JP3830639B2 - Method for producing high density granular detergent - Google Patents

Method for producing high density granular detergent Download PDF

Info

Publication number
JP3830639B2
JP3830639B2 JP29715797A JP29715797A JP3830639B2 JP 3830639 B2 JP3830639 B2 JP 3830639B2 JP 29715797 A JP29715797 A JP 29715797A JP 29715797 A JP29715797 A JP 29715797A JP 3830639 B2 JP3830639 B2 JP 3830639B2
Authority
JP
Japan
Prior art keywords
detergent
weight
particles
fatty acid
granular detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29715797A
Other languages
Japanese (ja)
Other versions
JPH11131100A (en
Inventor
克彦 笠井
友樹 柳澤
佐知子 上岡
秀次 田方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP29715797A priority Critical patent/JP3830639B2/en
Publication of JPH11131100A publication Critical patent/JPH11131100A/en
Application granted granted Critical
Publication of JP3830639B2 publication Critical patent/JP3830639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高嵩密度粒状洗剤の製造方法に関する。更に詳しくは、ポリオキシエチレン高級脂肪酸モノエタノールアミドの配合により、粒子の強度が向上し、耐ケーキング性に優れた衣料用の高密度粒状洗剤が得られる製造方法に関する。
【0002】
【従来の技術】
衣料用洗剤は、汚れを可溶化し繊維から洗濯液中に溶解・分散させる界面活性剤、界面活性剤の能力を低下させるカルシウムやマグネシウム等を洗濯液中から除去するための金属イオン封鎖剤、汚れの分解や可溶化を促進させるアルカリ剤、およびその他の洗浄ビルダーにより構成されている。衣料用洗剤に配合される成分の基本的な考え方は、これまで大きな変化なく今日に至っているが、具体的な成分については環境に対する配慮より見直しが行われてきた。その一つとして洗剤の無リン化が挙げられる。かつて衣料用洗剤には金属イオン封鎖剤としてトリポリリン酸ナトリウム等のリン化合物が配合されていた。しかしながら、湖水や沼などの富栄養化の原因の一つとしてこれらリン化合物が懸念されるにいたり、リン化合物に代わる金属イオン封鎖剤として、特定構造を有する結晶性アルミノ珪酸ナトリウム(当業界では合成ゼオライトと呼称される)が使用されるようになり現在に至っている。一方、洗剤の形状については、液状、スラリー状、ペースト状、粒状(粉末)、タブレット状又は棒状等の多様の形状が提案されており、それぞれにおいてこれまで多くの技術が出願・公開されてきた。これら形状のうち、1980年代後半の粉末洗剤の高嵩密度化は、そのコンパクトさが輸送ないし持ち運び並びに収納性に大きく寄与するものであったため、現在ではコンパクト洗剤が主流を占めるようになっている。前述のように、粉末洗剤のコンパクト化に際しても、基本成分の構成は大きく変化することはなく、在来の低嵩密度洗剤に多量配合されていた増量剤である、洗浄効果の小さい芒硝等の無機塩が削減されるにとどまった。製品の嵩密度の上昇から貯蔵容器底部にかかる重力による圧縮が増したことに加えて、主洗浄成分である界面活性剤等の有機物の比率が上昇したことに起因して、洗剤粒子が塑性を増し、長期保管時の粉末洗剤のケーキングの問題を引き起こす結果となった。
【0003】
また、衣料用洗剤に配合される界面活性剤は、様々な種類の汚れに対応し、また、複数の界面活性剤による相乗効果を得るため、通常一種ではなく、数種の界面活性剤を併用して用いることが一般的であり、アニオン性界面活性剤とノニオン性界面活性剤とを併用することがよく行われる。ノニオン性界面活性剤としては、下式(II)で示されるポリオキシエチレンアルキルエーテルを用いるのが一般的である。
R−O−(C24O)m−H (II)
〔式(II)中、Rは長鎖アルキル基、mはエチレンオキサイドの平均付加モル数を示す。〕
この種のノニオン性界面活性剤は、エチレンオキサイドの平均付加モル数(すなわち平均分子量)に応じて融点が上昇する。このうち、衣料用洗剤用途に好適な洗浄力を有するものは、常温で液状であることから、洗剤の長期保存時に、該活性剤がしみ出すおそれがあるため、前述の洗剤のケーキング問題を危惧する上で、その配合はデリケートであった。
【0004】
【発明が解決しようとする課題】
上記のような背景から、本発明の課題は、粒子の強度が充分で、ケーキングなどの問題を引き起こす心配のない、高嵩密度粉末洗剤の製造技術を確立することである。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決するべく鋭意検討した結果、アニオン性界面活性剤を主たる界面活性剤成分とし、且つ特定構造を有するポリオキシエチレン高級脂肪酸モノエタノールアミドを含有する高嵩密度粒状洗剤の製造工程において、特定の温度条件下で圧密成形または転動造粒を行うことで、粒子強度が充分あって(粒子の塑性を低減でき)、しかも流動性および耐ケーキング性に優れた高嵩密度粒状洗浄組成物が得られることを見いだし、本発明を完成するに到った。
【0006】
即ち本発明は、少なくとも、a)非石けん性アニオン性界面活性剤、b)下式(I)で表されるポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤の混合物
【0007】
【化2】

