JP3831485B2 - Method for measuring hydrazine concentration - Google Patents

Method for measuring hydrazine concentration Download PDF

Info

Publication number
JP3831485B2
JP3831485B2 JP20860997A JP20860997A JP3831485B2 JP 3831485 B2 JP3831485 B2 JP 3831485B2 JP 20860997 A JP20860997 A JP 20860997A JP 20860997 A JP20860997 A JP 20860997A JP 3831485 B2 JP3831485 B2 JP 3831485B2
Authority
JP
Japan
Prior art keywords
electrode
concentration
hydrazine
working electrode
liquid junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20860997A
Other languages
Japanese (ja)
Other versions
JPH1137968A (en
Inventor
政良 篠原
秀一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP20860997A priority Critical patent/JP3831485B2/en
Publication of JPH1137968A publication Critical patent/JPH1137968A/en
Application granted granted Critical
Publication of JP3831485B2 publication Critical patent/JP3831485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、対極および比較電極を設置した試薬タンクと測定セルに設置した作用電極の液絡部とを連通させ、作用電極を試料水中に浸漬して試料水中に含まれるヒドラジンの濃度測定を行うヒドラジン濃度測定方法に関するものである。
【0002】
【従来の技術】
この種の方法を用いたヒドラジン濃度測定装置では、試薬タンク内に収容した支持電解質としての試薬液(例えばKCl溶液)を、測定セル通過中の試料水であるボイラー水中に流出させつつボイラー水中に含まれるヒドラジンの濃度測定を行っている。
【0003】
すなわち、図3に示すように、測定セル51内に入口52と出口53を備えたボイラー水Sの流路54が形成してあり、流路54には上流から下流への流れに沿って作用電極55、温度補償電極56が設けられ、出口53はドレンライン67に接続され、試薬タンク57との連通路58を通ってKCl溶液59が作用電極55の液絡部60を上端から下端へと伝わり、この下端に形成された電極部50の位置にKCl溶液59が流出するように構成されている。なお、試薬タンク57の上部には、比較電極の電極部(R)および対極のカソード(C)からなるR−C電極63がKCl溶液59に浸漬された状態で設置されている。64はフロートスイッチである。
【0004】
【発明が解決しようとする課題】
ところで、従来では、測定セル51内を通過するボイラー水Sの流量(以下、試料流量という)を250mL/minに設定して試料水のモニターを行っていた。しかし、この条件下でのヒドラジンの濃度対指示値特性においては、図4に実線で示すように、ヒドラジン濃度が直線応答領域Rの上限値である約250ppbを越えると一点鎖線で示すような直線性を維持できず直線性が悪くなり指示値の増加が鈍るから、装置の測定範囲を200ppb程度までしか拡げることができなかった。このため、ボイラー起動時等に発生する例えば20ppmというような、ヒドラジン濃度の高い試料水のモニターができなかった。
【0005】
また、前記試料流量が大であるから、校正時に校正液の使用量が多くて所定濃度の校正液を収容した校正液タンクを装置内に設けることができず、図3に示すように、濃縮された校正液aを、装置外の希釈液タンク66から供給される希釈液Aで希釈して所定濃度の校正液を得るとともにボイラー水Sの供給ライン62に合流する校正ライン61へ校正液を送出するための校正液送出手段68を設ける必要があった。
【0006】
この発明は、上記問題に鑑みてなしたもので、その目的は、測定範囲をヒドラジン濃度の高い試料水にまで拡張できるヒドラジン濃度測定方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、この発明のヒドラジン濃度測定方法は、対極および比較電極を設置した試薬タンクと測定セルに設置した作用電極の液絡部とを連通させ、前記液絡部を介して試薬タンク内の試薬液を、測定セルを通過する試料水中に流出させつつ試料水中に含まれるヒドラジンの濃度を測定するヒドラジン濃度測定方法であって、前記作用電極の液絡部は、作用電極保持体に設けた挿通穴に上下一対のゴム製ブッシュを介して挿通保持された状態で、その上端が作用電極保持体の上端面より上方に突出され、この上端突出部の周囲が熱収縮製チューブで覆われ、かつ、その下端突出部が電極部に形成されてなり、この液絡部の上端から下端へと伝わる試薬液を前記電極部に流出させつつ試料水中に含まれるヒドラジンの濃度測定を行うときの測定セルを通過する試料水の流量を、10〜50mL/minに設定していることを特徴とする。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態を、図面に基づいて説明する。
【0009】
図1は、この発明の一実施形態で用いるヒドラジン濃度測定装置を示し、図2は、測定セル内を通過するボイラー水の試料流量を変化させた場合の各試料流量に対応するヒドラジン濃度の直線応答領域を示す。
【0010】
図1において、1は試薬タンクで、試料水であるボイラー水S中に流出する支持電解質としての試薬液(例えばKCl溶液)2が収容されている。この試薬タンク1の上部には、比較電極の電極部(R)および対極のカソード(C)からなるR−C電極3がKCl溶液2に浸漬された状態で設置されている。試薬タンク1の底部には、後述する測定セル6側へ連通路20を介してKCl溶液2を供給する供給口4が設けられている。なお、5はフロートスイッチで、試薬タンク1の上部にR−C電極3とともに並置されている。
【0011】
6は、ボイラー水Sが所定の試料流量で通過する測定セルで、入口40と出口41を備えたボイラー水Sの流路Fが形成してある。そして、測定セル6の上部には、作用電極Wと温度補償電極7が並置されている。測定セル6の出口41はドレンライン42に接続され、温度補償電極7にはパッキン8が外嵌されている。
【0012】
また、43は、所定濃度の校正液Bを収容した校正液タンクで、試薬タンク1および測定セル6と同様に装置44内に設けられている。そして、校正液タンク43からの校正ライン45はボイラー水Sの供給ライン46に合流する。
【0013】
更に、前記作用電極Wの液絡部14は、作用電極保持体13に上下方向に設けた挿通穴に上下一対のゴム製のブッシュを介して挿通・保持されている。そして、図3に示した作用電極55の液絡部60とは異なり、液絡部14の上端が、作用電極保持体13の上端面より上方に延設されており、かつ、この上端突出部14aの周囲(側面)は熱収縮製チューブで覆われている。そして、Pt線を、液絡部14の下端突出部に巻回して電極部(アノード)15が形成されている。
【0014】
そして、測定中は、試薬タンク1、連通路20、液絡部14の上端突出部14a、下端の電極部15へと順次伝わるKCl溶液を、流路Fを通過するボイラー水S中に流出させつつボイラー水S中に含まれるヒドラジンの濃度測定を行う。
【0015】
この場合、測定セル6の流路Fを通過するボイラー水Sの試料流量を、10〜50mL/minに設定してあるので、直線応答領域を従来の250ppbから例えば20ppmまで高めることができたのであり、ヒドラジン濃度の高いボイラー水Sのモニターが行える。
【0016】
例えば、図2において、試料流量を、例えば、30mL/minに設定した場合、その特性グラフDから、直線応答領域Rの上限を約10ppmまで高めることができ、ヒドラジン濃度および指示値間の直線性が向上していることが分かる。
【0017】
同様に、試料流量を、例えば、40mL/minあるいは50mL/minに設定した場合でも、各特性グラフP,Tから、直線応答領域の上限を特性グラフQで示す従来の250ppbより高めることができ、直線性が向上していることが分かる。なお、グラフMは理想直線である。
【0018】
このように、試料流量を従来の250mL/minから10〜50mL/minに下げることによって、高濃度まで直線性が保持されて直線応答領域の上限を高めることができたのは以下の理由によると考えられる。すなわち、単位時間当たりに電極部15表面で反応するヒドラジン量は決まっているため、従来のように250mL/minという大流量のボイラー水Sを通過させた場合、例えばボイラー起動時においてヒドラジン濃度が上がると、電極部15表面での反応量に対してヒドラジン量が上回り、反応律速の状態となって指示値の増加が鈍化する。
ところが、この発明のように試料流量を少なくした場合には、ヒドラジン濃度が上がっても、ヒドラジン量が極端に増加しないため、電極部15表面での反応には余裕が残る。つまり、試料流量を少なくすると、反応律速の状態ではなく拡散律速の状態となるからである。なお、試料流量を下げると、感度は低下するけれども、その低下分は電気的に処理できて何ら問題はない。
【0019】
また、この発明では、試料流量を減らしたことにより、校正時に校正液の使用量を低減できる。更に、所定濃度の校正液を収容した校正液タンクを装置内に設けることができ、従来のような校正液送出手段68を設ける必要がなくなりコストダウンを図ることができる。
【0020】
しかもこの発明では、試料流量を減らすことだけで、精度等に問題のある多次式検量線や付加部品を用いることなく直線応答領域の上限を約30ppmまで拡張できる。
【0021】
【発明の効果】
以上説明したようにこの発明においては、測定セルを通過する試料水の流量を、10〜50mL/minに設定したので、ヒドラジン装置の測定範囲を高濃度側にまで拡張でき、ボイラー起動時等の過渡的な状態においてヒドラジン濃度の高い試料水のモニターが行える。また、安価で小型のヒドラジン装置を提供できる。
【図面の簡単な説明】
【図1】 この発明の一実施形態で用いるヒドラジン濃度測定装置の全体構成図である。
【図2】 試料流量別のヒドラジン濃度対指示値特性図である。
【図3】 従来例のヒドラジン濃度測定装置の全体構成明図である。
【図4】 従来の問題点を説明するための図である。
【符号の説明】
1…試薬タンク、2…KCl溶液、3…R−C電極、6…測定セル、13…作用電極保持体、14…液絡部、15…電極部、S…ボイラー水、W…作用電極。
[0001]
BACKGROUND OF THE INVENTION
In this invention, a reagent tank in which a counter electrode and a reference electrode are installed is communicated with a liquid junction of a working electrode installed in a measurement cell, and the concentration of hydrazine contained in the sample water is measured by immersing the working electrode in the sample water. The present invention relates to a hydrazine concentration measurement method.
[0002]
[Prior art]
In a hydrazine concentration measuring apparatus using this type of method, a reagent solution (for example, a KCl solution) contained in a reagent tank as a supporting electrolyte flows into the boiler water while flowing into the boiler water, which is the sample water passing through the measurement cell. The concentration of hydrazine contained is measured.
[0003]
That is, as shown in FIG. 3, a flow path 54 of boiler water S having an inlet 52 and an outlet 53 is formed in the measurement cell 51, and the flow path 54 acts along the flow from upstream to downstream. The electrode 55 and the temperature compensation electrode 56 are provided, the outlet 53 is connected to the drain line 67, and the KCl solution 59 passes through the liquid junction 60 of the working electrode 55 from the upper end to the lower end through the communication path 58 with the reagent tank 57. The KCl solution 59 flows out to the position of the electrode portion 50 formed at the lower end. Note that an R-C electrode 63 composed of an electrode portion (R) of a comparison electrode and a cathode (C) of a counter electrode is installed in an upper part of the reagent tank 57 while being immersed in the KCl solution 59. Reference numeral 64 denotes a float switch.
[0004]
[Problems to be solved by the invention]
Conventionally, the sample water is monitored by setting the flow rate of the boiler water S passing through the measurement cell 51 (hereinafter referred to as the sample flow rate) to 250 mL / min. However, in the hydrazine concentration versus indicated value characteristic under this condition, as shown by the solid line in FIG. 4, when the hydrazine concentration exceeds about 250 ppb, which is the upper limit value of the linear response region R, a straight line as shown by the alternate long and short dash line Therefore, the measurement range of the apparatus could be expanded only to about 200 ppb. For this reason, it has been impossible to monitor sample water having a high hydrazine concentration, such as 20 ppm, which is generated when the boiler is started.
[0005]
Further, since the sample flow rate is large, a calibration liquid tank containing a calibration liquid having a predetermined concentration cannot be provided in the apparatus due to a large amount of calibration liquid used at the time of calibration. As shown in FIG. The calibrated solution a is diluted with the diluent A supplied from the diluent tank 66 outside the apparatus to obtain a calibrated solution having a predetermined concentration, and the calibrated solution is fed to the calibration line 61 that joins the boiler water S supply line 62. It was necessary to provide a calibration solution delivery means 68 for delivery.
[0006]
