JP3830206B2 - Method for producing α-benzyl acrylate - Google Patents

Method for producing α-benzyl acrylate Download PDF

Info

Publication number
JP3830206B2
JP3830206B2 JP14648196A JP14648196A JP3830206B2 JP 3830206 B2 JP3830206 B2 JP 3830206B2 JP 14648196 A JP14648196 A JP 14648196A JP 14648196 A JP14648196 A JP 14648196A JP 3830206 B2 JP3830206 B2 JP 3830206B2
Authority
JP
Japan
Prior art keywords
general formula
compound represented
acid
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14648196A
Other languages
Japanese (ja)
Other versions
JPH09301924A (en
Inventor
哲哉 池本
和孝 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP14648196A priority Critical patent/JP3830206B2/en
Publication of JPH09301924A publication Critical patent/JPH09301924A/en
Application granted granted Critical
Publication of JP3830206B2 publication Critical patent/JP3830206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は医薬品中間体として有用な化合物の前駆体であるα−ベンジルアクリル酸誘導体の合成法に関する。
【0002】
【従来の技術】
α−ベンジルアクリル酸エステルの製法は数多く知られているが、3つの製法に大別される。一つはマロン酸ジエチルやジエチルホスホノ酢酸エチルなどの活性エステルにベンジルクロリドとホルマリンを反応させ、後脱水する方法で、この際ジメチルアミンなどを合わせて反応させる場合もある。この反応はJ.Issa et al,Synth.Commun.,1489(1995)、R.Queignec et al.,Synth.Commun.,1213(1988)、B.Kirschleger et al.,Synthesis 926(1986)、R.B.Miller et al.,Synth.Commun.,359(1973)などに記載されている。
【0003】
もう一つは、α−ハロメチルアクリル酸エステルなどにフェニルマグネシウムハライドなどを、SN 2’求核反応させるもの(C.Najera et al.,Tetrahedron Letters,3837(1989)、H.Amri et al.,J.Organomet.Chem.,C27(1986))である。
【0004】
さらにα−ハロメチルアクリル酸エステルなどを亜鉛でアニオンとした後、フェニルハライドとパラジウム触媒の存在下反応させる方法(N.El Alami et al.,J.Organomet.Chem.,157(1988))などがある。
【0005】
【発明が解決しようとする課題】
しかしながら、これら文献に記載されている方法を工業的な製造法として用いようとしても必ずしも実用的とは言い難く、簡便かつ効率的な合成法の出現が望まれていた。
【0006】
【課題を解決するための手段】
このような現状に鑑み、本発明者らは、α−ハロメチルアクリル酸エステルなどと置換ベンゼンとがルイス酸触媒を用いることにより速やかに反応し、α−ベンジルアクリル酸エステル誘導体が極めて高選択的、高収率で得られることを見い出し本発明を完成するに至った。
【0007】
すなわち、本発明は、下記一般式(1)で示される化合物と一般式(2)で示される化合物を、ルイス酸の存在下に反応させることを特徴とする一般式(3)で示されるα−ベンジルアクリル酸エステル類の製造方法にある。
【0008】
【化4】

Figure 0003830206
(式中、X1 〜X5 はそれぞれ水素原子、炭素数1〜12の直鎖もしくは分枝アルキル基またはアルコキシ基を示す。)
【0009】
【化5】
Figure 0003830206
(式中、Yはハロゲン子を示す。Rは炭素数1〜18の直鎖または分枝アルキル基を示す。)
【0010】
【化6】
Figure 0003830206
【0011】
本発明の反応が高収率で進行するのは、ルイス酸が一般式(3)で示される化合物のエステル部と式中のYで示される原子または基に親和できることでアルカリカチオン的になりやすく、その結果ベンゼン環に対する求電子置換が容易になるためであると考えられる。これは今までこの種の反応では知られていない新しい反応である。
以下、本発明を具体的に説明する。
【0012】
【発明の実施の形態】
本発明において一般式(3)で示されるα−ベンジルアクリル酸エステル類を得るための原料である一般式(1)で示される化合物としては、式中X1 〜X5 はそれぞれ水素原子以上の電子供与性基であるものが好ましいが、水素原子でも十分な反応速度が得られる。反応性は電子供与性である方が高くなり、直鎖または分岐アルキル基、アルコキシ基が好ましいが、電子供与性が高すぎるとベンゼン環の反応位置が単一にならない場合があり、アルキル基、アルコキシ基が好ましい。
【0014】
一般式(2)で示される化合物としては、Yはハロゲン原子であることが好ましく、特に塩素原子あるいは臭素原子であることが最も好ましい。しかしながら一般に易脱離基であれば十分である。
【0015】
本発明を実施するに当り上記一般式(1)で示される化合物と一般式(2)で示される化合物の混合モル比は、一般式(1)で示される化合物が一般式(2)で示される化合物の1倍から200倍であることが好ましい。一般に一般式(1)で示される化合物を大過剰用いた方が反応選択率が上がる傾向があり、混合モル比は、一般式(1)で示される化合物が一般式(2)で示される化合物の5倍から50倍が最も好ましいが、一般式(1)で示される化合物の沸点が高く、除去が困難な場合は、一般式(1)で示される化合物が一般式(2)で示される化合物の1倍以上であれば十分使用可能である。
【0016】
反応の際の混合順序は、一般式(1)で示される化合物と一般式(2)で示される化合物を混合してからルイス酸を添加する方法、一般式(1)で示される化合物とルイス酸を混合したものに、一般式(2)で示される化合物を添加する方法、一般式(2)で示される化合物とルイス酸を混合したものに、一般式(1)で示される化合物を添加する方法の何れを用いてもよい。好ましいのは、一般式(1)で示される化合物と一般式(2)で示される化合物を混合してからルイス酸を添加する方法、一般式(1)で示される化合物とルイス酸を混合したものに、一般式(2)で示される化合物を添加する方法である。
【0017】
本発明で使用するルイス酸としては、一般にルイス酸と呼ばれるものならば使用することができる。一般にハロゲン化金属が好適に用いられ、例えば、ハロゲン化アルミニウム、ハロゲン化亜鉛、ハロゲン化チタン、ハロゲン化すず、ハロゲン化鉄、ハロゲン化ほう素、ハロゲン化マグネシウム、ハロゲン化アンチモン、ハロゲン化ケイ素、ランタニド金属のハロゲン化物などがあげられる。なお、置換ハロゲンの1つ以上は、トリフルオロメタンスルホニルオキシ基、炭素数1から20までのアルキル基、炭素数1から20までのアルコキシル基、フェノキシ基、1−ナフトキシ基、2−ナフトキシ基、1,1′−バイ−2−ナフトキシ基等で置換されていてもよい。一般には上述のハロゲン化金属で十分好適に反応し、最も一般的な塩化アルミニウムで十分に反応する場合が多く、コスト等を考えると好ましい。なお場合によっては硫酸、塩酸、りん酸、フッ化水素酸、硝酸などの鉱酸や酸性イオン交換樹脂なども使用できる。
【0018】
ルイス酸は1つの化合物を用いることで十分であるが、場合によってはルイス酸同士の併用、ブレンステッド酸の併用も可能である。またルイス酸にいくつかの化合物を混入させた方が活性があがることがあり、このような添加物を加えても良い。
【0019】
ルイス酸の使用量は一般に一般式(2)で示される化合物に対して0.01〜10当量で、好ましくは1〜5当量である。
【0020】
本発明の反応温度は−100〜200℃であるが、好ましくは−80〜80℃である。反応温度が低いと反応速度が遅くなり、温度が高いと副反応が増大するとともに、ベンゼン環の置換位置も制御できなくなる傾向にある。
【0021】
反応圧力は、絶対圧で0.01〜50kg/cm2 であり、好ましくは0.1〜10kg/cm2 である。さらに好ましくは0.8〜1.2kg/cm2 である。
【0022】
本発明の反応を行うに当り溶媒は必ずしも必要でないが、必要ならば溶媒を用いることができる。溶媒としては、例えば、塩化メチレンシ、クロロホルム、ジクロロエタン、テトラクロロエタン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、四塩化炭素等のハロゲン系溶媒、n−ヘキサン、シクロヘキサン等の脂肪族炭化水素、ニトロベンゼン、ベンゼン等の芳香族炭化水素、二硫化炭素、ニトロメタンなどを挙げることができる。
【0023】
反応時間は、通常0.01〜100時間、好ましくは0.1〜24時間である。
【0024】
【実施例】
(実施例1)
Villierasらの方法(Synthesis924(1982))に従って合成したα−ブロモメチルアクリル酸エチル5.0gの無水ベンゼン溶液30mlを、無水塩化アルミニウム7.5gを分散させた無水ベンゼン40ml溶液に温度0〜5℃で滴下した後0〜5℃で2時間撹拌した。反応液を2規定塩酸100mlにあけ、有機相を分離した。有機相を2規定塩酸50ml、水50ml、食塩水50mlでそれぞれ洗浄した後、溶媒を留去し、4.9gのα−メチレンベンゼンプロパン酸エチルを得た。
【0025】
得られたα−メチレンベンゼンプロパン酸エチルのGC純度は97%、収率は97%であった。また、核磁気共鳴スペクトル(NMR)による分析結果は次の通りであった。
1H−NMR(CDCl3 )1.26(3H,t,J=7Hz),3.63(2H,s),4.18(2H,q,J=7Hz),5.44−5.46(1H,m),6.23(1H,s),7.19−7.32(5H,m).
【0026】
(実施例2)
実施例1と同様にして合成した。α−ブロモメチルアクリル酸エチル6.0gの無水トルエン溶液40mlを、無水塩化アルミニウム9.4gを分散させた無水トルエン60ml溶液に温度0〜5℃で滴下した後、0〜5℃で2時間撹拌した。反応液を2規定塩酸100mlにあけ、有機相を分離した。有機相を、2規定塩酸60ml、水60ml、食塩水60mlでそれぞれ洗浄した後、溶媒を留去し6.4gの4−メチル−α−メチレンベンゼンプロパン酸エチルと2−メチル−α−メチレンベンゼンプロパン酸エチルの混合物をそれぞれ53%と47%の存在比で得た。
【0027】
かくして得られた両化合物を合わせたもののGC純度は96%、収率は96%であった。また、NMRによる分析結果は次の通りであった。
1H−NMR(CDCl3 )1.28,1.29(3H,[t,J=7Hz],[t,J=7Hz]),2.32,2.55(3H,s,s),3.59,3.62(2H,s,s),4.18,4.23(2H,[t,J=7Hz],[t,J=7Hz]),5.16−5.17,5.44−5.45(1H,m,m),6.21,6.21(1H,s,s),6.98−7.23(4H,m).
【0028】
【発明の効果】
本発明によればα−ベンジル−β−メルカプトプロピオン酸、α−ベンジル−β−ハロプロピオン酸、α−ベンジル−β−アミノプロピオン酸、α−ベンジル−β−ヒドロキシプロピオン酸など医薬中間体として有用な化合物の前駆体であるα−ベンジルアクリル酸誘導体を簡便な方法で効率的に合成できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for synthesizing an α-benzylacrylic acid derivative which is a precursor of a compound useful as a pharmaceutical intermediate.
[0002]
[Prior art]
Many methods for producing α-benzyl acrylate are known, but they are roughly divided into three methods. One is a method in which benzyl chloride and formalin are reacted with an active ester such as diethyl malonate or ethyl diethylphosphonoacetate, followed by dehydration. In this case, dimethylamine or the like may be reacted together. This reaction is described in J. Org. Issa et al, Synth. Commun. 1489 (1995), R.A. Queignec et al. Synth. Commun. , 1213 (1988), B.R. Kirschleger et al. , Synthesis 926 (1986), R .; B. Miller et al. Synth. Commun. 359 (1973).
[0003]
Another, alpha-like halomethyl acrylate ester such as phenyl magnesium halide, S N 2 'which is a nucleophilic reaction (C.Najera et al., Tetrahedron Letters , 3837 (1989), H.Amri et al J. Organomet. Chem., C27 (1986)).
[0004]
Further, α-halomethylacrylic acid ester or the like is converted into an anion with zinc, and then reacted with phenyl halide in the presence of a palladium catalyst (N. El Alami et al., J. Organomet. Chem., 157 (1988)), etc. There is.
[0005]
[Problems to be solved by the invention]
However, even if it is going to use the method described in these literature as an industrial manufacturing method, it cannot necessarily be said to be practical, and the appearance of the simple and efficient synthesis method was desired.
[0006]
[Means for Solving the Problems]
In view of such a current situation, the present inventors rapidly reacted α-halomethyl acrylate and the like with substituted benzene by using a Lewis acid catalyst, and α-benzyl acrylate derivative is extremely highly selective. The present invention has been completed by finding that it can be obtained in a high yield.
[0007]
That is, the present invention provides an α represented by the general formula (3), which comprises reacting a compound represented by the following general formula (1) with a compound represented by the general formula (2) in the presence of a Lewis acid. -It exists in the manufacturing method of benzyl acrylate ester.
[0008]
[Formula 4]
Figure 0003830206
(In the formula, X 1 to X 5 each represent a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or an alkoxy group .)
[0009]
[Chemical formula 5]
Figure 0003830206
(Wherein, Y is .R showing a halogen atom is a straight-chain or branched alkyl group having 1 to 18 carbon atoms.)
[0010]
[Chemical 6]
Figure 0003830206
[0011]
The reaction of the present invention proceeds at a high yield because the Lewis acid can easily become an alkali cation because it can have affinity with the ester moiety of the compound represented by the general formula (3) and the atom or group represented by Y in the formula. As a result, the electrophilic substitution on the benzene ring is facilitated. This is a new reaction that has not been known so far for this type of reaction.
The present invention will be specifically described below.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
It is a raw material for obtaining the α- benzyl acrylate esters as the compounds represented by the general formula (1), wherein X 1 to X 5 are, respectively it hydrogen represented by the general formula (3) in the present invention Those having an electron donating group of atoms or more are preferred, but a sufficient reaction rate can be obtained even with a hydrogen atom. The reactivity is higher when it is electron-donating, and linear or branched alkyl groups and alkoxy groups are preferred. However, if the electron-donating property is too high, the reaction position of the benzene ring may not be single, and the alkyl group, Alkoxy groups are preferred.
[0014]
In the compound represented by the general formula (2), Y is preferably a halogen atom, and most preferably a chlorine atom or a bromine atom. However, generally an easily leaving group is sufficient.
[0015]
In carrying out the present invention, the mixing molar ratio of the compound represented by the general formula (1) and the compound represented by the general formula (2) is the same as the compound represented by the general formula (1). It is preferable that it is 1 to 200 times the compound to be obtained. In general, the reaction selectivity tends to increase when the compound represented by the general formula (1) is used in a large excess, and the mixing molar ratio of the compound represented by the general formula (1) is the compound represented by the general formula (2). The compound represented by the general formula (1) is represented by the general formula (2) when the boiling point of the compound represented by the general formula (1) is high and removal is difficult. If it is 1 time or more of a compound, it can fully be used.
[0016]
The mixing order during the reaction is the method of adding the Lewis acid after mixing the compound represented by the general formula (1) and the compound represented by the general formula (2), the compound represented by the general formula (1) and Lewis A method of adding a compound represented by general formula (2) to a mixture of acids, a compound represented by general formula (1) being added to a mixture of a compound represented by general formula (2) and a Lewis acid Any method may be used. Preferred is a method in which a compound represented by the general formula (1) and a compound represented by the general formula (2) are mixed and then a Lewis acid is added. A compound represented by the general formula (1) and a Lewis acid are mixed. In this method, the compound represented by the general formula (2) is added to the product.
[0017]
As the Lewis acid used in the present invention, those generally called Lewis acids can be used. Generally, metal halides are preferably used. For example, aluminum halide, zinc halide, titanium halide, tin halide, iron halide, boron halide, magnesium halide, antimony halide, silicon halide, lanthanide Examples thereof include metal halides. One or more of the substituted halogens are a trifluoromethanesulfonyloxy group, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a phenoxy group, a 1-naphthoxy group, a 2-naphthoxy group, , 1′-bi-2-naphthoxy group or the like. In general, the above-mentioned metal halides react sufficiently well, and the most common aluminum chloride often reacts well, which is preferable in view of cost and the like. In some cases, mineral acids such as sulfuric acid, hydrochloric acid, phosphoric acid, hydrofluoric acid, and nitric acid, and acidic ion exchange resins can also be used.
[0018]
It is sufficient to use a Lewis acid as one compound, but in some cases, a combination of Lewis acids and a Bronsted acid can be used. Further, mixing some compounds with Lewis acid may increase the activity, and such additives may be added.
[0019]
Generally the usage-amount of a Lewis acid is 0.01-10 equivalent with respect to the compound shown by General formula (2), Preferably it is 1-5 equivalent.
[0020]
Although the reaction temperature of this invention is -100-200 degreeC, Preferably it is -80-80 degreeC. When the reaction temperature is low, the reaction rate is slow, and when the temperature is high, side reactions increase and the substitution position of the benzene ring tends to be uncontrollable.
[0021]
The reaction pressure is 0.01 to 50 kg / cm 2 in absolute pressure, preferably 0.1 to 10 kg / cm 2 . More preferably, it is 0.8-1.2 kg / cm < 2 >.
[0022]
A solvent is not necessarily required for carrying out the reaction of the present invention, but a solvent can be used if necessary. Examples of the solvent include halogen solvents such as methylene chloride, chloroform, dichloroethane, tetrachloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, carbon tetrachloride, and aliphatic such as n-hexane and cyclohexane. Examples include hydrocarbons, aromatic hydrocarbons such as nitrobenzene and benzene, carbon disulfide, and nitromethane.
[0023]
The reaction time is usually 0.01 to 100 hours, preferably 0.1 to 24 hours.
[0024]
【Example】
Example 1
30 ml of an anhydrous benzene solution of 5.0 g of ethyl α-bromomethylacrylate synthesized according to the method of Villieras et al. After dropwise addition, the mixture was stirred at 0 to 5 ° C. for 2 hours. The reaction solution was poured into 100 ml of 2N hydrochloric acid, and the organic phase was separated. The organic phase was washed with 50 ml of 2N hydrochloric acid, 50 ml of water and 50 ml of brine, respectively, and then the solvent was distilled off to obtain 4.9 g of ethyl α-methylenebenzenepropanoate.
[0025]
GC purity of the obtained ethyl α-methylenebenzenepropanoate was 97%, and the yield was 97%. Moreover, the analysis result by a nuclear magnetic resonance spectrum (NMR) was as follows.
1 H-NMR (CDCl 3 ) 1.26 (3H, t, J = 7 Hz), 3.63 (2H, s), 4.18 (2H, q, J = 7 Hz), 5.44-5.46 (1H, m), 6.23 (1H, s), 7.19-7.32 (5H, m).
[0026]
(Example 2)
Synthesis was performed in the same manner as in Example 1. After dripping 40 ml of anhydrous toluene solution of 6.0 g of ethyl α-bromomethylacrylate into 60 ml of anhydrous toluene solution in which 9.4 g of anhydrous aluminum chloride is dispersed at a temperature of 0 to 5 ° C., the mixture is stirred at 0 to 5 ° C. for 2 hours. did. The reaction solution was poured into 100 ml of 2N hydrochloric acid, and the organic phase was separated. The organic phase was washed with 60 ml of 2N hydrochloric acid, 60 ml of water and 60 ml of brine, respectively, and the solvent was distilled off to obtain 6.4 g of ethyl 4-methyl-α-methylenebenzenepropanoate and 2-methyl-α-methylenebenzene. A mixture of ethyl propanoate was obtained with abundance ratios of 53% and 47%, respectively.
[0027]
The GC purity of the combination of both compounds thus obtained was 96% and the yield was 96%. Moreover, the analysis result by NMR was as follows.
1 H-NMR (CDCl 3 ) 1.28, 1.29 (3H, [t, J = 7 Hz], [t, J = 7 Hz]), 2.32, 2.55 (3H, s, s), 3.59, 3.62 (2H, s, s), 4.18, 4.23 (2H, [t, J = 7 Hz], [t, J = 7 Hz]), 5.16-5.17, 5.44-5.45 (1H, m, m), 6.21, 6.21 (1H, s, s), 6.98-7.23 (4H, m).
[0028]
【The invention's effect】
According to the present invention, α-benzyl-β-mercaptopropionic acid, α-benzyl-β-halopropionic acid, α-benzyl-β-aminopropionic acid, α-benzyl-β-hydroxypropionic acid and other useful pharmaceutical intermediates An α-benzylacrylic acid derivative which is a precursor of a simple compound can be efficiently synthesized by a simple method.

Claims (1)

下記一般式(1)で示される化合物と一般式(2)で示される化合物をルイス酸の存在下に反応させることを特徴とする一般式(3)で示されるα−ベンジルアクリル酸エステル類の製造方法。
Figure 0003830206
(式中、X1 〜X5 はそれぞれ水素原子、炭素数1〜12の直鎖もしくは分枝アルキル基またはアルコキシ基を示す。)
Figure 0003830206
(式中、Yはハロゲン子を示す。Rは炭素数1〜18の直鎖または分枝アルキル基を示す。)
Figure 0003830206
(式中、X1 〜X5 は一般式(1)の化合物、Rは一般式(2)の化合物と同じ定義である。)
A compound represented by the following general formula (1) and a compound represented by the general formula (2) are reacted in the presence of a Lewis acid; Production method.
Figure 0003830206
(In the formula, X 1 to X 5 each represent a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or an alkoxy group .)
Figure 0003830206
(Wherein, Y is .R showing a halogen atom is a straight-chain or branched alkyl group having 1 to 18 carbon atoms.)
Figure 0003830206
(Wherein, X 1 to X 5 are the compounds of the general formula (1), and R is the same definition as the compound of the general formula (2).)
JP14648196A 1996-05-17 1996-05-17 Method for producing α-benzyl acrylate Expired - Lifetime JP3830206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14648196A JP3830206B2 (en) 1996-05-17 1996-05-17 Method for producing α-benzyl acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14648196A JP3830206B2 (en) 1996-05-17 1996-05-17 Method for producing α-benzyl acrylate

Publications (2)

Publication Number Publication Date
JPH09301924A JPH09301924A (en) 1997-11-25
JP3830206B2 true JP3830206B2 (en) 2006-10-04

Family

ID=15408624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14648196A Expired - Lifetime JP3830206B2 (en) 1996-05-17 1996-05-17 Method for producing α-benzyl acrylate

Country Status (1)

Country Link
JP (1) JP3830206B2 (en)

Also Published As

Publication number Publication date
JPH09301924A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
US20040106818A1 (en) Process for the preparation of cyclohexanol derivatives
US7022857B2 (en) Preparation of substituted aromatic compounds
JP3830206B2 (en) Method for producing α-benzyl acrylate
JPH08268958A (en) Preparation of alkylated aromatic carboxylic acid and halogenated acyl
JP2017149686A (en) Production method of ketoxime compound
JPS61280449A (en) Manufacture of substituted naphthoic acid compound
EP0072884B1 (en) Process for production of alpha-haloalkylamides
JP5023683B2 (en) Process for producing benzofluorene derivative and intermediate thereof
JP4649733B2 (en) Method for producing acetophenone compound containing trifluoromethyl group
JP2017002002A (en) Fluorine-containing organic compound and manufacturing method of biaryl compound by the same and grignard reagent
JP2000095730A (en) Production of halogenated phenylmalonic ester
EP2325158B1 (en) Process for production of phthaloyl dichloride compounds
JP4057271B2 (en) Novel synthesis of inolate anion
JPH08245558A (en) Production of aromatic or heteroaromatic sulfide compound
EP0290015B1 (en) Process for preparing macrocyclic 2-halogenoketones
JPH0920716A (en) Production of 2,2-dialkylarylidenecycloalkanones
JP4081588B2 (en) Process for producing N-trialkylmethylcarbonyl-2-alkyl-3,4-difluoroaniline
JP3340761B2 (en) Process for producing para-tertiary butoxy-α-methylstyrene
JPH10130178A (en) Production of gem-difluoroolefins, zirconocene for the production, and production thereof
JPH04984B2 (en)
JPH10251190A (en) Aromatic ketone compound, its production and intermediate thereof
JP2542503B2 (en) Synthetic method of cyclohexanone derivative
JP4839678B2 (en) Method for producing dihalogenated biaryl derivative
JP2600107B2 (en) Method for producing fluorine-containing compound
JP2646294B2 (en) Nitrile production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term