Figure 0003830639
【0008】
(式中、Rは炭素数7〜19の飽和または不飽和炭化水素基を表し、EOはオキシエチレン基を表し、nはオキシエチレン基の平均付加モル数であり、0.5≦n≦3である。)
及びc)無機性成分の三成分を含有する水性混合物の噴霧乾燥によって調製される乾燥粉粒体を、1)圧密成形後破砕造粒するか又は2)転動造粒し、高嵩密度粒状洗剤を製造する過程において、該成形又は造粒工程中、乾燥粉粒体を、前記b)成分の融点を5℃以上上回る温度域に保持することを特徴とする高密度粒状洗剤の製造方法を提供するものである。
【0009】
【発明の実施の形態】
以下に本発明に用いられるa)〜c)成分について説明する。
<a)非石けん性アニオン性界面活性剤>
本発明に用いられる非石けん性アニオン性界面活性剤としては、炭素数10〜18の直鎖又は分岐鎖の1級または2級アルコールの硫酸エステル塩、炭素数8〜20のアルコールのエトキシレート化物の硫酸エステル塩、アルキルベンゼンスルホン酸塩、パラフィンスルホン酸塩、α−オレフィンスルホン酸塩、α−スルホ脂肪酸塩、α−スルホ脂肪酸アルキルエステル塩が好ましい。本発明では特に、アルキル鎖の炭素数が12〜14の直鎖アルキルベンゼンスルホン酸塩および/または炭素数12〜18の1級アルコールの硫酸エステル塩が好ましく、対イオンとしては、アルカリ金属類が好ましい(Naが最も好ましい)。これらの非石けん性アニオン性界面活性剤は本発明の製造方法によって得られた高嵩密度粒状洗剤粒子中に10〜30重量%配合される。
【0010】
<b)ポリオキシエチレン高級脂肪酸モノエタノールアミド>
本発明に使用されるポリオキシエチレン高級脂肪酸モノエタノールアミドは、下式(I)
【0011】
【化3】
Figure 0003830639
【0012】
で表され、R部分および/またはnが異なる種々の構造をもつ化合物の混合物である。
この混合物は、例えば下式(III)
【0013】
【化4】
Figure 0003830639
【0014】
〔式中のRは、式(I)と同意〕
に示す高級脂肪酸モノエタノールアミドに、アルカリ触媒下エチレンオキサイドを付加することによって合成できる。高級脂肪酸モノエタノールアミドは、脂肪酸や脂肪酸の短鎖アルキルエステル(好ましくはメチルエステル)とモノエタノールアミンのアミド化反応生成物として、常法により合成可能である。エチレンオキサイド付加反応生成物の付加モル数は低付加(あるいは未付加)分子から高付加分子まで分布しており、その平均〔式(I)中のnに相当〕として扱うことが一般的である。洗浄性能が最も高く、且つ好ましい粉末物性を与えるために、一般式(I)中の平均付加モル数nは、0.5〜3であり、より好ましくは0.5〜1.8である。平均付加モル数nが0.5以下の場合、充分な洗浄効果が得られず、3を越えると粒子強度を高める効果が充分でない。R鎖部分は、洗浄性能および粒子強度の点から、C1123が最も好ましいが、全てがC1123である必要はなく、好ましくは混合物中、R部分がC1123である化合物が50重量%以上である。また、b)成分のポリオキシエチレン高級脂肪酸モノエタノールアミド混合物は、本発明の製造方法によって得られた高嵩密度粒状洗剤粒子中に3重量%以上、好ましくは5重量%以上含有されることが好ましく、b)成分の量が少なすぎると粒子強度を高める効果が充分でない。また、噴霧乾燥工程での製造のしやすさから、15重量%を越えない範囲で配合することが望ましい。
【0015】
<c)無機性成分>
本発明に用いられる無機性成分c)としては、芒硝等の増量剤や無機性アルカリ剤、結晶性アルミノケイ酸塩等の無機性硬度成分捕捉剤、亜硫酸塩等の酵素安定化剤のほか、従来公知の物質を配合することが出来る。アルカリ剤として具体的には、JIS1号、2号、3号等の非晶質のアルカリ金属珪酸塩、並びにデンス灰や軽灰と総称される炭酸ナトリウム等のアルカリ金属炭酸塩が挙げられる。これら、無機性のアルカリ剤は、比較的硬く、流動性に優れた洗剤を製造する際、それらの物性を補完するのに適している。特に、水性スラリーを噴霧乾燥する製造法において非晶質珪酸ナトリウムを該スラリーへ配合すれば、洗剤粒子の物性を向上させる効果が大きい。本発明には、本発明によって得られた高嵩密度粒状洗剤粒子中に1〜10重量%の非晶質珪酸ナトリウムを配合することが好ましい。これら以外のアルカリ剤としては、セスキ炭酸ナトリウム、炭酸水素ナトリウムなどが挙げられ、またトリポリリン酸塩等のリン酸塩もアルカリ剤としての作用を有する。アルカリ剤は総量で5〜50重量%、好ましくは15〜35重量%配合される。
【0016】
また、本発明では、無機性成分c)として、結晶性アルミノ珪酸塩を用いるのが好ましい。本発明に用いられる結晶性アルミノ珪酸塩は、一般にゼオライトといわれているものであり、下記式
a(M2O)・Al2O3・b(SiO2)・w(H2O) (IV)
〔式中、M はアルカリ金属原子、a, b, w は各成分のモル比を表し、一般的には0.7 ≦a ≦1.5 、0.8 ≦b <6、w は任意の正数である。〕
で表されるものであり、中でも次の一般式(V)
Na2O・Al2O3 ・n'(SiO2)・w'(H2O) (V)
〔ここで、n'は1.8 〜3.0 、w'は1〜6の数を表す。〕
で表されるものが好ましい。結晶性アルミノ珪酸塩(ゼオライト)としては、A型、X型、P型ゼオライトに代表される平均一次粒径0.1〜10μmの合成ゼオライトが好適に使用される。ゼオライトは、水性スラリー中はもちろん、粉末及び/又はゼオライトスラリーを乾燥して得られるゼオライト凝集乾燥粒子として配合してもよい。
【0017】
本発明において、結晶性アルミノ珪酸塩は、高密度粒状洗剤粒子中に5〜40重量%、好ましくは15〜35重量%配合される。
【0018】
また、本発明において無機性成分c)は総量として、高嵩密度粒状洗剤粒子中に40〜80重量%、好ましくは40〜60重量%配合される。
【0019】
<各成分の重量比>
本発明においてa)非石けん性アニオン性界面活性剤、b)ポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤混合物及びc)無機性成分は、最終的に得られた高密度粒状洗剤中に、b)/a)=0.05〜1、特に0.1〜0.7、〔a)+b)〕/c)=0.2〜1の重量比となるように用いるのが、製造適性及び耐ケーキング性と粒子の強度の面で好ましい。
【0020】
<任意成分>
本発明においては、上記a)〜c)成分に加えてその他の界面活性剤や高密度洗剤に配合される公知の成分を配合することができる。
【0021】
(1)その他の界面活性剤
その他の界面活性剤としては、ポリオキシアルキレンアルキルエーテル型、ポリオキシアルキレンアルキルフェニルエーテル型、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシアルキレン高級脂肪酸低級アルキルエステル、N−メチルグルコース高級脂肪酸アミド、アルキル(オリゴ)グルコシド等のノニオン界面活性剤、ベタイン型等の両性界面活性剤、4級アンモニウム塩型等のカチオン界面活性剤等、洗剤粒子の強度を損なわない範囲であれば、目的に応じて公知の界面活性剤を配合することができる。
【0022】
(2)その他の配合成分
本発明においては、エチレンジアミン四酢酸(EDTA)及びクエン酸塩等の有機金属イオン封鎖剤、ポリアクリル酸、アクリル酸とマレイン酸のコポリマーおよびカルボキシメチルセルロース等のカルボン酸系ポリマー、ポリエチレングリコール(PEG)、ポリビニルピロリドン(PVP)及びポリビニルアルコール(PVA)等の分散剤もしくは色移り防止剤、過炭酸ナトリウム等の漂白剤、特開平6−316700号公報記載及びテトラアセチルエチレンジアミン(TAED)等の漂白活性化剤、プロテアーゼ,セルラーゼ、アミラーゼ及びリパーゼ等の酵素、ホウ素化合物及び亜硫酸ナトリウム等の酵素安定剤、ビフェニル型、スチルベン型の蛍光染料、シリコーン/シリカ系等の消泡剤、酸化防止剤、青味付剤並びに香料等の従来から公知の成分を公知の配合量で配合することができる。また消泡剤として脂肪酸塩を配合してもよい。上記成分として具体的には特開平8−218093号公報に記載されているものを使用することができる。
【0023】
<製造方法>
上記の通り、本発明は、少なくとも、a)非石けん性アニオン性界面活性剤、b)下式(I)で表されるポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤の混合物
【0024】
【化5】
Figure 0003830639
【0025】
(式中、Rは炭素数7〜19の飽和または不飽和炭化水素基を表し、EOはオキシエチレン基を表し、nはオキシエチレン基の平均付加モル数であり、0.5≦n≦3、好ましくは0.5≦n≦1.8である。)
及びc)無機性成分の三成分を含有する水性混合物の噴霧乾燥によって調製される乾燥粉粒体を、1)圧密成形後破砕造粒するか又は2)転動造粒し、高嵩密度粒状洗剤を製造する過程において、該成形又は造粒工程中、乾燥粉粒体を、前記b)成分の融点を5℃以上上回る温度域に保持することを特徴とする高密度粒状洗剤の製造方法に関するものである。
【0026】
衣料用洗剤のように一般家庭で常用される消費財は、市場への大量供給が必要であり、効率よく大量に生産する手段として、噴霧乾燥工法は欠かせないものとなっている。一般的に、噴霧乾燥された粉粒体は、多量の水分を含む有機/無機原料の液滴を高温熱風中で短時間に乾燥するため、非常にポーラスになり、高い嵩密度が得られない(通常は0.3g/cm3 前後)。このようにポーラスな粉粒体の嵩密度を高めるための工業的加工法として、ローラーや押し出し機を用い、圧力を加えて押し固める方法(圧密化)と、容器内で高速撹拌することで、粒子を破砕しながら、雪だるま様に粒子を凝集させる方法(転動造粒)とが挙げられる。いずれの方法においても、嵩密度を高める上で、乾燥直後の状態からの粒子の変形や、複数粒子との凝集を回避することは原理的に不可能である。
【0027】
これに対して、本発明の製造方法の最も強調すべき特徴として、噴霧乾燥によって得られた粉粒体をさらに、1)圧密成形後破砕造粒するか又は2)転動造粒することにより加工し、高嵩密度、高流動性、適当な粒度を具備する造粒物とする過程において、目的物の1個粒子内に、均一且つ発達したポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤混合物の固化ネットワークを成長させ、粒子強度を高めることが挙げられる。
【0028】
ポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤混合物b)の固化ネットワークを利用して粒子を硬くするには、該b)成分の量は洗剤粒子に対し3重量%以上(好ましくは5重量%以上)の配合量において効果が大きい。また、前述の粒子変形、複数粒子の凝集が完了したのち、均一に分布している該b)成分の融解物が固化することで粒子強度向上効果が最大限得られるため、粒子変形および/または複数粒子の凝集が起こる工程(即ち成形および/または造粒工程)を該b)成分が液化した状態で行う必要がある。乾燥粉粒体中の該b)成分がムラなく液化状態をなすには、少なくとも、該b)成分の融点を5℃以上上回る温度で乾燥粉粒体を取り扱う必要がある。乾燥粉粒体を温度コントロールすることでポリオキシエチレン高級脂肪酸モノエタノールアミドをムラなく液化状態ならしめるには、高温である方が効率的であるが、融点を30℃以上超える領域になると、もはやそれ以上の効果向上はないため、単にエネルギーの損失を生むだけであり、無意味である。また、工程中の乾燥粉粒体の温度が明瞭でないときは、一部を取り出し、温度計を用いて実測する必要があるが、乾燥粉粒体の温度を確認してから同一手順(操作条件、環境条件)で製造機械の運転を続けるのであれば、頻繁にモニターしなくてもよい。理想的には、予備混合機内および/または成形機内および/または転動造粒機内に温度センサーを設け、これに付帯する温度コントロール手段(ジャケット等)に自動制御をかけることが望ましい。
【0029】
圧密成形の方法を更に具体的に述べると、乾燥粉粒体および他の添加成分を予備的に一時混合したものを、軸圧を有するローラーを通過させることによって圧縮されたシート状に成形する方法又は例えば、前押し出し式2軸押し出し成形機のような押し出し成形機にて10mm程度の棒状に成形する方法が挙げられる。予備混合時には、他の粉末成分や、洗剤粒子物性を損なわない範囲であれば、液状成分もスプレー等の方法で加えることが可能である。それぞれの工程時には、乾燥粉粒体の温度を、使用するポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤混合物の融点を5℃以上上回る温度域に保持するよう、前者の場合は、予備混合時の混合機および/またはローラーの温度をコントロールする必要がある。後者の場合も同様で、予備混合時の混合機および/または押し出し成形機の温度をコントロールする必要がある。上記のようにして得られた、成形物は、破砕造粒工程を経て適度な粒度に、具体的には平均粒径を200〜1000μmの粒子に更に加工する必要がある。本破砕造粒工程中は、温度コントロールを必要としないが、破砕器への過負荷を避けるため、高温は好ましくない。
【0030】
また、転動造粒の方法を具体的に述べると、例えば、ハイスピードミキサー(深江工業(株)製)のようなアジテータおよびチョッパを有する竪型ミキサーや、レディゲミキサー(松坂技研(株)製)のようなブレードおよびチョッパを有する横型ミキサー内に乾燥粉粒体および他の添加成分を仕込み、撹拌を続けることで、破砕を行いながら凝集を進行させ、適当な粒度(具体的には200〜1000μmの粒度)および向上した嵩密度を兼備する粒体に造粒する方法が考えられる。添加成分としては粉末成分の他、洗剤粒子物性を損なわない範囲であれば、液状成分をスプレー等の方法で添加することも可能である。それぞれの造粒工程時には、乾燥粉粒体の温度が含有されるポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤混合物の融点を5℃以上上回る温度域に保持されるよう、ミキサーのジャケット等の温度をコントロールする必要がある。転動造粒工程を経て得られた造粒物は、過大粒子を篩い分けて粉砕し、篩い通過粒子とミックスすることで目的とする洗剤粒子が得られる。いずれの工程においても、乾燥粉粒体を圧密成形または転動造粒した以降、結晶性アルミノケイ酸塩のような微粒子を洗剤粒子の表面被覆剤として付着させる以外、実質的に粒子の凝集を起こさないことが好ましい。
【0031】
本発明で得られた高嵩密度粒状洗剤は、非石けん性アニオン性界面活性剤a)、特定のポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤混合物b)及び無機性成分c)を含有する高嵩密度粒子であるが、通常洗剤に添加される成分、具体的には別途造粒した酵素粒子や漂白剤粒子、消泡剤粒子などを本発明の高嵩密度粒状洗剤に別途ドライブレンドしてもよい。また、アルカリ剤として及び金属イオン封鎖剤として優れた化合物である特開昭60−227895号及び特開平7−89712 号記載の結晶性珪酸塩を配合する場合は、別粒子としてドライブレンドするか又は圧密工程ないし造粒工程で添加することが好ましい。
【0032】
なお、蛍光染料を配合する場合は水性スラリーに添加するが、熱による分解を懸念する場合は、高嵩密度化の工程で添加してもよい。勿論その場合は、蛍光染料が洗剤粒子内で局所的に凝集しないように注意すべきである。香料成分はその揮発性のために、高温による処理工程での添加は好ましくないことは言うまでもなく、従って、高温での処理である噴霧乾燥工程を通る水性スラリー中への配合は好ましくない。通常は高嵩密度化工程ないし造粒終了後で添加するが、その際は揮発による匂いの変化に十分注意すべきである。そのためには、香料の添加を製造工程のなるべく最後の方ないし工程終了後に行うことが好ましい。
【0033】
<洗剤粒度および嵩密度>
本発明の製造方法によって得られる高嵩密度粒状洗剤の平均粒径は、好ましい粉末物性を得るために200〜1000μm、特に200〜600μmであることが望ましい。また、本発明の高嵩密度粒状洗剤の嵩密度は、0.5〜1.2g/cm3 、好ましくは0.6〜1.0g/cm3 程度である。
【0034】
【実施例】
以下実施例にて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0035】
<調製例1>
純度85%のラウリン酸メチル(花王(株)製、商品名エキセパールML−85)とモノエタノールアミンの混合物(モル比1:1.03)を80℃に加温し、触媒としてナトリウムメチラートを添加した。更に95℃、30mmHgの条件下、副生するメタノールを留去しながら、6時間反応を続け、アミド化物を得た。これを精製することなく次の反応に供した。オートクレーブにアミド化物および、触媒のナトリウムメチラートをアミド化物に対して0.02モル等量を仕込み、続いて、0.75モル等量のエチレンオキサイドを100℃、0.35MPaを越えないよう注意しながら導入し、エチレンオキサイドが反応し終わるまで、約2時間熟成した。80℃、100mmHgで窒素ガスをバブリングしながら極微量の未反応エチレンオキサイドを除去し、目的とするポリオキシエチレン脂肪酸モノエタノールアミドADEO1〔式(I)においてR=C1123アルキル基、n=0.75の化合物〕を得た。
同様に、エチレンオキサイドの導入量を変えることによって、ADEO2、3、7を合成した。
【0036】
<調製例2>
ラウリン酸/ミリスチン酸混合の脂肪酸(ラウリン酸/ミリスチン酸=75/25(重量比))を90℃に加熱し、モノエタノールアミン1.1モル等量を加え、160℃、50mmHgの条件下で、副生する水を留去しながら、反応を6時間続け、アミド化物を得た。調製例1と同様の条件下、エトキシレート化し、ポリオキシエチレン脂肪酸モノエタノールアミドADEO4及びADEO5を合成した。同様に、ヤシ油由来の脂肪酸の低沸点分除去品〔花王(株)製、商品名ルナックL−55、ガスクロマトグラフィーによる組成:カプリン酸/ラウリン酸/ミリスチン酸/ステアリン酸/その他=1/57/22/10/3/7(重量比)〕を用い、ポリオキシエチレン脂肪酸モノエタノールアミドADEO6を合成した。
【0037】
<ポリオキシエチレン高級脂肪酸モノエタノールアミドの融点測定法>
下記条件のDSC法によりポリオキシエチレン高級脂肪酸モノエタノールアミドの融点を決定した。
・測定装置:示差走査熱量計 DSC120〔セイコー電子工業(株)製〕
熱分析システム SSC5200H〔同上〕
・測定条件:走査温度範囲0〜100℃、昇温速度0.5℃/min
・試料:試料5〜10mgをAG15型サンプルパン(セイコー電子工業(株)製)に入れ測定用試料とし、同型パンをリファレンスとして使用した。
・数値の読みとり:グラフ〔横軸;温度(℃)、縦軸;熱量差(μW)〕から、最大吸熱ピークの頂点の温度を読みとらせ、融点とした。
表1に、上記調製例で得た種々のポリオキシエチレン高級脂肪酸モノエタノールアミドの組成及び融点の測定結果を示す。
【0038】
【表1】
Figure 0003830639
【0039】
<実施例1〜8及び比較例1〜2>
表2〜5の組成により、下記の方法で高密度洗剤組成物を調製した。表2〜5において、組成Iは最終組成物における比率であり、組成IIは組成Iのうち噴霧乾燥粉粒体として配合した分の比率であり、組成III は組成Iのうちミキサー添加成分又は成形機添加成分として配合した分の比率であり、組成IVは組成Iのうち整粒被覆剤として又は破砕助剤として配合した分の比率であり、組成Vは組成Iのうちアフターブレンド成分として配合した分の比率である。
【0040】
〔A〕噴霧乾燥物の調製方法
表2〜5記載の各組成中IIの組成(揮発分を除外)を明記された比率で含有する水スラリー(水分45%)を調製し、噴霧乾燥して、表2〜5記載の各IIの組成の乾燥粉粒体を得た。表中の揮発分は、噴霧乾燥して得られた粉粒体10gをシャーレに入れ、110℃/30分の条件で測定した重量減少分であり、大部分が水であると考えられるが、特に分析は行わず、そのまま後続工程に供した。
【0041】
〔B−1〕高嵩密度粒状洗剤の調製方法1(実施例1、2、7)
乾燥粉粒体83重量部(表中II)および、ゼオライト10重量部(表中III )を70℃(実施例2は65℃、実施例7は65℃)のジャケット水を循環したリボンミキサー内に入れ、予備混合した。予備混合終了時点で、実施例1の混合粉体の温度は55℃(実施例2は50℃、実施例7は52℃)を示していた。得られた混合粉体温度が変化しないよう、速やかに前押し出し式2軸押し出し成形機(ペレッターダブル;不二パウダル(株)製)に入れ、粉体温度がそれぞれ前述の値を維持するよう、成形機温度をコントロールしながら、押し出し成形して連続した棒状の成型物を得た。放冷後棒状成型物を適度な長さに調整後、成形物93重量部にゼオライト4重量部を加えて(表中IV)、フラッシュミル(不二パウダル(株)製)にて粉砕造粒と表面被覆を行った。目開き1.5mmの篩で粗大粒子を回収し、これを再粉砕後、1回目の粉砕後の篩通過分とあわせて目的の洗剤粒子とした。V型ブレンダーにて、洗剤粒子97重量部、ゼオライト1重量部、酵素粒子2重量部をブレンドして(表中V)最終形態の洗剤組成物が得られた(表中I)。
【0042】
〔B−2〕高嵩密度粒状洗剤の調製方法2(実施例3〜5、比較例1)
乾燥粉粒体83重量部(表中II)とゼオライト10重量部(表中III )を60℃(実施例4は65℃、実施例5は60℃、比較例1は室温)の温水をジャケット部に循環させたハイスピードミキサー(深江工業(株)製)に入れ、撹拌した。撹拌開始後、5分の段階でミキサーを止め、内部の洗剤粒子を取り出して温度測定したところ、40℃(実施例4は45℃、実施例5は40℃、比較例1は20℃)であった。さらに、10分間以上撹拌を続けて転動造粒を行い、適度な粒度にした後、ゼオライト5重量部を加えて(表中IV)、約1分間撹拌して、粒子表面をゼオライトで被覆した。得られた造粒物は、もはや温度管理することなく、次の篩工程に供した。目開き1.5mmの篩で過大粒子を篩い分けて粉砕し、篩通過分とあわせて、目的とする洗剤粒子とした。洗剤粒子98重量部に対して酵素造粒物が2重量部の割合で、V型ブレンダーにてブレンドして(表中V)最終形態の洗剤組成物が得られた(表中I)。
【0043】
〔B−3〕高嵩密度粒子洗剤の調製方法3(実施例6、比較例2)
表記載組成の乾燥粉粒体83重量部(表中II)とゼオライト10重量部(表中III )を75℃(比較例3は室温)の温水をジャケット部に循環させたレディゲミキサー(松坂技研(株)製)に入れ、撹拌した。撹拌開始後、5分の段階でミキサーを止め、内部の洗剤粒子を取り出して温度測定したところ、60℃(比較例3は20℃)であった。さらに、10分間以上撹拌を続けて転動造粒を行い、適度な粒度にした後、ゼオライト5重量部を加えて(表中IV)、1分間撹拌して、粒子表面をゼオライトで被覆した。得られた造粒物は、もはや温度管理することなく、次の篩工程に供した。目開き1.5mmの篩で過大粒子を篩い分けて粉砕し、篩通過分とあわせて、目的とする洗剤粒子とした。洗剤粒子98重量部に対して酵素造粒物が2重量部の割合で、V型ブレンダーにてブレンドして(表中V)最終形態の洗剤組成物が得られた(表中I)。
【0044】
〔B−4〕高嵩密度粒子洗剤の調製方法4(実施例8)
表記載組成の乾燥粉粒体79重量部(表中II)と、ゼオライト9重量部、結晶性シリケート4重量部(表中III )を70℃の温水をジャケット部に循環させたハイスピードミキサー(深江工業(株)製)に入れ、撹拌しながら50℃に加温したAE1重量部(表中III )をスプレーすることで徐々に添加した。スプレー終了後、5分撹拌を行った時点でミキサーを止め、内部の洗剤粒子を取り出して温度測定したところ、56℃であった。更に10分間撹拌を続けて転動造粒を行い、適度な粒度にした後、適度な粒度にした後、ゼオライト5重量部を加えて(表中IV)、約1分間撹拌して、粒子表面をゼオライトで被覆した。得られた造粒物は、もはや温度管理することなく、次の篩工程に供した。目開き1.5mmの篩で過大粒子を篩い分けて粉砕し、篩通過分とあわせて、目的とする洗剤粒子とした。洗剤粒子98重量部に対して酵素造粒物が2重量部の割合で、V型ブレンダーにてブレンドして(表中V)最終形態の洗剤組成物が得られた(表中I)。
【0045】
〔C〕粒状洗剤粒子強度の測定
上記実施例1〜7及び比較例1〜2で得られた高密度粒状洗剤組成物について、下記の方法で粒子強度を測定した。洗剤粒子が硬い場合は、圧力を加えても塑性変形を招かず、その結果、固まりにならないか、固まっても弱い力で崩壊させることができる。洗剤粒子の強度を表す指標として、圧力を与えたときの固まり易さ、固まった洗剤粒子塊の崩れ易さを『圧密破壊荷重』として測定した。以下に測定方法を示すが、『圧密破壊荷重』が『測定不能』のものは、一定圧力条件下で洗剤塊を生じなかったためであり、最も好ましい洗剤粒子と言える。測定可能な場合は、数字は小さい方がより好ましい。
【0046】
<圧密破壊荷重測定法>
▲1▼使用機器
・タッピング機:タッピング式密充填カサ密度測定器TVP−1型(筒井理化学器械(株)製)
・破壊荷重測定器:FUDO RHEOMETER RT-3020D-CW型((株)レオテック製)
▲2▼測定条件:室温(洗剤粒子温度は20℃)
▲3▼測定方法:
外直径50mm、内直径30mmの金属製円筒を、大きさが合致するカップ状容器に入れ、円筒部内に洗剤粒子30gを、表面が滑らかになるように入れた。次いで金属製のシリンダー(380g)を錘として洗剤粒子の上に静かに載せて、上記タッピング機にて、30回タッピング(落下距離25mm)した。カップからシリンダーを取り出し、シリンダー内部に残る、圧縮を受けた洗剤粒子(洗剤粒子塊)を上部からシリンダーで慎重に押し出し、洗剤粒子塊を板の上に(円状部を底面として)静かに置いた。洗剤塊を板に載せたまま上記レオメーターのサンプル昇降台に移動し、2cm/minの速度で破壊時の最大荷重を測定した。このとき、洗剤粒子を固まりとして取り出せなかったものは、『測定不能』として示した。
【0047】
【表2】
Figure 0003830639
【0048】
【表3】
Figure 0003830639
【0049】
【表4】
Figure 0003830639
【0050】
【表5】
Figure 0003830639
【0051】
(注)
・LAS:アルキルベンゼンスルホン酸ソーダ〔日石洗剤(株)製、アルキルベンベンゼンスルホン酸「アルケンL(アルキル鎖の炭素数10〜14)」を48%NaOHで中和したもの〕
・AS:三菱化学(株)製ドバノール25サルフェート(C12〜C15硫酸)のナトリウム塩
・SFE:パーム油由来、アルファスルホ脂肪酸メチルエステルソーダ
・脂肪酸塩:パルミチン酸ナトリウム
・AE:ノニデッドR−7(C12〜C15アルコールにエチレンオキサイドを平均7.2モル付加したもの、三菱化学(株)製)〕
・ゼオライト:A型ゼオライト、平均粒径3μm
・結晶性シリケート:SKS−6、δーNa2Si25 、結晶性層状珪酸ナトリウム,平均粒子径20μm、ヘキストトクヤマ社製
・シリケート:非晶質珪酸ナトリウム、JIS1号珪酸ナトリウム
・炭酸ソーダ:デンス粒灰
・PAS:ポリアクリル酸ソーダ、平均分子量12000
・AA−MA:ソカランCP5、アクリル酸−マレイン酸共重合体、平均分子量70000
・蛍光染料:チノパールCBS(チバガイギー社製)と、ホワイテックスSA(住友化学社製)を重量比で同量配合したもの
・酵素:サビナーゼ12.0T typeW(プロテアーゼ)、リポラーゼ100T(リパーゼ)、ターマミル60T(アミラーゼ)(以上の酵素、ノボノルディスク製)及びKAC500(アルカリセルラーゼ、花王株式会社製)を重量比率で2:1:1:1の割合で混合したもの[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high bulk density granular detergent. More specifically, the present invention relates to a production method in which a high-density granular detergent for clothing having improved particle strength and excellent resistance to caking is obtained by blending polyoxyethylene higher fatty acid monoethanolamide.
[0002]
[Prior art]
Detergent for clothing is a surfactant that solubilizes soil and dissolves / disperses it from the fibers in the washing liquid, a sequestering agent for removing calcium and magnesium from the washing liquid, which reduces the ability of the surfactant, It consists of an alkaline agent that promotes the degradation and solubilization of dirt, and other cleaning builders. The basic concept of the ingredients to be blended in the laundry detergent has not changed much so far, but the specific ingredients have been reviewed from the consideration of the environment. One example is the dephosphorization of the detergent. In the past, phosphorus detergents such as sodium tripolyphosphate were blended in clothing detergents as sequestering agents. However, there is concern about these phosphorus compounds as one of the causes of eutrophication of lakes and swamps, and crystalline sodium aluminosilicates with a specific structure (synthesized in this industry as sequestering agents to replace phosphorus compounds). (Referred to as zeolite) has come into use. On the other hand, various shapes such as liquids, slurries, pastes, granules (powder), tablets or rods have been proposed for the shape of the detergent, and many technologies have been filed and published for each. . Among these shapes, the increase in bulk density of powder detergents in the latter half of the 1980s was that compactness greatly contributed to transportation, carrying and storage, so compact detergents are now dominant. . As described above, even when the powder detergent is made compact, the composition of the basic components does not change greatly, and it is an extender that has been incorporated in a large amount in a conventional low bulk density detergent, such as mirabilite with a low cleaning effect. Inorganic salts were only reduced. In addition to an increase in the compression due to gravity on the bottom of the storage container due to an increase in the bulk density of the product, the detergent particles have become plastic due to an increase in the ratio of organic substances such as surfactants that are the main cleaning components. As a result, the problem of caking powder detergent during long-term storage was caused.
[0003]
In addition, the surfactants used in laundry detergents are compatible with various types of stains, and in order to obtain a synergistic effect with multiple surfactants, they are usually used in combination with several types of surfactants. In general, an anionic surfactant and a nonionic surfactant are often used in combination. As the nonionic surfactant, polyoxyethylene alkyl ether represented by the following formula (II) is generally used.
R-O- (C 2 H Four O) m -H (II)
[In Formula (II), R represents a long-chain alkyl group, and m represents the average number of moles of ethylene oxide added. ]
This type of nonionic surfactant has a melting point that increases in accordance with the average number of moles of ethylene oxide added (that is, average molecular weight). Among these, those having a detergency suitable for detergent use for clothing are liquid at room temperature, and the active agent may ooze out during long-term storage of the detergent. The formulation was delicate.
[0004]
[Problems to be solved by the invention]
From the background as described above, an object of the present invention is to establish a manufacturing technique of a high bulk density powder detergent that has sufficient particle strength and does not cause problems such as caking.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a high bulk density granular detergent containing a polyoxyethylene higher fatty acid monoethanolamide having an anionic surfactant as a main surfactant component and a specific structure. In the manufacturing process, compaction or rolling granulation is performed under specific temperature conditions, so that the particle strength is sufficient (the plasticity of the particles can be reduced), and the bulkiness is excellent in fluidity and caking resistance. It has been found that a density granular cleaning composition can be obtained, and the present invention has been completed.
[0006]
That is, the present invention comprises at least a mixture of a non-soap anionic surfactant and b) a polyoxyethylene higher fatty acid monoethanolamide surfactant represented by the following formula (I):
[0007]
[Chemical 2]
Figure 0003830639
[0008]
(In the formula, R represents a saturated or unsaturated hydrocarbon group having 7 to 19 carbon atoms, EO represents an oxyethylene group, n is the average number of moles added of the oxyethylene group, and 0.5 ≦ n ≦ 3. .)
And c) a dry granule prepared by spray drying of an aqueous mixture containing the three components of the inorganic component, 1) crushing granulation after compaction molding or 2) rolling granulation and high bulk density granulation In the process of producing a detergent, a method for producing a high-density granular detergent, characterized in that, during the molding or granulating step, the dry powder is maintained in a temperature range that exceeds the melting point of the component b) by 5 ° C or more. It is to provide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The components a) to c) used in the present invention are described below.
<A) Non-soap anionic surfactant>
Examples of the non-soap anionic surfactant used in the present invention include a sulfate ester salt of a linear or branched primary or secondary alcohol having 10 to 18 carbon atoms, and an ethoxylate product of an alcohol having 8 to 20 carbon atoms. Of these, sulfuric acid ester salts, alkylbenzene sulfonates, paraffin sulfonates, α-olefin sulfonates, α-sulfo fatty acid salts, and α-sulfo fatty acid alkyl ester salts are preferred. In the present invention, in particular, a linear alkylbenzene sulfonate having 12 to 14 carbon atoms in the alkyl chain and / or a sulfate ester salt of a primary alcohol having 12 to 18 carbon atoms is preferable, and alkali metals are preferable as the counter ion. (Na is most preferred). These non-soap anionic surfactants are blended in an amount of 10 to 30% by weight in the high bulk density granular detergent particles obtained by the production method of the present invention.
[0010]
<B) Polyoxyethylene higher fatty acid monoethanolamide>
The polyoxyethylene higher fatty acid monoethanolamide used in the present invention has the following formula (I)
[0011]
[Chemical 3]
Figure 0003830639
[0012]
And a mixture of compounds having various structures in which the R moiety and / or n are different.
This mixture is, for example, the following formula (III)
[0013]
[Formula 4]
Figure 0003830639
[0014]
[R in the formula agrees with the formula (I)]
It can be synthesized by adding ethylene oxide to the higher fatty acid monoethanolamide shown in FIG. Higher fatty acid monoethanolamide can be synthesized by a conventional method as an amidation reaction product of fatty acid or a short-chain alkyl ester (preferably methyl ester) of fatty acid and monoethanolamine. The number of moles of addition of the ethylene oxide addition reaction product is distributed from a low addition (or non-addition) molecule to a high addition molecule, and is generally handled as an average [corresponding to n in formula (I)]. . In order to provide the highest washing performance and to give preferable powder physical properties, the average added mole number n in the general formula (I) is 0.5 to 3, more preferably 0.5 to 1.8. When the average added mole number n is 0.5 or less, a sufficient cleaning effect cannot be obtained, and when it exceeds 3, the effect of increasing the particle strength is not sufficient. The R chain portion is C in terms of washing performance and particle strength. 11 H twenty three Is most preferred, but all are C 11 H twenty three Preferably, in the mixture, the R moiety is C 11 H twenty three Is 50% by weight or more. In addition, the polyoxyethylene higher fatty acid monoethanolamide mixture as component b) is contained in the high bulk density granular detergent particles obtained by the production method of the present invention in an amount of 3% by weight or more, preferably 5% by weight or more. Preferably, if the amount of component b) is too small, the effect of increasing the particle strength is not sufficient. Moreover, it is desirable to mix | blend in the range which does not exceed 15 weight% from the ease of manufacture in a spray-drying process.
[0015]
<C) Inorganic component>
Examples of the inorganic component c) used in the present invention include bulking agents such as mirabilite, inorganic alkaline agents, inorganic hardness component scavengers such as crystalline aluminosilicates, enzyme stabilizers such as sulfites, and the like. Known substances can be blended. Specific examples of the alkali agent include amorphous alkali metal silicates such as JIS Nos. 1, 2, and 3 and alkali metal carbonates such as sodium carbonate collectively called dense ash and light ash. These inorganic alkaline agents are suitable for complementing their physical properties when producing detergents that are relatively hard and excellent in fluidity. In particular, if amorphous sodium silicate is added to the slurry in the production method of spray drying an aqueous slurry, the effect of improving the physical properties of the detergent particles is great. In this invention, it is preferable to mix | blend 1-10 weight% amorphous sodium silicate in the high bulk density granular detergent particle | grains obtained by this invention. Examples of the alkali agent other than these include sodium sesquicarbonate and sodium hydrogen carbonate, and phosphates such as tripolyphosphate also have an action as an alkali agent. The total amount of the alkaline agent is 5 to 50% by weight, preferably 15 to 35% by weight.
[0016]
Also, in the present invention, it is preferable to use crystalline aluminosilicate as the inorganic component c). The crystalline aluminosilicate used in the present invention is generally referred to as zeolite and has the following formula:
a (M 2 O) ・ Al 2 O Three ・ B (SiO 2 ) ・ W (H 2 O) (IV)
[Wherein, M represents an alkali metal atom, a, b, and w represent molar ratios of the respective components, generally 0.7 ≦ a ≦ 1.5, 0.8 ≦ b <6, and w is an arbitrary positive number. ]
In particular, the following general formula (V)
Na 2 O ・ Al 2 O Three ・ N '(SiO 2 ) ・ W '(H 2 O) (V)
[Wherein n ′ represents a number of 1.8 to 3.0 and w ′ represents a number of 1 to 6. ]
The thing represented by these is preferable. As the crystalline aluminosilicate (zeolite), synthetic zeolite having an average primary particle size of 0.1 to 10 μm represented by A-type, X-type, and P-type zeolite is preferably used. Zeolite may be blended as agglomerated dry particles of zeolite obtained by drying the powder and / or zeolite slurry as well as in the aqueous slurry.
[0017]
In the present invention, the crystalline aluminosilicate is blended in the high density granular detergent particles in an amount of 5 to 40% by weight, preferably 15 to 35% by weight.
[0018]
In the present invention, the inorganic component c) is added in a total amount of 40 to 80% by weight, preferably 40 to 60% by weight, in the high bulk density granular detergent particles.
[0019]
<Weight ratio of each component>
In the present invention, a) a non-soap anionic surfactant, b) a polyoxyethylene higher fatty acid monoethanolamide surfactant mixture and c) an inorganic component are added to the final high-density granular detergent, b ) / A) = 0.05 to 1, particularly 0.1 to 0.7, and [a) + b)] / c) = 0.2 to 1 so that the weight ratio is suitable for production and resistance. It is preferable in terms of caking property and particle strength.
[0020]
<Optional component>
In this invention, in addition to said component a) -c), the well-known component mix | blended with other surfactant or a high-density detergent can be mix | blended.
[0021]
(1) Other surfactants
Other surfactants include polyoxyalkylene alkyl ether type, polyoxyalkylene alkyl phenyl ether type, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene higher fatty acid lower alkyl ester, N-methyl glucose higher fatty acid amide, alkyl (oligo ) Nonionic surfactants such as glucoside, amphoteric surfactants such as betaine type, and cationic surfactants such as quaternary ammonium salt type, as long as they do not impair the strength of the detergent particles. An active agent can be blended.
[0022]
(2) Other ingredients
In the present invention, sequestering agents such as ethylenediaminetetraacetic acid (EDTA) and citrate, polyacrylic acid, copolymers of acrylic acid and maleic acid, and carboxylic acid-based polymers such as carboxymethylcellulose, polyethylene glycol (PEG), Dispersants or color transfer inhibitors such as polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA), bleaching agents such as sodium percarbonate, bleaching activators such as JP-A-6-316700 and tetraacetylethylenediamine (TAED) , Enzymes such as protease, cellulase, amylase and lipase, enzyme stabilizers such as boron compounds and sodium sulfite, biphenyl-type and stilbene-type fluorescent dyes, antifoaming agents such as silicone / silica, antioxidants and bluing agents As well as fragrances Known ingredients can be formulated by a known amount from. Moreover, you may mix | blend a fatty acid salt as an antifoamer. Specific examples of the above components include those described in JP-A-8-218093.
[0023]
<Manufacturing method>
As described above, the present invention provides a mixture of at least a) a non-soap anionic surfactant and b) a polyoxyethylene higher fatty acid monoethanolamide surfactant represented by the following formula (I):
[0024]
[Chemical formula 5]
Figure 0003830639
[0025]
(In the formula, R represents a saturated or unsaturated hydrocarbon group having 7 to 19 carbon atoms, EO represents an oxyethylene group, n is the average number of moles added of the oxyethylene group, and 0.5 ≦ n ≦ 3. Preferably, 0.5 ≦ n ≦ 1.8.
And c) a dry granule prepared by spray drying of an aqueous mixture containing the three components of the inorganic component, 1) crushing granulation after compaction molding or 2) rolling granulation and high bulk density granulation In the process of producing a detergent, during the molding or granulating step, the dry powder is maintained in a temperature range that exceeds the melting point of the component b) by 5 ° C. or more. Is.
[0026]
Consumer goods that are regularly used in general households, such as laundry detergents, need to be supplied to the market in large quantities, and the spray-drying method is indispensable as a means to produce large quantities efficiently. In general, spray-dried powder particles are extremely porous and do not have high bulk density because droplets of organic / inorganic raw materials containing a large amount of water are dried in high-temperature hot air in a short time. (Normally 0.3 g / cm Three Before and after). As an industrial processing method for increasing the bulk density of the porous granular material in this way, using a roller or an extruder, a method of pressing and solidifying by applying pressure (consolidation), and by stirring at high speed in the container, A method (rolling granulation) in which the particles are aggregated like a snowman while crushing the particles. In any of the methods, in order to increase the bulk density, it is theoretically impossible to avoid deformation of particles from the state immediately after drying and aggregation with a plurality of particles.
[0027]
On the other hand, the most emphasized feature of the production method of the present invention is that the powder obtained by spray drying is further subjected to 1) crush granulation after compaction molding or 2) rolling granulation. Uniform and developed polyoxyethylene higher fatty acid monoethanolamide surfactant mixture in one particle of the target product in the process of granulation with high bulk density, high fluidity and appropriate particle size It is possible to increase the particle strength by growing a solidified network of
[0028]
In order to harden the particles using the solidification network of polyoxyethylene higher fatty acid monoethanolamide surfactant mixture b), the amount of component b) is 3% by weight or more (preferably 5% by weight or more) based on the detergent particles. ) In the blending amount. In addition, after the above-described particle deformation and aggregation of a plurality of particles are completed, the melt of the component b) that is uniformly distributed solidifies so that the effect of improving the particle strength can be maximized, so that the particle deformation and / or It is necessary to carry out a process in which agglomeration of a plurality of particles occurs (that is, a molding and / or granulation process) in a state where the component b) is liquefied. In order for the b) component in the dry granule to be in a liquefied state without unevenness, it is necessary to handle the dry granule at a temperature at least 5 ° C. higher than the melting point of the b) component. In order to make the polyoxyethylene higher fatty acid monoethanolamide uniformly liquefied by controlling the temperature of the dried granule, it is more efficient at high temperature, but when the melting point exceeds 30 ° C, it is no longer necessary. Since there is no further improvement in the effect, it simply causes a loss of energy and is meaningless. In addition, when the temperature of the dry granular material in the process is not clear, it is necessary to take out a part and actually measure it using a thermometer, but after confirming the temperature of the dry granular material, the same procedure (operating conditions) If the operation of the manufacturing machine is continued under environmental conditions), it is not necessary to monitor frequently. Ideally, it is desirable to provide a temperature sensor in the premixer and / or in the molding machine and / or in the rolling granulator, and to automatically control the temperature control means (jacket or the like) attached thereto.
[0029]
More specifically, the compacting method will be described. A method of preliminarily temporarily mixing dry powder and other additive components into a compressed sheet by passing a roller having axial pressure. Alternatively, for example, there is a method of forming into a rod shape of about 10 mm with an extrusion molding machine such as a pre-extrusion type biaxial extrusion molding machine. At the time of preliminary mixing, liquid components can be added by a method such as spraying as long as other powder components and the properties of the detergent particles are not impaired. At each step, the temperature of the dry granule is maintained in a temperature range exceeding 5 ° C. above the melting point of the polyoxyethylene higher fatty acid monoethanolamide surfactant mixture to be used. It is necessary to control the temperature of the mixer and / or roller. The same applies to the latter case, and it is necessary to control the temperature of the mixer and / or the extruder during premixing. The molded product obtained as described above needs to be further processed into particles having an appropriate particle size through a crushing granulation step, specifically, particles having an average particle size of 200 to 1000 μm. During this crushing and granulating process, temperature control is not required, but high temperature is not preferable in order to avoid overloading the crusher.
[0030]
The rolling granulation method is specifically described. For example, a vertical mixer having an agitator and a chopper such as a high speed mixer (manufactured by Fukae Kogyo Co., Ltd.), and a Redige mixer (Matsuzaka Giken Co., Ltd.). In a horizontal mixer having a blade and a chopper as in the above, a dry powder granule and other additive components are charged, and by continuing stirring, agglomeration is advanced while crushing, and an appropriate particle size (specifically, 200 A method of granulating a granule having a particle size of ˜1000 μm) and an improved bulk density is conceivable. As an additive component, in addition to the powder component, the liquid component can be added by a method such as spraying as long as the physical properties of the detergent particles are not impaired. During each granulation process, the temperature of the jacket of the mixer, etc., is maintained so that the temperature of the dry granular material is maintained in a temperature range that is 5 ° C. or more higher than the melting point of the polyoxyethylene higher fatty acid monoethanolamide surfactant mixture. Need to control. The granulated product obtained through the rolling granulation step is obtained by sieving excessive particles and pulverizing them and mixing them with sieve passing particles to obtain the desired detergent particles. In any process, after the dry granulate is compacted or tumbled granulated, the particles are substantially agglomerated except that fine particles such as crystalline aluminosilicate are adhered as a surface coating agent for the detergent particles. Preferably not.
[0031]
The high bulk density granular detergent obtained in the present invention is a high soap containing a non-soap anionic surfactant a), a specific polyoxyethylene higher fatty acid monoethanolamide surfactant mixture b) and an inorganic component c). It is a bulk density particle, but the components usually added to the detergent, specifically, separately granulated enzyme particles, bleach particles, antifoam particles, etc. are separately dry blended into the high bulk density granular detergent of the present invention. Also good. When blending the crystalline silicate described in JP-A-60-227895 and JP-A-7-89712, which is an excellent compound as an alkali agent and a sequestering agent, dry blending as separate particles or It is preferable to add in the consolidation step or granulation step.
[0032]
In addition, when mix | blending fluorescent dye, it adds to an aqueous | water-based slurry, but when there is a concern about decomposition | disassembly by a heat | fever, you may add at the process of high bulk density. Of course, in that case, care should be taken that the fluorescent dye does not aggregate locally within the detergent particles. It goes without saying that perfume ingredients are unfavorable for high temperature processing due to their volatility, and therefore are not preferred for incorporation into an aqueous slurry through a spray drying process which is a high temperature processing. Usually, it is added after the bulk density increasing step or after the granulation is finished, but in that case, it should be noted that the odor changes due to volatilization. For that purpose, it is preferable to add the fragrance as much as possible in the last part of the production process or after the completion of the process.
[0033]
<Detergent particle size and bulk density>
The average particle size of the high bulk density granular detergent obtained by the production method of the present invention is preferably 200 to 1000 μm, particularly 200 to 600 μm in order to obtain preferable powder physical properties. Moreover, the bulk density of the high bulk density granular detergent of the present invention is 0.5 to 1.2 g / cm. Three , Preferably 0.6 to 1.0 g / cm Three Degree.
[0034]
【Example】
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[0035]
<Preparation Example 1>
A mixture of 85% pure methyl laurate (trade name Exepal ML-85, manufactured by Kao Corporation) and monoethanolamine (molar ratio 1: 1.03) was heated to 80 ° C., and sodium methylate was added as a catalyst. Added. Furthermore, the reaction was continued for 6 hours while distilling off by-produced methanol under the conditions of 95 ° C. and 30 mmHg to obtain an amidated product. This was subjected to the next reaction without purification. The autoclave is charged with 0.02 molar equivalent of amidated product and sodium methylate of catalyst relative to the amidated product, and then care is taken not to exceed 0.75 molar equivalent of ethylene oxide at 100 ° C. and 0.35 MPa. Then, the mixture was aged for about 2 hours until ethylene oxide was completely reacted. A trace amount of unreacted ethylene oxide was removed while bubbling nitrogen gas at 80 ° C. and 100 mmHg, and the target polyoxyethylene fatty acid monoethanolamide ADEO1 [R = C in the formula (I)] 11 H twenty three Compound of alkyl group, n = 0.75] was obtained.
Similarly, ADEO 2, 3, and 7 were synthesized by changing the amount of ethylene oxide introduced.
[0036]
<Preparation Example 2>
Lauric acid / myristic acid mixed fatty acid (lauric acid / myristic acid = 75/25 (weight ratio)) was heated to 90 ° C., 1.1 mol equivalent of monoethanolamine was added, and the conditions were 160 ° C. and 50 mmHg. While the by-produced water was distilled off, the reaction was continued for 6 hours to obtain an amidated product. Under the same conditions as in Preparation Example 1, ethoxylation was performed to synthesize polyoxyethylene fatty acid monoethanolamides ADEO4 and ADEO5. Similarly, a product obtained by removing a low-boiling point fatty acid derived from coconut oil [manufactured by Kao Corporation, trade name LUNAC L-55, composition by gas chromatography: capric acid / lauric acid / myristic acid / stearic acid / others = 1 / 57/22/10/3/7 (weight ratio)] to synthesize polyoxyethylene fatty acid monoethanolamide ADEO6.
[0037]
<Measuring method of melting point of polyoxyethylene higher fatty acid monoethanolamide>
The melting point of polyoxyethylene higher fatty acid monoethanolamide was determined by DSC method under the following conditions.
・ Measuring device: Differential scanning calorimeter DSC120 [manufactured by Seiko Electronics Co., Ltd.]
Thermal analysis system SSC5200H [Same as above]
Measurement conditions: scanning temperature range 0 to 100 ° C., heating rate 0.5 ° C./min
Sample: A sample of 5 to 10 mg was placed in an AG15 type sample pan (manufactured by Seiko Denshi Kogyo Co., Ltd.) as a measurement sample, and the same type pan was used as a reference.
Reading of numerical values: From the graph [horizontal axis: temperature (° C.), vertical axis: calorific value difference (μW)], the temperature at the apex of the maximum endothermic peak was read and taken as the melting point.
Table 1 shows the measurement results of the compositions and melting points of various polyoxyethylene higher fatty acid monoethanolamides obtained in the above preparation examples.
[0038]
[Table 1]
Figure 0003830639
[0039]
<Examples 1-8 and Comparative Examples 1-2>
According to the compositions shown in Tables 2 to 5, high-density detergent compositions were prepared by the following method. In Tables 2 to 5, composition I is a ratio in the final composition, composition II is a ratio of composition I blended as a spray-dried powder, and composition III is a component added to mixer or molded from composition I The ratio of the amount blended as a machine addition component, the composition IV is the proportion blended as a sizing coating agent or as a crushing aid in the composition I, and the composition V was blended as an after blend component in the composition I The ratio of minutes.
[0040]
[A] Preparation method of spray-dried product
A water slurry (45% moisture) containing the composition of II in each composition shown in Tables 2 to 5 (excluding volatile matter) in a specified ratio was prepared, spray-dried, and each II shown in Tables 2 to 5 A dry granular material having a composition of The volatile content in the table is a weight loss measured under conditions of 110 ° C./30 minutes by putting 10 g of a granular material obtained by spray drying into a petri dish, and it is considered that most is water. No particular analysis was performed and the product was directly subjected to the subsequent process.
[0041]
[B-1] Preparation method 1 of high bulk density granular detergent 1 (Examples 1, 2, and 7)
In a ribbon mixer in which 83 parts by weight (II in the table) of dry powder and 10 parts by weight (III in the table) of zeolite were circulated through jacket water at 70 ° C (65 ° C in Example 2 and 65 ° C in Example 7). And premixed. At the end of preliminary mixing, the temperature of the mixed powder of Example 1 was 55 ° C. (Example 2 was 50 ° C. and Example 7 was 52 ° C.). In order not to change the temperature of the obtained mixed powder, it is immediately put into a pre-extrusion type twin screw extruder (Pelleter Double; manufactured by Fuji Powder Co., Ltd.) so that the powder temperature maintains the above-mentioned value. While controlling the molding machine temperature, extrusion molding was performed to obtain a continuous rod-shaped molded product. After standing to cool, the rod-shaped molded product was adjusted to an appropriate length, 4 parts by weight of zeolite was added to 93 parts by weight of the molded product (IV in the table), and pulverized and granulated with a flash mill (Fuji Powder Co., Ltd.). And surface coating. Coarse particles were collected with a sieve having a mesh size of 1.5 mm, and after re-pulverization, the particles were passed through the sieve after the first pulverization to obtain target detergent particles. In a V-type blender, 97 parts by weight of detergent particles, 1 part by weight of zeolite, and 2 parts by weight of enzyme particles were blended (V in the table) to obtain a final form of the detergent composition (I in the table).
[0042]
[B-2] Preparation method 2 of high bulk density granular detergent (Examples 3 to 5, Comparative Example 1)
Jacketed with 83 parts by weight (II in the table) of dry granules and 10 parts by weight (III in the table) of hot water at 60 ° C. (65 ° C. in Example 4, 60 ° C. in Example 5 and room temperature in Comparative Example 1). The mixture was placed in a high speed mixer (manufactured by Fukae Kogyo Co., Ltd.) circulated in the section and stirred. The mixer was stopped at the stage of 5 minutes after the start of stirring, and the internal detergent particles were taken out and the temperature was measured. At 40 ° C (Example 4 was 45 ° C, Example 5 was 40 ° C, and Comparative Example 1 was 20 ° C). there were. Further, stirring was continued for 10 minutes or more to perform rolling granulation to obtain an appropriate particle size. Then, 5 parts by weight of zeolite was added (IV in the table) and stirred for about 1 minute to coat the particle surface with zeolite. . The obtained granulated product was subjected to the next sieving step without any temperature control. Oversized particles were sieved and pulverized with a sieve having a mesh opening of 1.5 mm, and combined with the sieve passage to obtain target detergent particles. The enzyme granulated product was blended in a V-type blender at a ratio of 2 parts by weight with respect to 98 parts by weight of the detergent particles (V in the table) to obtain a final form of the detergent composition (I in the table).
[0043]
[B-3] Preparation method 3 of high bulk density particle detergent (Example 6, Comparative Example 2)
A Readyge mixer (Matsuzaka) in which 83 parts by weight (II in the table) and 10 parts by weight of zeolite (III in the table) of the composition described in the table were circulated through the jacket part with warm water of 75 ° C. (comparative example 3 was room temperature). And stirred. The mixer was stopped at the stage of 5 minutes after the start of stirring, and the internal detergent particles were taken out and the temperature was measured. As a result, the temperature was 60 ° C. (Comparative Example 3 was 20 ° C.). Further, the mixture was stirred for 10 minutes or more to perform rolling granulation to obtain an appropriate particle size, and then 5 parts by weight of zeolite (IV in the table) was added and stirred for 1 minute to coat the particle surface with zeolite. The obtained granulated product was subjected to the next sieving step without any temperature control. Oversized particles were sieved and pulverized with a sieve having a mesh opening of 1.5 mm, and combined with the sieve passage to obtain target detergent particles. The enzyme granulated product was blended in a V-type blender at a ratio of 2 parts by weight with respect to 98 parts by weight of the detergent particles (V in the table) to obtain a final form of the detergent composition (I in the table).
[0044]
[B-4] Preparation method 4 of high bulk density particle detergent (Example 8)
A high-speed mixer in which 79 parts by weight (II in the table) of dry granule having the composition described in the table, 9 parts by weight of zeolite, and 4 parts by weight of crystalline silicate (III in the table) were circulated through the jacket part with 70 ° C hot water ( Fukae Kogyo Co., Ltd.) and gradually added by spraying 1 part by weight of AE (III in the table) heated to 50 ° C. while stirring. When the stirring was performed for 5 minutes after the end of spraying, the mixer was stopped, the detergent particles inside were taken out, and the temperature was measured. Continue stirring for 10 minutes to perform tumbling granulation to obtain an appropriate particle size, then to an appropriate particle size, add 5 parts by weight of zeolite (IV in the table), and stir for about 1 minute. Was coated with zeolite. The obtained granulated product was subjected to the next sieving step without any temperature control. Oversized particles were sieved and pulverized with a sieve having a mesh opening of 1.5 mm, and combined with the sieve passage to obtain target detergent particles. The enzyme granulated product was blended in a V-type blender at a ratio of 2 parts by weight with respect to 98 parts by weight of the detergent particles (V in the table) to obtain a final form of the detergent composition (I in the table).
[0045]
[C] Measurement of granular detergent particle strength
About the high-density granular detergent composition obtained in the said Examples 1-7 and Comparative Examples 1-2, particle | grain intensity | strength was measured with the following method. When the detergent particles are hard, plastic deformation is not caused even when pressure is applied, and as a result, the detergent particles do not clump or can be broken down with a weak force even when solidified. As an index representing the strength of the detergent particles, the ease of solidification when pressure was applied and the ease of collapse of the solid detergent particle mass were measured as “consolidation fracture load”. The measurement method will be described below, and those having a “consolidation fracture load” of “not measurable” are because the detergent lump was not formed under a constant pressure condition and can be said to be the most preferable detergent particles. If it is measurable, the smaller the number, the better.
[0046]
<Consolidated fracture load measurement method>
(1) Equipment used
・ Tapping machine: Tapping type close-packed bulk density meter TVP-1 (manufactured by Tsutsui Rika Instruments Co., Ltd.)
・ Fracture load measuring device: FUDO RHEOMETER RT-3020D-CW type (manufactured by Leotech Co., Ltd.)
(2) Measurement conditions: room temperature (detergent particle temperature is 20 ° C.)
(3) Measuring method:
A metal cylinder having an outer diameter of 50 mm and an inner diameter of 30 mm was placed in a cup-shaped container having a matching size, and 30 g of detergent particles were placed in the cylindrical portion so that the surface was smooth. Next, a metal cylinder (380 g) was gently placed on the detergent particles as a weight, and tapped 30 times (falling distance 25 mm) with the above tapping machine. Remove the cylinder from the cup, carefully press the compressed detergent particles (detergent particle lump) remaining inside the cylinder from the top with the cylinder, and gently place the detergent particle lump on the plate (with the circular part at the bottom) It was. The detergent lump was placed on the plate and moved to the sample lifting platform of the rheometer, and the maximum load at break was measured at a speed of 2 cm / min. At this time, the detergent particles that could not be taken out as a lump were indicated as “not measurable”.
[0047]
[Table 2]
Figure 0003830639
[0048]
[Table 3]
Figure 0003830639
[0049]
[Table 4]
Figure 0003830639
[0050]
[Table 5]
Figure 0003830639
[0051]
(note)
LAS: alkylbenzene sulfonic acid soda [manufactured by Nisseki Detergent Co., Ltd., alkyl benzene sulfonic acid "alkene L (alkyl 10 to 14 carbon atoms) neutralized with 48% NaOH]]
AS: Mitsubishi Chemical Co., Ltd. Dovanol 25 sulfate (C 12 ~ C 15 Sodium salt of sulfuric acid)
・ SFE: Palm oil derived, alpha sulfo fatty acid methyl ester soda
・ Fatty acid salt: Sodium palmitate
・ AE: Noned R-7 (C 12 ~ C 15 Alcohol with an average of 7.2 moles of ethylene oxide added, manufactured by Mitsubishi Chemical Corporation)
・ Zeolite: A-type zeolite, average particle size 3μm
・ Crystalline silicate: SKS-6, δ-Na 2 Si 2 O Five , Crystalline layered sodium silicate, average particle size 20 μm, manufactured by Hoechst Tokuyama
・ Silicate: Amorphous sodium silicate, JIS No. 1 sodium silicate
・ Soda carbonate: dense grain ash
PAS: sodium polyacrylate, average molecular weight 12000
AA-MA: Socaran CP5, acrylic acid-maleic acid copolymer, average molecular weight 70000
・ Fluorescent dye: Cinopal CBS (Ciba Geigy) and Whitetex SA (Sumitomo Chemical Co., Ltd.) blended in the same amount by weight
Enzyme: Sabinase 12.0T typeW (protease), lipolase 100T (lipase), Termamyl 60T (amylase) (the above enzyme, manufactured by Novo Nordisk) and KAC500 (alkaline cellulase, manufactured by Kao Corporation) in a weight ratio of 2: Mixed at a ratio of 1: 1: 1

Claims (5)

a)非石けん性アニオン性界面活性剤10〜30重量%、
b)下式(I)で表されるポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤の混合物5重量%以上15重量%以下、及び
Figure 0003830639
(式中、Rは炭素数7〜19の飽和または不飽和炭化水素基を表し、EOはオキシエチレン基を表し、nはオキシエチレン基の平均付加モル数であり、0.5≦n≦3である。)
c)無機性成分
を含有する高密度粒状洗剤の製造方法であって、
少なくとも、a)非石けん性アニオン性界面活性剤、b)上記式(I)で表されるポリオキシエチレン高級脂肪酸モノエタノールアミド界面活性剤の混合物、及びc)無機性成分の三成分を含有する水性混合物の噴霧乾燥によって調製される乾燥粉粒体を、1)圧密成形後破砕造粒するか又は2)転動造粒し、高嵩密度粒状洗剤を製造する過程において、該成形又は造粒工程中、乾燥粉粒体を、前記b)成分の融点を5℃以上上回る温度域に保持することを特徴とする高密度粒状洗剤の製造方法。
a) 10-30% by weight of a non-soap anionic surfactant,
b) a mixture of polyoxyethylene higher fatty acid monoethanolamide surfactant represented by the following formula (I): 5 wt% or more and 15 wt% or less, and
Figure 0003830639
(In the formula, R represents a saturated or unsaturated hydrocarbon group having 7 to 19 carbon atoms, EO represents an oxyethylene group, n represents the average number of added moles of the oxyethylene group, and 0.5 ≦ n ≦ 3. .)
c) Inorganic component
A method for producing a high-density granular detergent containing
At least, a) non-soap anionic surfactant, b) a mixture of polyoxyethylene higher fatty acid monoethanolamide surfactant represented by the formula (I), the three components of beauty c) inorganic component In the process of 1) crushing granulation after compaction molding or 2) rolling granulation to produce a high bulk density granular detergent, A method for producing a high-density granular detergent, characterized in that, during the granulation step, the dry powder is maintained in a temperature range that exceeds the melting point of the component b) by 5 ° C or more.
高密度粒状洗剤中のa)、b)及びc)成分の重量比が、b)/a)=0.05〜1、〔a)+b)〕/c)=0.2〜1である請求項記載の製造方法。The weight ratio of components a), b) and c) in the high-density granular detergent is b) / a) = 0.05 to 1, [a) + b)] / c) = 0.2 to 1. The manufacturing method of description. c)成分が非晶質珪酸ナトリウムを含む請求項1又は2記載の製造方法。The method according to claim 1 or 2, wherein the component c) contains amorphous sodium silicate. 前記圧密成形を、A)ローラーを用いて行うシート状成形又はB)押し出し成形機を用いた棒状成形により行い、その後、成形物を平均粒径が200〜1000μmの粒度に破砕造粒する請求項1〜3の何れか1項記載の製造方法。The compacting is performed by A) sheet-like molding using a roller or B) rod-like molding using an extrusion molding machine, and thereafter crushing and granulating the molded product to a particle size having an average particle size of 200 to 1000 µm. The manufacturing method of any one of 1-3. 前記転動造粒を、C)竪型高速ミキサー又はD)横型ミキサーで行い、平均粒径を200〜1000μmの粒度に造粒する請求項1〜3の何れか1項記載の製造方法。The production method according to any one of claims 1 to 3, wherein the rolling granulation is performed with C) vertical high-speed mixer or D) horizontal mixer, and the average particle size is granulated to a particle size of 200 to 1000 µm.
JP29715797A 1997-10-29 1997-10-29 Method for producing high density granular detergent Expired - Fee Related JP3830639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29715797A JP3830639B2 (en) 1997-10-29 1997-10-29 Method for producing high density granular detergent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29715797A JP3830639B2 (en) 1997-10-29 1997-10-29 Method for producing high density granular detergent

Publications (2)

Publication Number Publication Date
JPH11131100A JPH11131100A (en) 1999-05-18
JP3830639B2 true JP3830639B2 (en) 2006-10-04

Family

ID=17842937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29715797A Expired - Fee Related JP3830639B2 (en) 1997-10-29 1997-10-29 Method for producing high density granular detergent

Country Status (1)

Country Link
JP (1) JP3830639B2 (en)

Also Published As

Publication number Publication date
JPH11131100A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
US6369020B1 (en) Granular detergent components and particulate detergent compositions containing them
CA2342938C (en) Particulate laundry detergent compositions containing nonionic surfactant granules
CA2028204A1 (en) Detergent compositions
EP0544492A1 (en) Particulate detergent compositions
CA2350467A1 (en) Detergent compositions
CA2351760C (en) Particulate laundry detergent compositions containing anionic surfactant granules
EP1387880B1 (en) Granular composition
TW517080B (en) Process for preparing high bulk density detergent compositions
US6391846B1 (en) Particulate detergent composition containing zeolite
AU2001263823A1 (en) Granular detergent component and process for its preparation
CA2402332C (en) Particulate laundry detergent composition comprising two granular components with different bulk densities
JP3830639B2 (en) Method for producing high density granular detergent
CA2463234C (en) Detergent compositions comprising an alkali metal carbonate salt and a water soluble-organic acid
EP0670887B2 (en) Detergent compositions
AU760259B2 (en) Detergent compositions
EP1436378B1 (en) Detergent compositions containing potassium carbonate and process for preparing them
US20030114347A1 (en) Detergent compositions
JP2004210819A (en) Bleach detergent composition and its manufacturing process
US20030022808A1 (en) Granular Composition
WO2005105976A1 (en) Detergent composition
EP1832648A1 (en) Laundry detergent composition and process
AU2001244163A1 (en) Detergent compositions

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees