遮蔽部材を例に採り具体的に説明する。尚、図3は、図1、図2に示す放射性物質用遮蔽部材101の平面図であり、図1、図2に示す放射性物質用遮蔽部材101は図3に示すXV−XV線における断面を示す。
図1に示す上記放射性薬液生成装置(テクネチウム−99mジェネレータ)100は、放射線遮蔽材で製した遮蔽体からなる蓋部4と容器部5とからなる放射性物質用遮蔽部材101に、親放射性核種であるモリブデン−99を吸着させたアルミナカラム1、生理食塩液バイアル2を装着する溶離液供給口8aを有する溶離液供給手段8、及び、上記モリブデン−99から溶出した娘核種であるテクネチウム−99m溶液を収集するための真空バイアル3を装着する溶離液出口9aを有する放射性薬液排出手段9等を備えている。
Hereinafter, the radioactive substance shielding member will be described in detail with reference to the drawings, taking as an example the radioactive substance shielding member used in the technetium-99m generator corresponding to the radioactive chemical solution generator. 3 is a plan view of the radioactive substance shielding member 101 shown in FIGS. 1 and 2, and the radioactive substance shielding member 101 shown in FIGS. 1 and 2 has a cross section taken along line XV-XV shown in FIG. Show.
The radiochemical solution generation apparatus (technetium-99m generator) 100 shown in FIG. 1 has a radioactive radionuclide on a radioactive substance shielding member 101 composed of a cover part 4 and a container part 5 made of a shield made of a radiation shielding material. An alumina column 1 on which molybdenum-99 is adsorbed, an eluent supply means 8 having an eluent supply port 8a to which a physiological saline vial 2 is attached, and a technetium-99m solution that is a daughter nuclide eluted from the molybdenum-99 And a radioactive chemical liquid discharge means 9 having an eluent outlet 9a for mounting a vacuum vial 3 for collecting the liquid.

容器部5は、大略円柱形状であり、容器部5の中央部には、該容器部5の軸方向に浅い深さにてなる第1凹部6と、該第1凹部6の底部6aに形成され上記第1凹部6の直径よりも小さい直径を有し上記軸方向に深い、上記アルミナカラム1を収納するための第2凹部7とを有する。第2凹部7の周囲部分5bは、上記底部6aの底面から第2凹部7の軸方向に沿って所定の長さにて、かつ所定の厚さにてなる円筒形状のタングステン遮蔽体51にて成形されている。尚、このタングステン遮蔽体51が第2遮蔽体及び側部遮蔽体の一態様例に相当する。又、タングステン遮蔽体51は、第2凹部7の軸方向の全長にわたり形成してもよいが、本実施形態においてはモリブデン−99をアルミナカラム1の比較的上部の一部分にのみ吸着したアルミナカラム1を使用しているので、遮蔽能力及び重量を考慮して、図示するように、底部6aの底面から第2凹部7の全長の6〜7割程度の長さにて延在させている。又、第2凹部7の底部5cは、上記軸方向に所定の厚さにてなり、タングステン遮蔽体52が設けられる。尚、底部遮蔽体の一態様例としてタングステン遮蔽体52が相当する。又、タングステン遮蔽体52は第2遮蔽体の一態様例にも相当する。又、上記周囲部分5b及び底部5c部分を除いた、容器部5の残りの部分5aは、鉛にて成形される。尚、これらの鉛部分5aと、タングステンにてなる周囲部分5bと、タングステンにてなる底部5cとにて容器部5を構成する。又、第1遮蔽体の一態様例が鉛部分5aに相当する。   The container part 5 has a substantially cylindrical shape, and is formed in a central part of the container part 5 at a first recessed part 6 having a shallow depth in the axial direction of the container part 5 and a bottom part 6 a of the first recessed part 6. And a second recess 7 for housing the alumina column 1 having a diameter smaller than that of the first recess 6 and deep in the axial direction. A peripheral portion 5b of the second recess 7 is a cylindrical tungsten shield 51 having a predetermined length and a predetermined thickness along the axial direction of the second recess 7 from the bottom surface of the bottom 6a. Molded. The tungsten shield 51 corresponds to an embodiment of the second shield and the side shield. The tungsten shield 51 may be formed over the entire length of the second recess 7 in the axial direction, but in this embodiment, the alumina column 1 in which molybdenum-99 is adsorbed only on a relatively upper part of the alumina column 1. Therefore, considering the shielding ability and the weight, it extends from the bottom surface of the bottom portion 6a to a length of about 60 to 70% of the entire length of the second recess 7 as shown in the figure. The bottom 5c of the second recess 7 has a predetermined thickness in the axial direction, and a tungsten shield 52 is provided. In addition, the tungsten shielding body 52 corresponds as an example of one aspect of the bottom shielding body. Further, the tungsten shield 52 corresponds to an example of one embodiment of the second shield. The remaining portion 5a of the container portion 5 excluding the peripheral portion 5b and the bottom portion 5c is formed of lead. The lead portion 5a, the surrounding portion 5b made of tungsten, and the bottom portion 5c made of tungsten constitute the container portion 5. Further, one embodiment of the first shield corresponds to the lead portion 5a.

尚、上記第2凹部7内には、例えばタングステン遮蔽体51の内周面51aに設けた突出部(不図示)にて上記アルミナカラム1が適宜に支持されて収納される。アルミナカラム1には、図示するように、生理食塩液バイアル2から生理食塩液をアルミナカラム1へ供給するための溶離液供給手段8と、供給された溶離液にて溶離したテクネチウム−99m溶液を上記真空バイアル3へ導く放射性薬液排出手段9とが接続されている。   In the second recess 7, the alumina column 1 is appropriately supported and accommodated by a protrusion (not shown) provided on the inner peripheral surface 51 a of the tungsten shield 51, for example. As shown in the figure, the alumina column 1 includes an eluent supply means 8 for supplying a physiological saline solution from the physiological saline vial 2 to the alumina column 1 and a technetium-99m solution eluted with the supplied eluent. The radioactive chemical solution discharging means 9 leading to the vacuum vial 3 is connected.

上記蓋部4は、鉛からなる外側遮蔽体4aと鉛からなる内側遮蔽体4bとタングステンからなるタングステン遮蔽体41とから構成され、上記第1凹部6には、内側遮蔽体4bがはめ込まれる。尚、第3遮蔽体の一態様例として上記外側遮蔽体4a、上記内側遮蔽体4bが相当し、第4遮蔽体の一態様例として上記タングステン遮蔽体41が相当する。又、内側遮蔽体4bにおいて、上記溶離液供給手段8及び放射性薬液排出手段9が延在する部分にはこれらが延在可能な空間6bが形成されている。又、内側遮蔽体4bにおいて上記第2凹部7の開口7aに対向する内側遮蔽体4bの底面4dには、円柱形状にてなる凹部4cが形成され、該凹部4cにはタングステン遮蔽体41が嵌合される。尚、内側遮蔽体4bにおいて凹部4c以外の部分は鉛にて成形されている。
外側遮蔽体4aは、第1凹部6に内側遮蔽体4bがはめ込まれた容器部5の上面を覆う、大略円板形状であり、上記溶離液供給手段8及び放射性薬液排出手段9が延在する部分にはこれらが延在可能な空間42,43が形成されている。
The lid 4 includes an outer shield 4a made of lead, an inner shield 4b made of lead, and a tungsten shield 41 made of tungsten, and the inner shield 4b is fitted into the first recess 6. In addition, the said outer side shield 4a and the said inner side shield 4b are equivalent as an example of a 3rd shield, and the said tungsten shield 41 is equivalent as an example of a 4th shield. In the inner shield 4b, a space 6b in which the eluent supply means 8 and the radioactive chemical liquid discharge means 9 extend is formed. In addition, a cylindrical recess 4c is formed on the bottom surface 4d of the inner shield 4b facing the opening 7a of the second recess 7 in the inner shield 4b, and a tungsten shield 41 is fitted in the recess 4c. Combined. In addition, parts other than the recessed part 4c in the inner side shield 4b are shape | molded with lead.
The outer shield 4a has a substantially disk shape that covers the upper surface of the container 5 in which the inner shield 4b is fitted in the first recess 6, and the eluent supply means 8 and the radioactive chemical liquid discharge means 9 extend. Spaces 42 and 43 in which these can extend are formed in the portion.

これらの蓋部4及び容器部5は、大略箱状にてなるプラスチック製の外装容器10内に収められている。尚、外装容器10において、生理食塩液バイアル2及び真空バイアル3が装着可能な容器上部10aと、蓋部4及び容器部5が収納される容器下部10bとは、係合手段(不図示)にて着脱自在に接続されている。   The lid portion 4 and the container portion 5 are accommodated in a plastic outer container 10 having a generally box shape. In the outer container 10, the container upper part 10a to which the physiological saline vial 2 and the vacuum vial 3 can be attached and the container lower part 10b in which the lid part 4 and the container part 5 are accommodated are engaged means (not shown). Are detachably connected.

尚、本実施形態では、蓋部4は大略円板状であり、容器部5は大略円筒状であり、凹部4cのタングステン遮蔽体41は円板状であり、第1凹部6及び第2凹部7の外形は円形状であり、タングステン遮蔽体51は円筒形状であり、タングステン遮蔽体52は円板状であるが、各部材はこれらの形状に限定されるものではない。例えば、蓋部4、容器部5の外形が多角形状であったり、タングステン遮蔽体51が多角筒形状であったり、又、タングステン遮蔽体51とタングステン遮蔽体52とがコップ状に一体的に形成されたり、凹部4c及び底部5cが円板以外の形状であってもよい。   In the present embodiment, the lid portion 4 has a substantially disc shape, the container portion 5 has a substantially cylindrical shape, the tungsten shield 41 of the recess 4c has a disc shape, and the first recess 6 and the second recess. 7 has a circular shape, the tungsten shield 51 has a cylindrical shape, and the tungsten shield 52 has a disk shape, but each member is not limited to these shapes. For example, the outer shape of the lid part 4 and the container part 5 is a polygonal shape, the tungsten shield 51 is a polygonal cylinder, or the tungsten shield 51 and the tungsten shield 52 are integrally formed in a cup shape. Alternatively, the recess 4c and the bottom 5c may have a shape other than a disk.

このような放射性薬液生成装置100の使用にあたっては、まず、上記溶離液供給手段8の溶離液供給口8aに生理食塩液バイアル2を装着した後、放射性薬液排出手段9の溶離液出口9aに真空バイアル3を装着する。このように構成することで、真空バイアル3の真空圧により、生理食塩液バイアル2内の生理食塩液は、溶離液供給手段8を通りアルミナカラム1を通過し、アルミナカラム1にて溶出した娘核種のテクネチウム−99mを含む溶液が放射性薬液排出手段9を通り真空バイアル3に収集される。   In using such a radioactive drug solution generating apparatus 100, first, the physiological saline vial 2 is attached to the eluent supply port 8a of the eluent supply means 8, and then a vacuum is applied to the eluent outlet 9a of the radioactive drug solution discharge means 9. A vial 3 is attached. With this configuration, due to the vacuum pressure of the vacuum vial 3, the physiological saline in the physiological saline vial 2 passes through the alumina column 1 through the eluent supply means 8, and the daughter eluted in the alumina column 1. A solution containing the radionuclide technetium-99m is collected in the vacuum vial 3 through the radioactive chemical solution discharging means 9.

次に、2種の放射線遮蔽材の組み合わせによる遮蔽体の厚みと重量との関係について、上述の放射性薬液生成装置100(テクネチウム−99mジェネレータ)に示す構造を有する遮蔽部材を例に採り説明する。即ち、アルミナカラム1に200mCiの放射能のモリブデン−99を収納し、蓋部4及び容器部5に相当する蓋部及び容器部を鉛のみで作製した第1測定用容器における漏洩線量を基準として、これと同等の遮蔽能力を確保する鉛遮蔽体とタングステン遮蔽体の組み合わせによる遮蔽部材の厚みと重量の関係について検討を行った。その結果を表1に示す。尚、表1において、鉛における「上面」、「側面」、「底面」とは、それぞれ図1に示す「I」、「II」、「III」に対応し、タングステンにおける「上面」、「側面」、「底面」とは、それぞれ図1に示す「IV」、「V」、「VI」に対応する。   Next, the relationship between the thickness and weight of the shield by combining two types of radiation shielding materials will be described by taking as an example a shielding member having the structure shown in the above-described radioactive chemical solution generating apparatus 100 (Technetium-99m generator). That is, based on the leakage dose in the first measurement container in which 200 mCi of radioactive molybdenum-99 is housed in the alumina column 1 and the lid part and the container part corresponding to the lid part 4 and the container part 5 are made of only lead. The relationship between the thickness and weight of the shielding member by a combination of a lead shielding body and a tungsten shielding body that secures the same shielding ability was examined. The results are shown in Table 1. In Table 1, “top surface”, “side surface”, and “bottom surface” for lead correspond to “I”, “II”, and “III” shown in FIG. 1, respectively, and “top surface”, “side surface” for tungsten. "And" bottom surface "correspond to" IV "," V ", and" VI "shown in FIG. 1, respectively.

Figure 0003831724
Figure 0003831724

表1から明らかなように、タングステンの厚みを30mmとした第5測定用容器では、蓋部及び容器部の全てを鉛にて作製した第1測定用容器に比べ、外形が小型化され、重量も軽量化される。尚、蓋部及び容器部の全てをタングステンにて作製したときには高価となる。
一方、第2測定用容器ないし第4測定用容器のごとく、鉛とタングステンとの遮蔽体を組み合わせた場合は、蓋部及び容器部の全てをタングステンにて作製した第5測定用容器よりもさらに重量を減じることが可能となった。即ち、第1測定用容器では約10Kgの重さがあるが、第2測定用容器ないし第4測定用容器では約7.2〜7.6Kgと軽量化される。よって、このような放射性物質用遮蔽部材を使用する放射性溶液生成装置は従来品に比べ持ち運び等が容易になる。 これらのことから、2種の放射線遮蔽材を組み合わせることは、遮蔽能力を確保するとともに軽量化を行うのに有効であることが確認された。
As is clear from Table 1, the fifth measurement container having a tungsten thickness of 30 mm has a smaller outer shape and weight than the first measurement container in which the lid and the container are all made of lead. Is also lighter. In addition, when all the cover parts and the container parts are made of tungsten, it becomes expensive.
On the other hand, when the lead and tungsten shields are combined, as in the second measurement container to the fourth measurement container, the cover and the container are all made of tungsten, which is further than the fifth measurement container. It became possible to reduce the weight. That is, the first measuring container weighs about 10 kg, but the second measuring container to the fourth measuring container are reduced in weight to about 7.2 to 7.6 kg. Therefore, the radioactive solution generator using such a radioactive substance shielding member is easy to carry and the like compared to the conventional product. From these facts, it was confirmed that combining two kinds of radiation shielding materials is effective for securing shielding ability and reducing weight.

又、上記第1測定用容器における鉛厚を、40mmから10mm減らして30mmとし、かつ図1に示す周囲部分5bに10mm厚のタングステンを設け、上記「II」における寸法は40mmとした第11測定用容器を作製した。この第11測定用容器と上記第1測定用容器とについて放射能と漏洩線量の関係を調べた。図10に示すように第11測定用容器の漏洩線量は、第1測定用容器に相当する、鉛のみのテクネチウム−99mジェネレータの約60%であった。又、第11測定用容器における漏洩線量を第1測定用容器における漏洩線量と同等とするならば、第11測定用容器は、放射能量において、第1測定用容器に比べて約1.5倍高い放射性物質を収納可能となる。   Further, the lead thickness in the first measurement container is reduced to 10 mm from 40 mm to 30 mm, and 10 mm thick tungsten is provided in the peripheral portion 5b shown in FIG. A container was prepared. The relationship between radioactivity and leakage dose was examined for the eleventh measurement container and the first measurement container. As shown in FIG. 10, the leakage dose of the eleventh measurement container was about 60% of the lead-only technetium-99m generator corresponding to the first measurement container. Further, if the leakage dose in the eleventh measurement container is equal to the leakage dose in the first measurement container, the eleventh measurement container is about 1.5 times as much in radioactivity as the first measurement container. High radioactive material can be stored.

次に、アルミナカラム1における放射能を200mCi(7.4GBq)の1.5倍の300mCi(11.1GBq)に増加した場合において、第1測定用容器と同等の遮蔽能力を確保できる第6測定用容器ないし第10測定用容器における各遮蔽体部分の厚さ、重量、重量比について表2に示す。
遮蔽体の全てを鉛にて作製した第6測定用容器では、遮蔽能力を確保するために遮蔽体の厚みを増す必要があり、その結果、第6測定用容器の重量は、第1測定用容器の約1.2倍、即ち約12Kgとなる。
一方、第7測定用容器のごとく10mm厚のタングステンの遮蔽体と鉛の遮蔽体とを組み合わせた場合には、遮蔽体の厚み、漏洩線量 (遮蔽能力) は第1測定用容器と同等であり、重量についても全ての遮蔽体を鉛にて作製した第6測定用容器の重量の約80%となる。よって、より高い放射能を有する放射性物質を、従来品と同じ遮蔽能力にて従来品と同等の重量の遮蔽部材にて構成することができる。
Next, in the case where the radioactivity in the alumina column 1 is increased to 300 mCi (11.1 GBq), which is 1.5 times 200 mCi (7.4 GBq), the sixth measurement capable of ensuring the same shielding ability as the first measurement container. Table 2 shows the thickness, weight, and weight ratio of each shield part in the container for measurement or the tenth measurement container.
In the sixth measurement container in which the entire shielding body is made of lead, it is necessary to increase the thickness of the shielding body in order to ensure the shielding ability. As a result, the weight of the sixth measurement container is the same as that for the first measurement. About 1.2 times the container, that is, about 12 kg.
On the other hand, when a 10 mm thick tungsten shield and lead shield are combined as in the seventh measurement container, the thickness of the shield and the leakage dose (shielding ability) are the same as the first measurement container. The weight is about 80% of the weight of the sixth measurement container in which all the shields are made of lead. Therefore, a radioactive substance having higher radioactivity can be configured with a shielding member having the same shielding ability as that of the conventional product and a weight equivalent to that of the conventional product.

Figure 0003831724
Figure 0003831724

このことから、遮蔽能力を向上させ、一定の遮蔽能力を確保するとともに収納する放射能量を増加させる場合においても、タングステンと鉛の2種の放射線遮蔽材を組み合わせることは有効であることが確認された。   From this, it was confirmed that the combination of two types of radiation shielding materials, tungsten and lead, is effective even in the case of improving the shielding ability, ensuring a certain shielding ability and increasing the amount of stored radiation. It was.

又、図1に示す放射性薬液生成装置100において、本実施形態の蓋部4及び容器部5では、上述したように、第2凹部7の周囲部分5bは単に円筒形状であり、かつその直径は図示するように内側遮蔽体4bの直径よりも小さいことから、周囲部分5bにおけるタングステン遮蔽体51は、第2凹部7の軸方向に引き抜くことができ、タングステン遮蔽体51の遮蔽厚よりも薄い遮蔽厚のタングステン材や、他の材質の部材等の他の部材と交換することができる。
又、内側遮蔽体4bの凹部4cに嵌合したタングステン遮蔽体41は、円板状であり底面4dからわずかに突出して取り付けられていることから、厚さの薄い遮蔽体に交換することができ、内側遮蔽体4bの外径を変えることなく軽量化を図ることができる。
このように周囲部分5bや凹部4cに設ける遮蔽体51,41を交換可能とすることで、第2凹部7に収納する放射性物質の放射能が低いときは周囲部分5bにおける遮蔽体の材料を例えば鉛とし、逆に放射能が高いときには当該鉛の遮蔽体の遮蔽厚を大きくしたり、若しくは材質をタングステンにすることができる。又、さらに放射能が高い場合には、タングステンの遮蔽体の遮蔽厚をより厚くすることができる。即ち、第2凹部7に収納する放射性物質の放射能が変化しても、容器部5の鉛部分5aの遮蔽体や外装容器10等は一種類でよく、利便性が増し経済的である。又、底部5cにおける遮蔽体を交換可能としてもよいし、第2凹部7を1つのコップ状の遮蔽体にて成形してもよく、このコップ状の遮蔽体の厚さを変化させたり、放射線遮蔽材の種類を変えてもよい。
又、例えば周囲部分5bにおける遮蔽体の遮蔽厚が薄くてもよい場合は、周囲部分5bにおける遮蔽体と鉛部分5aとの間にプラスチック等の重量の軽い部材を挿入し、軽量化を図ってもよい。
尚、上述のような遮蔽体の交換を必要としない場合は、それぞれが別個に作製された各遮蔽体を接着等の方法にて固定して一体に成形してもよい。
又、遮蔽材としてタングステンの代わりに劣化ウランを用いてもよい。
又、詳細後述するが、周囲部分5bにおける遮蔽体をタングステン等で予め製し、その外側の部分5aに鉛等の放射線遮蔽材を流し込んで一体に成形する鋳造成形法により遮蔽部材を製すれば、製造コストを抑え、簡便に製造することができる。これは、鉛の溶融温度が約300℃であるのに対し、タングステンの溶融温度が約1800℃であり、タングステンは鉛に比べ遮蔽能力が高いだけでなく溶融温度も十分に高いので、鋳造成形する場合の内側の遮蔽体として好適である。
尚、上述した、遮蔽体の交換、製法に関する事項は、後述する放射性薬液容器を収納する放射性物質用遮蔽部材においても同様に適用可能である。
Moreover, in the radioactive chemical generator 100 shown in FIG. 1, in the lid part 4 and the container part 5 of the present embodiment, as described above, the peripheral part 5b of the second recess 7 is simply cylindrical, and its diameter is As shown in the drawing, since the diameter of the inner shield 4b is smaller than that of the inner shield 4b, the tungsten shield 51 in the peripheral portion 5b can be pulled out in the axial direction of the second recess 7 and is shielded thinner than the shield thickness of the tungsten shield 51. It can be replaced with another member such as a thick tungsten material or a member made of another material.
In addition, the tungsten shield 41 fitted in the recess 4c of the inner shield 4b is disc-shaped and is slightly protruded from the bottom surface 4d, so that it can be replaced with a thin shield. The weight can be reduced without changing the outer diameter of the inner shield 4b.
By making the shields 51 and 41 provided in the peripheral portion 5b and the concave portion 4c exchangeable in this way, when the radioactivity stored in the second concave portion 7 is low, the material of the shield in the peripheral portion 5b is, for example, When lead is used and the radioactivity is high, the shielding thickness of the lead shield can be increased, or the material can be tungsten. Further, when the radioactivity is higher, the shielding thickness of the tungsten shielding body can be increased. That is, even if the radioactivity of the radioactive substance stored in the second concave portion 7 changes, the shield of the lead portion 5a of the container part 5 and the outer container 10 may be one kind, which increases convenience and is economical. Further, the shield at the bottom 5c may be replaceable, or the second recess 7 may be formed by a single cup-shaped shield, and the thickness of the cup-shaped shield may be changed, You may change the kind of shielding material.
For example, when the shielding thickness of the shield in the peripheral portion 5b may be thin, a lightweight member such as plastic is inserted between the shield in the peripheral portion 5b and the lead portion 5a to reduce the weight. Also good.
In addition, when it is not necessary to replace the shields as described above, the shields that are separately manufactured may be fixed by a method such as adhesion and integrally molded.
Further, deteriorated uranium may be used in place of tungsten as a shielding material.
Further, as will be described in detail later, if the shielding member in the surrounding portion 5b is made in advance with tungsten or the like, and a shielding member is made by a casting molding method in which a radiation shielding material such as lead is poured into the outer portion 5a and molded integrally. The manufacturing cost can be reduced and the manufacturing can be simplified. This is because the melting temperature of lead is about 300 ° C., whereas the melting temperature of tungsten is about 1800 ° C. Tungsten not only has a high shielding ability but also has a sufficiently high melting temperature compared to lead. It is suitable as an inner shield in the case of.
In addition, the matter regarding the replacement | exchange of a shield and the manufacturing method mentioned above is applicable similarly also to the shielding member for radioactive substances which accommodates the radioactive chemical solution container mentioned later.

次に、放射性薬液生成装置100の他の実施形態として図2に示すような放射性薬液生成装置110を作製することもできる。放射性薬液生成装置100と放射性薬液生成装置110との相違点は、凹部4c及び底部5cにおける遮蔽体の大きさを変更した点、第2凹部7を形成するために第2凹部7の軸方向に沿って連結部材122を設けた点、容器部5の底部に遮蔽体123をさらに設けた点である。よって、図1と図2とにおいて、同じ構成部分については同じ符号を付している。
凹部4cにおける遮蔽体に相当する遮蔽体120は、凹部4cにおける遮蔽体41に比べ、第2凹部7の内径よりも幾分大きい外径XIを有するとともに第2凹部7の軸方向に厚さVIIを大きくしている。底部5cにおける遮蔽体52に相当する遮蔽体121は、第2凹部7の内径よりも大きな外径Xを有する。尚、本実施形態では、遮蔽体120の厚さVIIは、周囲部分5bの遮蔽体51の厚さVIIIを越えるものである。又、遮蔽体121の外径Xは周囲部分5bの遮蔽体51の外径にほぼ等しく、厚さIXは上記厚さVIIIにほぼ等しい。尚、遮蔽体121の外径Xを遮蔽体51の内径よりも大きくした理由は、後述するような製造方法において当該遮蔽部材の製造を容易にするためである。
尚、具体的に、遮蔽体120における外径XIは18mmであり厚さVIIは16mmであり、遮蔽体51における厚さVIIIは10mmであり長さXIIは50mmであり、遮蔽体121における外径Xは35mmであり厚さIXは11mmである。
連結部材122は、第2凹部7の内径に等しい内径を有するステンレス製のパイプであり、周囲部分5bの遮蔽体の底面124と遮蔽体121の上面125とを連結するものであり第2凹部7と同軸上に配置される。したがって、周囲部分5bにおける遮蔽体51と、連結部材122と、遮蔽体121にて第2凹部7が形成される。
Next, as another embodiment of the radioactive chemical solution generating apparatus 100, a radioactive chemical solution generating apparatus 110 as shown in FIG. 2 can be produced. The difference between the radioactive chemical solution generating device 100 and the radioactive chemical solution generating device 110 is that the size of the shield in the concave portion 4c and the bottom portion 5c is changed, and the axial direction of the second concave portion 7 is formed in order to form the second concave portion 7. A connecting member 122 is provided along the screen, and a shield 123 is further provided on the bottom of the container 5. Therefore, in FIG. 1 and FIG. 2, the same code | symbol is attached | subjected about the same component.
The shield 120 corresponding to the shield in the recess 4c has an outer diameter XI that is somewhat larger than the inner diameter of the second recess 7 and a thickness VII in the axial direction of the second recess 7 compared to the shield 41 in the recess 4c. Has increased. The shield 121 corresponding to the shield 52 in the bottom portion 5 c has an outer diameter X that is larger than the inner diameter of the second recess 7. In the present embodiment, the thickness VII of the shield 120 exceeds the thickness VIII of the shield 51 in the peripheral portion 5b. The outer diameter X of the shield 121 is substantially equal to the outer diameter of the shield 51 in the peripheral portion 5b, and the thickness IX is substantially equal to the thickness VIII. The reason why the outer diameter X of the shield 121 is made larger than the inner diameter of the shield 51 is to facilitate the manufacture of the shielding member in a manufacturing method as described later.
Specifically, the outer diameter XI of the shield 120 is 18 mm, the thickness VII is 16 mm, the thickness VIII of the shield 51 is 10 mm, the length XII is 50 mm, and the outer diameter of the shield 121 is. X is 35 mm and thickness IX is 11 mm.
The connecting member 122 is a stainless steel pipe having an inner diameter equal to the inner diameter of the second recess 7, and connects the bottom surface 124 of the shield of the peripheral portion 5 b and the upper surface 125 of the shield 121. And coaxially arranged. Accordingly, the second recess 7 is formed by the shield 51, the connecting member 122, and the shield 121 in the surrounding portion 5 b.

次に、上述した放射性薬液生成装置100,110を例にとり、遮蔽部材の製造方法について説明する。
まず、放射性薬液生成装置100における放射性物質用遮蔽部材の容器部5を成形するための鋳型21は、図5に示すように、鉛部分5aを形成するための凹部24内に、逆T字形の断面にてなるコアピン22が配置される。コアピン22は、上記第1凹部6を成形するための円板形状部分25と、上記第2凹部7を成形するための円柱部分26とからなり円柱部分26は円板形状部分25に立設され円板形状部分25と一体的に成形されている。円柱部分26には、タングステンからなり周囲部分5bにおける遮蔽体51がはめ込まれるとともに、タングステンからなり底部5cにおける遮蔽体52が円柱部分26の先端部26aに取り付けられる。
Next, the manufacturing method of a shielding member is demonstrated taking the radioactive chemical production apparatus 100,110 mentioned above as an example.
First, as shown in FIG. 5, a mold 21 for molding the container part 5 of the radioactive substance shielding member in the radioactive chemical generator 100 has an inverted T-shape in the recess 24 for forming the lead part 5a. A core pin 22 having a cross section is arranged. The core pin 22 includes a disc-shaped portion 25 for molding the first recess 6 and a column portion 26 for molding the second recess 7. The column portion 26 is erected on the disc-shaped portion 25. It is formed integrally with the disk-shaped portion 25. The cylindrical portion 26 is made of tungsten and is fitted with a shield 51 in the peripheral portion 5b, and the shield 52 made of tungsten is attached to the tip portion 26a of the cylindrical portion 26.

このような鋳型21には、湯口20から鉛が注入される。上述したように、タングステンの融点は鉛の融点よりも十分に高いので鉛の注入によりタングステンが溶融することはない。放射性薬液生成装置100のように、遮蔽能力の点から第2凹部7の軸方向の全長ではなく該全長よりも短く遮蔽に必要な長さにてタングステンの遮蔽体を設ける場合には、鉛を注入したとき、円柱部分26の周面26bと、遮蔽体51の内周面51aとのわずかなすき間23に鉛が流れ込み、鋳造品と円柱部分26との離型が容易に行えなくなる場合がある。   Lead is injected into the mold 21 from the gate 20. As described above, the melting point of tungsten is sufficiently higher than the melting point of lead, so that tungsten is not melted by lead implantation. When the tungsten shield is provided with a length shorter than the total length in the axial direction of the second concave portion 7 from the point of shielding ability, as in the case of the radioactive chemical solution generating apparatus 100, the lead is used. When injected, lead may flow into the slight gap 23 between the peripheral surface 26b of the cylindrical portion 26 and the inner peripheral surface 51a of the shield 51, and the cast product and the cylindrical portion 26 may not be easily separated from each other. .

鉛が流れ込む上記すき間23が形成されないようにするためには、円柱部分26をその全長にわたりタングステン材にて被覆してもよいが、タングステンは高価なため、できるだけ、使用量を少なくするほうが経済的である。よって、タングステンの使用を必要としない部分は、タングステンに比べ安価でしかも鉛よりも溶融温度が十分に高い例えばステンレス鋼(溶融温度は約1300℃)等を用いて円柱部分26を完全に被覆すればよい。このようにして上記すき間23の発生を防止した、遮蔽部材の製造方法にて製造した放射性薬液生成装置が放射性薬液生成装置110の遮蔽部材111に相当する。放射性薬液生成装置110では、遮蔽体51の底面124と円柱部分26の先端部26aに設ける遮蔽体121との間に、上述したようにステンレス製でパイプ状の連結部材122を設けている。即ち、放射性薬液生成装置110における遮蔽部材111の容器部5を成形するための鋳型31は、図6に示すように、遮蔽体151と遮蔽体121との間に円柱部分26にステンレス製の連結部材122が挿入される。このように構成することで、上述したようなすき間23が形成されることはなくなる。よって鋳造品と円柱部分26との離型を容易に行うことができる。
このような鋳型31の湯口20から鉛を注入し放射性薬液生成装置110の容器部5を成形した後、分離部分32で鋳型を上下に開き鋳型から容器部5を取り外す。又、別途、蓋部4を製造する。このようにしてできた容器部5を、図2に示すように、外装容器10内に収納し、放射性親核種を収納したカラム1や蓋部4、溶離液供給手段8、放射性薬液排出手段9等とともに放射性薬液生成装置110を完成する。
In order to prevent the formation of the gap 23 into which lead flows, the cylindrical portion 26 may be covered with a tungsten material over its entire length. However, since tungsten is expensive, it is more economical to reduce the amount used as much as possible. It is. Therefore, the portion that does not require the use of tungsten is completely covered with the cylindrical portion 26 using, for example, stainless steel (melting temperature is about 1300 ° C.) that is cheaper than tungsten and has a melting temperature sufficiently higher than that of lead. That's fine. Thus, the radioactive chemical | medical solution production | generation apparatus manufactured with the manufacturing method of the shielding member which prevented generation | occurrence | production of the said clearance gap 23 is equivalent to the shielding member 111 of the radioactive chemical | medical solution generation apparatus 110. In the radioactive chemical generator 110, the stainless steel pipe-shaped connecting member 122 is provided between the bottom surface 124 of the shield 51 and the shield 121 provided at the tip 26a of the cylindrical portion 26 as described above. That is, the mold 31 for molding the container part 5 of the shielding member 111 in the radioactive chemical generator 110 is connected to the cylindrical portion 26 between the shield 151 and the shield 121, as shown in FIG. Member 122 is inserted. With such a configuration, the gap 23 as described above is not formed. Therefore, it is possible to easily release the cast product and the cylindrical portion 26.
After injecting lead from the pouring gate 20 of the mold 31 to form the container part 5 of the radioactive chemical generating apparatus 110, the mold part is opened up and down at the separation part 32, and the container part 5 is removed from the mold. Separately, the lid 4 is manufactured. As shown in FIG. 2, the container part 5 thus formed is housed in an outer container 10, the column 1 and the lid part 4 containing the radioactive parent nuclide, the eluent supply means 8, and the radioactive chemical liquid discharge means 9. Etc. to complete the radioactive chemical generator 110.

次に、上述した放射性物質用遮蔽部材を利用した放射性薬液輸送容器について説明する。
図7は、放射性薬液の入ったバイアル63を収納するための放射性薬液輸送容器60を示す。該放射性薬液輸送容器60における放射性物質用遮蔽部材は、容器部61と蓋部62とから構成される。容器部61は、円筒形状であって、バイアル63を収納する凹部64を有しタングステンからなるコップ形状のタングステン遮蔽体65と、該遮蔽体65の周囲65aを包囲し円筒状の鉛にてなる鉛遮蔽体66とから構成され、タングステン遮蔽体65を鋳型に入れその外側に鉛を流し込んで成形される。蓋部62は、タングステン遮蔽体65を覆う円板状のタングステン遮蔽体67と、該タングステン遮蔽体67の上面67a及び周囲面67bを覆う鉛遮蔽体68とから構成される。容器部61においては、鉛遮蔽体66の周面66a、及びタングステン遮蔽体65及び鉛遮蔽体66の各底面65b,66bがプラスチック製の外装容器69にて覆われ、蓋部62においては、鉛遮蔽体68の上面68a及び周面68bがプラスチック製の外装容器70によって被覆される。外装容器69,70のそれぞれに設けた係合部69a,70aを係合させることで、外装容器69,70は連結され、バイアル63は凹部64内に固定、密閉される。
尚、上述したような構成をなすことから、タングステン遮蔽体65,67は、交換可能であり、放射性薬液の放射能量によっては鉛遮蔽体66,68を交換することなく遮蔽部材の軽量化を図ることが可能である。
Next, a radioactive chemical transport container using the above-described radioactive substance shielding member will be described.
FIG. 7 shows a radiopharmaceutical transport container 60 for storing the vial 63 containing the radiochemical liquid. The radioactive substance shielding member in the radioactive chemical transport container 60 includes a container part 61 and a lid part 62. The container portion 61 has a cylindrical shape, has a concave portion 64 for accommodating the vial 63, and has a cup-shaped tungsten shield 65 made of tungsten, and surrounds the periphery 65 a of the shield 65 and is made of cylindrical lead. The lead shielding body 66 is formed, and the tungsten shielding body 65 is put in a mold and lead is poured into the outside thereof to be molded. The lid 62 includes a disk-shaped tungsten shield 67 that covers the tungsten shield 65 and a lead shield 68 that covers the upper surface 67a and the peripheral surface 67b of the tungsten shield 67. In the container portion 61, the peripheral surface 66 a of the lead shield 66 and the bottom surfaces 65 b and 66 b of the tungsten shield 65 and the lead shield 66 are covered with a plastic outer container 69. The upper surface 68 a and the peripheral surface 68 b of the shield 68 are covered with a plastic outer container 70. By engaging engaging portions 69 a and 70 a provided in the outer containers 69 and 70, the outer containers 69 and 70 are connected, and the vial 63 is fixed and sealed in the recess 64.
In addition, since the structure as described above is made, the tungsten shields 65 and 67 can be replaced, and the shielding member can be reduced in weight without replacing the lead shields 66 and 68 depending on the amount of radioactivity of the radioactive chemical solution. It is possible.

図8は、放射性薬液輸送容器60の他の実施形態である放射性薬液輸送容器75を示す。放射性薬液輸送容器75は、放射性薬液輸送容器60におけるタングステン遮蔽体65,67を劣化ウラン遮蔽体76,77に代えた構造をなし、容器部61及び蓋部62のすべての外面はプラスチック製の外装容器78にて被覆されている。その他の構造は放射性薬液輸送容器60における構造と同じであるので説明を省略する。尚、当該放射性薬液輸送容器75では、すべての外面が外装容器78にて覆われているので、劣化ウラン遮蔽体76,77の交換はできない。   FIG. 8 shows a radioactive chemical transport container 75 which is another embodiment of the radioactive chemical transport container 60. The radioactive chemical transport container 75 has a structure in which the tungsten shields 65 and 67 in the radioactive chemical transport container 60 are replaced with the depleted uranium shields 76 and 77, and all outer surfaces of the container part 61 and the lid part 62 are made of plastic. It is covered with a container 78. Since the other structure is the same as the structure in the radioactive chemical transport container 60, the description is omitted. In addition, since all the outer surfaces of the radioactive chemical transport container 75 are covered with the outer container 78, the deteriorated uranium shields 76 and 77 cannot be replaced.

本発明は、特に医療用の放射性薬液を生成する放射性薬液生成装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is particularly applicable to a radioactive chemical solution generating apparatus that generates a medical radioactive chemical solution.

本発明の一実施形態である放射性物質用遮蔽部材を使用した放射性薬液生成装置における構造を示す断面図であって、放射性物質用遮蔽部材については図3に示すXV−XV線における断面図である。It is sectional drawing which shows the structure in the radioactive chemical | medical solution production | generation apparatus which uses the shielding member for radioactive substances which is one Embodiment of this invention, Comprising: About the shielding member for radioactive substances, it is sectional drawing in the XV-XV line | wire shown in FIG. . 図1に示す放射性薬液生成装置の他の実施形態における構造を示す断面図である。It is sectional drawing which shows the structure in other embodiment of the radioactive chemical | medical solution production | generation apparatus shown in FIG. 図1及び図2に示す放射性薬液生成装置の放射性物質用遮蔽部材の平面図である。It is a top view of the shielding member for radioactive substances of the radioactive chemical | medical solution production | generation apparatus shown in FIG.1 and FIG.2. 図1及び図2に示す放射性薬液生成装置の平面図である。It is a top view of the radioactive chemical | medical solution production | generation apparatus shown in FIG.1 and FIG.2. 図1に示す放射性薬液生成装置の容器部の製造方法を説明するための鋳型の断面図である。It is sectional drawing of the casting_mold | template for demonstrating the manufacturing method of the container part of the radioactive chemical | medical solution production | generation apparatus shown in FIG. 図2に示す放射性薬液生成装置の容器部の製造方法を説明するための鋳型の断面図である。It is sectional drawing of the casting_mold | template for demonstrating the manufacturing method of the container part of the radioactive chemical | medical solution production | generation apparatus shown in FIG. 本発明の一実施形態である放射性物質用遮蔽部材を使用した放射性薬液輸送容器の断面図である。It is sectional drawing of the radioactive chemical | medical solution transport container using the shielding member for radioactive substances which is one Embodiment of this invention. 図7に示す放射性薬液輸送容器の他の実施形態における断面図である。It is sectional drawing in other embodiment of the radioactive chemical transport container shown in FIG. タングステン及び鉛の厚みと漏洩線量との関係を示すグラフである。It is a graph which shows the relationship between the thickness of tungsten and lead, and a leakage dose. 収納放射能と漏洩線量との関係を示すグラフである。It is a graph which shows the relationship between storage radioactivity and leakage dose.

符号の説明Explanation of symbols

1…アルミナカラム、4…蓋部、4a…外側遮蔽体、4b…内側遮蔽体、
4c…凹部、5…容器部、5a…鉛部分、5b…周囲部分、5c…底部、
7…第2凹部、7a…開口、8…溶離液供給手段、
9…放射性薬液排出手段、
21…鋳型、26…円柱部分、26a…先端部、
31…鋳型、41…タングステン遮蔽体、
51,52…タングステン遮蔽体、
100…放射性薬液生成装置、101…放射性物質用遮蔽部材、
110…放射性薬液生成装置、111…放射性物質用遮蔽部材、
120…遮蔽体、121…タングステン遮蔽体、122…連結部材、
123…遮蔽体。
DESCRIPTION OF SYMBOLS 1 ... Alumina column, 4 ... Cover part, 4a ... Outer shielding body, 4b ... Inner shielding body,
4c ... concave part, 5 ... container part, 5a ... lead part, 5b ... peripheral part, 5c ... bottom part,
7 ... second recess, 7a ... opening, 8 ... eluent supply means,
9 ... Radiochemical discharge means,
21 ... mold, 26 ... cylindrical portion, 26a ... tip,
31 ... mold, 41 ... tungsten shield,
51, 52 ... tungsten shield,
DESCRIPTION OF SYMBOLS 100 ... Radioactive-solution production | generation apparatus, 101 ... Shielding member for radioactive substances,
110 ... Radioactive chemical solution generator, 111 ... Radioactive substance shielding member,
120 ... shielding body, 121 ... tungsten shielding body, 122 ... connecting member,
123: Shield.

Claims (3)

放射性物質を収納する凹部(7)を有し鉛を主材料とする容器部(5)と、上記凹部の開口部分(7a)を覆い上記容器部に取り付けられ鉛を主材料とする蓋部(4)とを有する放射性物質用遮蔽部材を備えた放射性薬液生成装置であって、
上記容器部には、
上記鉛以外の材料にてなる遮蔽体であり、上記凹部の底部(5c)に配置されタングステンにてなる底部遮蔽体(52,121)と、
上記鉛以外の材料にてなる遮蔽体で上記凹部の軸方向に直交する方向に位置する上記凹部の側部を形成する遮蔽体であって上記開口部分の上面から上記凹部の全長の6割の長さにて軸方向に延在しタングステンにてなる側部遮蔽体(51)と、
上記凹部の軸方向に沿って延在し上記凹部の側部を形成し上記側部遮蔽体と上記底部遮蔽体とを連結し、当該容器部を鋳造するとき、上記凹部を形成するための鋳型である円柱部分(26)と該円柱部分の周面を覆う上記側部遮蔽体とのすき間(23)への上記鉛の流入を防止する連結部材(122)と、
上記凹部には親放射性核種を収納したカラム(1)を収納し、
上記カラムに接続され上記カラムへ溶離液を供給する溶離液供給手段(8)と、
上記カラムに接続され上記カラムにて溶離した娘放射性核種を含む放射性溶液を上記カラムから排出する放射性薬液排出手段(9)と、を備え、
上記蓋部には、上記凹部の開口部分を対向する部分(4c)に配置されタングステンにてなる遮蔽体(41)を備え、上記蓋部のその他の部分は鉛にてなる、
ことを特徴とする放射性薬液生成装置。
A container part (5) having a concave part (7) for containing a radioactive substance and made mainly of lead, and a lid part (5a) covering the opening part (7a) of the concave part and attached to the container part and made of lead as a main material ( 4) a radioactive chemical generator comprising a radioactive substance shielding member comprising:
In the container part,
A shield made of a material other than lead, and a bottom shield (52, 121) made of tungsten and arranged at the bottom (5c) of the recess;
A shield made of a material other than lead and forming a side portion of the recess located in a direction orthogonal to the axial direction of the recess, which is 60% of the total length of the recess from the upper surface of the opening. A side shield (51) extending in the axial direction in length and made of tungsten;
A mold for forming the recess when the container portion is cast by extending along the axial direction of the recess to form a side portion of the recess, connecting the side shield and the bottom shield, and casting the container portion. A connecting member (122) for preventing the inflow of the lead into the gap (23) between the cylindrical portion (26) and the side shield covering the peripheral surface of the cylindrical portion;
In the recess, a column (1) containing a parent radionuclide is stored,
An eluent supply means (8) connected to the column for supplying an eluent to the column;
Radiochemical solution discharge means (9) for discharging a radioactive solution containing a daughter radionuclide connected to the column and eluted from the column from the column,
The lid portion is provided with a shielding body (41) made of tungsten and disposed in a portion (4c) opposed to the opening portion of the recess, and the other portion of the lid portion is made of lead.
A radioactive chemical generator.
上記カラムに収納した親放射性核種がモリブデン−99である、請求項1記載の放射性薬液生成装置。   The radioactive chemical production apparatus according to claim 1, wherein the parent radionuclide stored in the column is molybdenum-99. タングステンにてなる上記側部遮蔽体及び上記蓋部の上記遮蔽体は、上記容器部において上記鉛にてなる部分に対して独立した成形体であり、上記放射性物質の放射能量に応じて形状及び材質を交換可能である、請求項1又は2記載の放射性薬液生成装置。
The side shield made of tungsten and the shield of the lid are molded bodies independent of the lead in the container part, and have a shape and a shape according to the amount of radioactivity of the radioactive substance. The radioactive chemical generator according to claim 1 or 2, wherein the material is exchangeable.
JP2003425259A 1995-04-20 2003-12-22 Radioactive chemical generator Expired - Lifetime JP3831724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425259A JP3831724B2 (en) 1995-04-20 2003-12-22 Radioactive chemical generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11915595 1995-04-20
JP2003425259A JP3831724B2 (en) 1995-04-20 2003-12-22 Radioactive chemical generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06317196A Division JP3540497B2 (en) 1995-04-20 1996-03-19 Method of manufacturing shielding member for radioactive material

Publications (2)

Publication Number Publication Date
JP2004151117A JP2004151117A (en) 2004-05-27
JP3831724B2 true JP3831724B2 (en) 2006-10-11

Family

ID=32472293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425259A Expired - Lifetime JP3831724B2 (en) 1995-04-20 2003-12-22 Radioactive chemical generator

Country Status (1)

Country Link
JP (1) JP3831724B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039747B1 (en) * 2009-01-14 2011-06-09 한국원자력연구원 Four hole sealed source shipping package applied complex shield
JP5437759B2 (en) * 2009-09-30 2014-03-12 セイコー・イージーアンドジー株式会社 Radiation shield, radiation measurement apparatus, and radiation detector shielding method
US9865366B2 (en) * 2014-07-10 2018-01-09 Energysolutions, Llc Shielded packaging system for radioactive waste
CN108072891B (en) * 2016-11-15 2024-02-27 台山核电合营有限公司 AMS detector calibration device

Also Published As

Publication number Publication date
JP2004151117A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3540497B2 (en) Method of manufacturing shielding member for radioactive material
US8292869B2 (en) Container for vial of radiopharmaceutical and set for its infusion in a patient or for its transfer elsewhere
US5927351A (en) Drawing station system for radioactive material
EP0405050A2 (en) Radiation shielding material with heat-transferring property
EP1930912B1 (en) Radiation-shielding assemblies and methods
CS255601B1 (en) 99 mtc elution unit-built generator and method of its production
JP6777971B2 (en) Polymer radiation source
EP2733705A1 (en) Isotope preparation method
US20150325321A1 (en) Transportation container
CA2624348A1 (en) Radiopharmaceutical system and method utilizing radio-frequency identification tags
US7170072B2 (en) Packaging system for radioactive materials
JP3831724B2 (en) Radioactive chemical generator
US4239970A (en) Radionuclide generator
KR20220107058A (en) High purity 212Pb production
JPH0329899A (en) Apparatus for manufacturing radioactive isotope, particularly cobalt 60
CA1091039A (en) Multiple ph alumina columns for molybdenum- 99/technetium-99m generators
US3912935A (en) Apparatus for eluting a daughter radioisotope from a parent radioisotope
JP2005283431A (en) Radiation shield container
Nagatsu et al. Special radionuclide production activities–recent developments at QST and throughout Japan
CN208368181U (en) A kind of high activity radioactive drugs transport tungsten alloy lead container
JP2005315870A (en) Radioactive medical fluid generation/supply system
JPH0889572A (en) Shielding implement for syringe for radioactive drug
JP4496653B2 (en) Vitrified body accommodation method
Zimmer et al. Radiation Protection and Radiation Measurement Issues with Non-Traditional Radiopharmaceuticals
JPH09203798A (en) Elution vessel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term