The present invention has been made in view of the above problems, and an object thereof is to provide a hydrazine concentration measurement method capable of extending the measurement range to sample water having a high hydrazine concentration.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the hydrazine concentration measuring method of the present invention comprises a reagent tank in which a counter electrode and a comparative electrode are installed and a liquid junction of a working electrode installed in a measurement cell, and the reagent is connected through the liquid junction. A hydrazine concentration measurement method for measuring a concentration of hydrazine contained in a sample water while allowing the reagent solution in the tank to flow into the sample water passing through the measurement cell, wherein the liquid junction of the working electrode is a working electrode holder The upper end protrudes upward from the upper end surface of the working electrode holder while being inserted and held in a through hole provided in the upper and lower rubber bushes, and the periphery of the upper end protruding portion is a heat shrinkable tube. The lower end protruding portion is covered with the electrode portion, and the concentration of hydrazine contained in the sample water is measured while flowing the reagent solution transmitted from the upper end to the lower end of the liquid junction portion into the electrode portion. The flow rate of the water sample passing through the measuring cell Utoki, characterized in that it is set to 10-50 ml / min.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 shows an apparatus for measuring hydrazine concentration used in one embodiment of the present invention, and FIG. 2 shows a straight line of hydrazine concentration corresponding to each sample flow rate when the sample flow rate of boiler water passing through the measurement cell is changed. Indicates the response area.
[0010]
In FIG. 1, reference numeral 1 denotes a reagent tank that stores a reagent solution (for example, KCl solution) 2 as a supporting electrolyte that flows into boiler water S that is sample water. On the upper part of the reagent tank 1, an R-C electrode 3 comprising an electrode part (R) of a comparison electrode and a cathode (C) of a counter electrode is installed in a state of being immersed in the KCl solution 2. A supply port 4 is provided at the bottom of the reagent tank 1 to supply the KCl solution 2 to the later-described measurement cell 6 side via the communication path 20. Reference numeral 5 denotes a float switch, which is juxtaposed with the R-C electrode 3 above the reagent tank 1.
[0011]
Reference numeral 6 denotes a measurement cell through which the boiler water S passes at a predetermined sample flow rate, in which a flow path F of the boiler water S having an inlet 40 and an outlet 41 is formed. A working electrode W and a temperature compensation electrode 7 are juxtaposed on the upper part of the measurement cell 6. An outlet 41 of the measurement cell 6 is connected to a drain line 42, and a packing 8 is fitted on the temperature compensation electrode 7.
[0012]
Reference numeral 43 denotes a calibration liquid tank containing a calibration liquid B having a predetermined concentration, and is provided in the apparatus 44 in the same manner as the reagent tank 1 and the measurement cell 6. The calibration line 45 from the calibration liquid tank 43 joins the boiler water S supply line 46.
[0013]
Further, the liquid junction portion 14 of the working electrode W is inserted and held through a pair of upper and lower rubber bushes in an insertion hole provided in the working electrode holder 13 in the vertical direction. And unlike the liquid junction part 60 of the working electrode 55 shown in FIG. 3, the upper end of the liquid junction part 14 is extended above the upper end surface of the working electrode holder 13, and this upper end protrusion part The periphery (side surface) of 14a is covered with a heat-shrinkable tube. An electrode part (anode) 15 is formed by winding the Pt wire around the lower end protruding part of the liquid junction part 14.
[0014]
During the measurement, the KCl solution sequentially transmitted to the reagent tank 1, the communication path 20, the upper end protruding portion 14 a of the liquid junction portion 14, and the lower end electrode portion 15 is caused to flow into the boiler water S passing through the flow path F. While measuring the concentration of hydrazine contained in the boiler water S.
[0015]
In this case, since the sample flow rate of the boiler water S passing through the flow path F of the measurement cell 6 is set to 10 to 50 mL / min, the linear response region can be increased from the conventional 250 ppb to, for example, 20 ppm. Yes, boiler water S with high hydrazine concentration can be monitored.
[0016]
For example, in FIG. 2, when the sample flow rate is set to 30 mL / min, for example, the upper limit of the linear response region R can be increased to about 10 ppm from the characteristic graph D, and the linearity between the hydrazine concentration and the indicated value can be increased. It can be seen that is improved.
[0017]
Similarly, even when the sample flow rate is set to, for example, 40 mL / min or 50 mL / min, the upper limit of the linear response region can be increased from the conventional 250 ppb indicated by the characteristic graph Q from each of the characteristic graphs P and T. It can be seen that the linearity is improved. The graph M is an ideal straight line.
[0018]
Thus, by reducing the sample flow rate from the conventional 250 mL / min to 10 to 50 mL / min, the linearity was maintained up to a high concentration and the upper limit of the linear response region could be increased for the following reason. Conceivable. That is, since the amount of hydrazine that reacts on the surface of the electrode unit 15 per unit time is determined, when the boiler water S having a large flow rate of 250 mL / min is passed as in the conventional case, for example, the hydrazine concentration increases when the boiler is activated. As a result, the amount of hydrazine exceeds the amount of reaction on the surface of the electrode portion 15, and the reaction rate is controlled, and the increase in the indicated value is slowed down.
However, when the sample flow rate is reduced as in the present invention, even if the hydrazine concentration is increased, the amount of hydrazine does not increase extremely, so that there is a margin in the reaction on the surface of the electrode portion 15. That is, if the sample flow rate is reduced, it becomes a diffusion-controlled state rather than a reaction-controlled state. If the sample flow rate is lowered, the sensitivity is lowered, but the reduced amount can be electrically processed and there is no problem.
[0019]
Further, in the present invention, the amount of the calibration liquid used can be reduced during calibration by reducing the sample flow rate. Further, a calibration liquid tank containing a calibration liquid of a predetermined concentration can be provided in the apparatus, and it is not necessary to provide a calibration liquid delivery means 68 as in the prior art, so that the cost can be reduced.
[0020]
In addition, in the present invention, the upper limit of the linear response region can be extended to about 30 ppm without using a multi-dimensional calibration curve or additional parts having a problem in accuracy or the like only by reducing the sample flow rate.
[0021]
【The invention's effect】
As described above, in the present invention, since the flow rate of the sample water passing through the measurement cell is set to 10 to 50 mL / min, the measurement range of the hydrazine apparatus can be extended to the high concentration side, such as when the boiler is started. Sample water with high hydrazine concentration can be monitored in a transient state. Also, it is possible to provide a small hydrazine device cheaper.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a hydrazine concentration measuring apparatus used in an embodiment of the present invention.
FIG. 2 is a characteristic diagram of hydrazine concentration versus indicated value for each sample flow rate.
FIG. 3 is a clear diagram of the overall configuration of a conventional hydrazine concentration measuring apparatus.
FIG. 4 is a diagram for explaining a conventional problem.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reagent tank, 2 ... KCl solution, 3 ... RC electrode, 6 ... Measurement cell, 13 ... Working electrode holder, 14 ... Liquid junction part, 15 ... Electrode part, S ... Boiler water, W ... Working electrode.

Claims (1)

対極および比較電極を設置した試薬タンクと測定セルに設置した作用電極の液絡部とを連通させ、前記液絡部を介して試薬タンク内の試薬液を、測定セルを通過する試料水中に流出させつつ試料水中に含まれるヒドラジンの濃度を測定するヒドラジン濃度測定方法であって、
前記作用電極の液絡部は、作用電極保持体に設けた挿通穴に上下一対のゴム製ブッシュを介して挿通保持された状態で、その上端が作用電極保持体の上端面より上方に突出され、この上端突出部の周囲が熱収縮製チューブで覆われ、かつ、その下端突出部が電極部に形成されてなり、この液絡部の上端から下端へと伝わる試薬液を前記電極部に流出させつつ試料水中に含まれるヒドラジンの濃度測定を行うときの測定セルを通過する試料水の流量を、10〜50mL/minに設定していることを特徴とするヒドラジン濃度測定方法。
The reagent tank in which the counter electrode and the reference electrode are installed communicates with the liquid junction of the working electrode installed in the measurement cell, and the reagent solution in the reagent tank flows into the sample water passing through the measurement cell through the liquid junction. A hydrazine concentration measurement method for measuring the concentration of hydrazine contained in a sample water while allowing
The liquid junction portion of the working electrode is inserted and held in an insertion hole provided in the working electrode holder through a pair of upper and lower rubber bushes, and the upper end of the working electrode is protruded above the upper end surface of the working electrode holder. The periphery of the upper end protrusion is covered with a heat-shrinkable tube, and the lower end protrusion is formed on the electrode part. The reagent solution transmitted from the upper end to the lower end of the liquid junction part flows into the electrode part. A hydrazine concentration measuring method, wherein the flow rate of sample water passing through a measurement cell when measuring the concentration of hydrazine contained in sample water is set to 10 to 50 mL / min.
JP20860997A 1997-07-16 1997-07-16 Method for measuring hydrazine concentration Expired - Fee Related JP3831485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20860997A JP3831485B2 (en) 1997-07-16 1997-07-16 Method for measuring hydrazine concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20860997A JP3831485B2 (en) 1997-07-16 1997-07-16 Method for measuring hydrazine concentration

Publications (2)

Publication Number Publication Date
JPH1137968A JPH1137968A (en) 1999-02-12
JP3831485B2 true JP3831485B2 (en) 2006-10-11

Family

ID=16559052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20860997A Expired - Fee Related JP3831485B2 (en) 1997-07-16 1997-07-16 Method for measuring hydrazine concentration

Country Status (1)

Country Link
JP (1) JP3831485B2 (en)

Also Published As

Publication number Publication date
JPH1137968A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
US20210123875A1 (en) Multi-functional water quality sensor
US4713618A (en) On-line calibration system for chemical monitors
US4858449A (en) Chemical solution dispenser apparatus and method of using
US4964185A (en) Chemical solution dispenser apparatus and method of using
EP0493819A1 (en) Water quality checker
EP0227949A2 (en) Device for controlling the concentration of aqueous solution of alcohol
WO2006031290A1 (en) Free chlorine sensor
US4822474A (en) Residual analyzer assembly
JP3831485B2 (en) Method for measuring hydrazine concentration
US3770608A (en) Process controller
CN110873741A (en) Three-parameter intelligent compensation correction electrochemical online dissolved oxygen sensor
US4651087A (en) Apparatus for measuring impurities in ultrapure water
CA2124113C (en) Oxygen analyzer
US3996123A (en) Coulometric detector
US4133733A (en) Electrolytic titration apparatus
US4219398A (en) Apparatus for continuous measurement of gas traces with ion-sensitive electrodes
JP3579880B2 (en) Hydrazine measuring device
EP0456167B1 (en) Apparatus for treating a photosensitive material and method of adding water for use in the same
JP3878859B2 (en) Flow stabilization unit and analyzer in front of it
US3429784A (en) Method and apparatus for measuring gas content
EP0887641A1 (en) Electrochemical sensor for detection of chlorine in phosgene
JP2952501B2 (en) Flow-through type electrode device
JPH05215708A (en) Method for automatically calibrating ph meter
CN211627487U (en) Infrared automatic metering titration device
JP2542281B2 (en) Electrochemical battery type sensor, electrode for the sensor and gas concentration sensing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees