JP3829954B2 - Hollow cross-section regenerated cellulose fiber and process for producing the same - Google Patents

Hollow cross-section regenerated cellulose fiber and process for producing the same Download PDF

Info

Publication number
JP3829954B2
JP3829954B2 JP31626196A JP31626196A JP3829954B2 JP 3829954 B2 JP3829954 B2 JP 3829954B2 JP 31626196 A JP31626196 A JP 31626196A JP 31626196 A JP31626196 A JP 31626196A JP 3829954 B2 JP3829954 B2 JP 3829954B2
Authority
JP
Japan
Prior art keywords
cellulose
spinning
polymerization
fiber
regenerated cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31626196A
Other languages
Japanese (ja)
Other versions
JPH10158922A (en
Inventor
和之 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP31626196A priority Critical patent/JP3829954B2/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to AU49684/97A priority patent/AU4968497A/en
Priority to AT97912541T priority patent/ATE245214T1/en
Priority to CN97199924A priority patent/CN1080779C/en
Priority to EP97912541A priority patent/EP0952243B1/en
Priority to DE69723582T priority patent/DE69723582T2/en
Priority to PCT/JP1997/004269 priority patent/WO1998022642A1/en
Publication of JPH10158922A publication Critical patent/JPH10158922A/en
Priority to US09/308,608 priority patent/US6183865B1/en
Priority to US09/697,434 priority patent/US6527987B1/en
Application granted granted Critical
Publication of JP3829954B2 publication Critical patent/JP3829954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、N−メチルモルホリン−N−オキシド(以下、NMMOと略記する)を含む溶媒にセルロースを溶解した紡糸原液を用いて得られる中空断面の再生セルロース繊維、およびその製法に関し、特に光沢や風合いに優れると共に、耐フィブリル性の高められた高品質の中空断面再生セルロース繊維を得る技術に関するものである。
【0002】
【従来の技術】
NMMOを含む溶剤を用いた再生セルロース繊維の製法は、例えば特公昭57−11566号や同60−28848号などにも記載されている如く古くから知られている。ところが上記溶媒を用いた従来の製法では、得られる再生セルロース繊維がフィブリル化を起こし易いという大きな欠点を有しており、汎用化の障害となっていた。ところがこの方法は、環境に与える悪影響が少なく且つ経済的にも無駄のない方法であり、また得られる再生繊維の物性もある程度良好であるところから、最近再び注目を集めている。
【0003】
一方、上記フィブリル化の問題についても改良研究が進められ、例えば特表平8−501356号、同7−508320号、特開平8−49167号に見られる如く幾つかの特許出願もなされているが、現実には実用規模で満足のいく効果を得るまでには至っていない。
【0004】
また、上記溶剤を用いて得られる再生セルロース繊維を衣料分野等に適用する場合、繊維そのもの或は織・編物としたときの光沢や風合いを高める上で、横断面を中空にすることが有効と考えられるが、NMMO含有溶剤を用いた中空横断面形状の再生セルロース繊維については現在のところ全く検討されていない。
【0005】
【発明が解決しようとする課題】
本発明は、上記の様な状況に着目してなされたものであって、その目的は、前述したNMMO含有溶剤を用いた再生セルロース繊維の製法の特徴を活かし、その維持特性を、その横断面形状を中空化することによって更に改善すると共に、その欠点として指摘されるフィブリル化の問題を解消し、衣料用を始めとして優れた物性と風合いなどの外観に優れた再生セルロース繊維を提供すると共に、その様な繊維を安定して製造することのできる製法を確立しようとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決することのできた本発明の中空断面再生セルロース繊維とは、NMMOを含む溶剤にセルロースを溶解した紡糸原液を用いて製造された再生セルロース繊維であって、その横断面が中空であるところにその特徴が存在する。
【0007】
この再生セルロース繊維の中でも、該繊維中に含まれるセルロースの平均重合度が400以下であり、且つ該セルロースのうち5〜30重量%が重合度500以上であるものは、優れた物性と風合い等の外観特性を有しているばかりでなく耐フィブリル化においても非常に優れたものであり、衣料用と等に広く利用することができる。
【0008】
また本発明の製法は、上記特性を備えた中空断面再生セルロース繊維を製造する方法であって、NMMOを含む溶剤にセルロースを溶解した紡糸原液を用いて再生セルロース繊維を製造するに際し、C形断面の紡糸口金を用いて、乾湿式紡糸法によって紡糸を行ない、中空断面の再生セルロース繊維を製造することろに要旨が存在する。この方法を実施する際にも、紡糸原液中のセルロースの平均重合度を400以下に抑えると共に、該セルロースのうち5〜30重量%を重合度500以上に調整すれば、中空率の調整と共に得られる繊維の耐フィブリル性を高めることができるので好ましい。
【0009】
【発明の実施の形態】
本発明者らは前述の様な従来技術の欠点、特にNMMOを含む溶媒を用いた再生セルロース繊維に指摘されるフィブリル化を防止すべく、様々の角度から改良研究を進めてきた。その結果、上記溶媒を用いて再生セルロース繊維を製造する際に、紡糸工程で疑似液晶化現象を起こす様な紡糸原液を使用すると、得られる再生セルロース繊維はフィブリル化の極めて少ないものになるという、これまで何人も認識していなかった新たな事実を見出した。
【0010】
しかも、上記の様な疑似液晶化現象を生じる紡糸原液を使用し、C形断面の紡糸口金を用いて乾湿式紡糸を行なうと、横断面形状が中空で光沢や風合い等の非常に優れた再生セルロース繊維が容易に得られることを知った。
【0011】
そして更に研究を進めたところ、紡糸工程で上記の様な疑似液晶化を生じさせるには、紡糸原液中に溶解しているセルロースの重合度が極めて重要であり、該セルロースの平均重合度を特定すると共に、高重合度のセルロースと低重合度のセルロースを特定の比率で含有するものを使用すればよく、その様な混合セルロース溶液を紡糸原液として用いて紡糸を行なうと、フィブリル化が極めて少なく、しかも中空断面を有する良質の再生セルロース繊維が確実かつ容易に得られることをつきとめた。ここで「疑似液晶化現象」とは、紡糸時の流動場や伸長場においてセルロースが液晶状の転移を生じる現象を言う。
【0012】
なお、NMMO含有溶剤を用いて得られる公知の再生セルロース繊維は、いずれも横断面形状が略円中空形であり、中空断面のものは知られていない。そこで本発明の中空再生セルロース繊維は、従来の断面略円形の再生セルロースに比べると、再生セルロース繊維自身およびこれを用いた織編物としての光沢や風合い等において非常に優れたものとなり、それら特性面からしても従来の再生セルロース繊維とは明確に区別することのできる新たな発明として認識すべきものである。
【0013】
上記の様な特性の中空断面再生セルロース繊維は、NMMOを含む溶媒を用い、これにセルロースを溶解した紡糸原液を使用すると共に、C形断面の紡糸口金を用いて乾湿式紡糸することによって得られるが、この際紡糸原液中に溶解しているセルロースの平均重合度と高重合度セルロースの含有比率を適正に調整してやれば、紡糸工程で疑似液晶化現象を起こし、耐フィブリル性においても非常に優れた再生セルロース繊維を得ることが可能となる。
【0014】
即ち上記再生セルロース繊維を製造するに当たっては、紡糸原液に溶解しているセルロースの平均重合度を400以下とすると共に、該セルロース中に占める重合度500以上の高重合度セルロースの含有比率を5〜30重量%の範囲に納めるのがよく、この様に重合度の異なるセルロース混合物を使用すると、紡糸工程で高重合度のセルロース成分が相分離により伸び切り鎖を主体とする構造を形成し、その隙間を低重合度のセルロースが埋め、得られる再生セルロース繊維はあたかもコンポジット状の構造を形成することになり、フィブリル化が抑えられるものと思われる。
【0015】
つまり、高重合度セルロースが疑似液晶化現象を起こす主体となって長手方向に収斂して力学的特性を担い、一方、低重合度セルロースはその隙間を埋めて風合いなど衣料としての要求特性を高める作用を担い、それらの相加的乃至相乗的作用効果によって、紡糸口金の形状に応じた異形度が与えられると共に、優れた強度特性や風合いが与えられ、コンポジット状に複合された繊維構造によりフィブリル化を可及的に抑えることが可能となるのである。
【0016】
こうしたコンポジット状構造を確保すると共に、紡糸作業を円滑に行なうには、紡糸原液中に溶解しているセルロースの平均重合度を400以下に抑えるのがよく、また紡糸工程で疑似液晶化現象を確実に生じさせ、得られる再生セルロース繊維として十分な長手方向の力学的特性を確保するには、上記セルロース中に占める重合度500以上の高重合度セルロースの含有比率を5重量%以上にすることが極めて有効となる。即ち、高重合度セルロースの含有率が5重量%未満では、紡糸工程で上記の様な疑似液晶化現象が起こり難くなり、相分離によるフィブリル化防止効果が不十分になるばかりでなく、長手方向の力学的特性も乏しくなり、一方、重合度500以上の高重合度セルロースの含有比率が30重量%を越えると、紡糸工程で疑似液晶化現象は発生しても相分離が起こらず、本発明で意図する様な中空断面の再生セルロースが得られ難くなるばかりでなく、フィブリル化防止効果も得られ難くなる。上記の観点から、重合度500以上の高重合度セルロースのより好ましい含有比率は5〜25重量%、更に好ましくは5〜20重量%の範囲である。
【0017】
なお本発明では、上記の様に低重合度セルロースの使用比率が多く、それにつれて再生セルロース繊維の強度はやや低めになる傾向があるが、本発明の主たる用途である衣料用途では、産業資材用途の如くそれほど高レベルの繊維強度は要求されず、むしろ風合いや耐フィブリル性等が重視されるので、実用化に当たり強度不足が問題となることはない。
【0018】
本発明で使用する高重合度セルロースは、紡糸原液としたときの重合度が500以上を示すものであればその種類は特に制限されないが、最も一般的なのは木材パルプを原料とする重合度750以上のセルロースである。しかし、上記重合度の要件を満たすものであれば、リンタや木綿繊維等であっても勿論構わない。一方低重合度のセルロースとしては、レーヨン繊維の回収物等が好ましく用いられるが、このほか古紙や回収された古木綿等の回収品から得られるセルロース等を使用することができる。これらの原料セルロースは、エタノール等を用いて湿潤させてから粉砕もしくは裁断し、乾燥して用いられる。
【0019】
そして紡糸原液を調製するに当たっては、該原液中のセルロースの平均重合度が400以下で且つ重合度500以上の高重合度セルロースの含有比率が5〜30重量%、より好ましくは5〜25重量%、更に好ましくは5〜20重量%の範囲となる様に、上記高重合度セルロースと低重合度セルロースの配合比率を調製すればよい。
【0020】
紡糸原液の調製に用いられる溶媒としてはNMMOを含む溶媒が使用されるが、好ましいのはNMMOと水の混合溶媒であり、中でも特に好ましいのはNMMO/水の混合比率が90/10〜40/90重量比の混合物である。
【0021】
そしてこれらの溶媒に、前記セルロースの濃度が好ましくは15〜25重量%となる様に添加し、通常80〜135℃程度の温度でシアーミキサー等で溶解することにより紡糸原液の調製が行なわれる。紡糸原液のセルロース濃度が低過ぎると疑似液晶紡糸にならず、逆に高過ぎると粘度が高くなり過ぎて紡糸が困難になるので、紡糸原液のセルロース濃度は、上記の様に15〜25重量%、より好ましくは15〜20重量%の範囲となる様に調製するのが望ましい。
【0022】
原料セルロースは、該溶解工程で若干の重合度低下を起こすので、本発明で規定するセルロースの前記重合度は、該溶解工程を経た後の状態で測定し、その平均重合度と高重合度物の含有比率が前述の要件を満たす様に、溶解原料として用いる高重合度セルロースと低重合度セルロースの配合量を調製すればよい。このとき、溶解時におけるセルロースの重合度低下やNMMOの分解を抑える為、例えば過酸化水素、修酸またはその塩、没食子酸、メチルジ没食子酸、グリコシド等の安定剤を添加することは好ましい態様として推奨される。
【0023】
セルロース原料をNMMOと水の混合溶媒に溶解した溶液は、比較的低粘度であって高濃度の溶液が得られ易く、その粘性も湿式紡糸に好適なものになることは、例えば「繊維学会誌」51,423(1995)にも記載されている通りである。
【0024】
こうして得られる高粘度(溶解温度での零剪断粘度が5,000ポイズ程度以上)の溶液は、薄膜エバポレータで脱泡した後、濾過してから紡糸部へ供給される。高粘度の紡糸原液は紡糸ヘッドへ送られ、ギアポンプで計量されてスピンパックへ供給される。紡糸温度は90〜135℃の範囲が好ましく、90℃未満ではドープ粘度が高過ぎるため紡糸が困難となり、また135℃を越えて過度に高温になるとセルロースの分解により重合度が低下し、得られる再生繊維の物性、殊に引張強力が乏しくなる。
【0025】
紡糸に用いるオリフィスは、ドープの安定性を高めるためL/Dを長くすることも有効であるが、そうすると紡糸背圧が高くなるという問題が生じてくるので、好ましくは導入角の小さいテーパ状のオリフィスを使用し、乱流の発生を抑制することが望ましい。
【0026】
このとき、横断面形状が中空の再生セルロース繊維を得るには、紡糸口金として例えば図1(A)〜(B)に示す様なC形断面口金が使用されるが、この様なC形断面口金を使用すると紡糸ドープの曳糸性が悪くなるため、通常の形状の紡糸ノズルでは、紡糸口金を出てから凝固液に侵入するまでのエアーギャップ中で十分な紡糸延伸倍率が得られ難くなり、前述の様に重合度を調製したセルロースを用いた紡糸原液を使用した場合でも疑似液晶化現象が起こりにくく、中空率の調製や耐フィブリル性の向上効果が有効に発揮され難くなる。
【0027】
そこで、上記の様なC形断面の口金を用いた場合でも十分な紡糸延伸倍率を確保することのできる手段について検討を続けた結果、例えば図1に示す如く紡糸口金におけるノズル先端部への導入部のテーパー角度αを十分に小さくすれば、オリフィス内で生じる乱流が抑制でき、口金先端形状がC形状であっても十分な延伸倍率を確保することができ、それにより疑似液晶現象が発現して中空断面化が達成されると共に耐フィブリル化も効率的に高められることが確認された。こうした効果を得るには、前記導入部のテーパー角度αを好ましくは45度以下、より好ましくは35度以下にすることが望ましいが、テーパー角αを余りに小さくすることは機械加工上困難であるばかりでなく、該導入部への入口部で乱流が生じ易くなり却って曳糸性を阻害する傾向が生じてくるので、10度程度までに止めることが望ましい。曳糸性や加工性等を総合的に考慮してより好ましいテーパー角度は15〜30度の範囲である。
【0028】
口金から吐出されたドープは、所謂エアーギャップ(吐出部から吐出したドープが凝固液に侵入するまでの区間)で引き伸ばされるが、上記の様なテーパ状オリフィスを使用すると、十分な紡糸ドラフトを与えることができ、その結果として疑似液晶化現象が確実に発現され、所定の中空率が与えられると共に耐フィブリル性も高められることとなる。
【0029】
そこで本発明を実施する際には、高粘度の紡糸原液の溶液粘度を下げるため高温で紡糸し、且つ紡糸温度よりも低い温度で凝固させるため、例えば特表平8−500863号公報に記載されている如く、紡糸ノズルから出た吐出ドープが凝固浴に侵入するまでの間にエアーギャップを設けた乾湿式紡糸法を採用することが必要となる。即ち、本発明を実施する際にこの様な乾湿式防止法を採用すると、上記の様な高重合度セルロースと低重合度セルロースを含む高濃度溶液中の高重合度セルロースが、上記エアギャップ部に形成される流動場ないし伸長場で相転移と相分離を引き起こし、この部分で疑似液晶転移現象を生じて高重合度セルロースが繊維骨格を形成し、中空断面の再生セルロース繊維が得られ易くなるばかりでなく、得られる再生セルロースは、低重合度のセルロースを多量含むものであっても、十分な強度を示すものとなる。なお紡糸速度は特に制限されないが、通常は100m/分以上、好ましくは150m/分以上で行なうことが望ましい。
【0030】
該エアギャップは、通常の空気の如く非凝固性の気体が存在するだけのエアギャップであれば、分子緩和を抑えつつ大きな変形速度が得られる様に、口金と凝固液面との間隔を5〜50mm程度に設定すれば良い。あるいは、クエンチチャンバー等を用いて吐出糸条を積極的に冷却する方式を採用すると、分子緩和が起こらないので該エアギャップは長くてもよく、特に高速で紡糸する場合はむしろこの方が好ましい。
【0031】
凝固浴としてはNMMOの水溶液を使用するのがよく、好ましくはNMMO濃度が10〜50重量%の水溶液を使用することが望まれる。しかしてNMMO濃度が10重量%未満では、蒸発するNMMOの回収率が低くなって不経済になるし、逆に50重量%を超えて過度に高濃度にするとフィラメントが凝固不足になるからである。凝固浴のより好ましいNMMO濃度は15〜40重量%の範囲である。また、凝固浴の好ましい温度は−20〜20℃、より好ましくは−10〜15℃の範囲であり、20℃を超えると凝固不足となって繊維性能が悪くなり、一方凝固浴を−20℃を下回る温度にまで過度に冷却してもそれ以上に繊維性能が高められる訳ではないので、それ以上に冷却することは経済的に無駄である。
【0032】
凝固浴を通過した糸条は、引き続いて水洗・乾燥工程へ送られるが、このとき、ネットコンベア等の捕集装置を用いて糸条を捕集して処理することは、設備を簡素化する上で極めて有効である。さらに、ネットコンベアによる捕集を一層容易にするため、例えば特公昭47−29926号に開示されている様な公知のダブルキックバックロールやアスピレータ等を使用することも、好ましい方法として推奨される。また、得られる再生セルロース繊維を短繊維として使用する場合、クリンパーを工程中に設けて伸縮を付与することも有効である。クリンパーとしては所謂スタッフィングボックス型のクリンパーが好ましいが、ギアークリンパーであっても勿論構わない。ボックス型のクリンパーを使用する場合は、ネットコンベアの捕集装置としても用いることができる。
【0033】
ネットコンベアを用いて水洗・乾燥された繊維束は、長繊維として得る場合はワインダーで所定繊度の糸条として巻き上げられ、短繊維として得る場合は束ねられた長繊維を直ちに若しくは別途カッターで切断して得ればよい。カッターとしては、ロータリカッターやギロチンカッター等が一般的に用いられる。
【0034】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、下記実施例、比較例で採用した各性能の測定法は次の通りである。
【0035】
[セルロースの重合度の測定]
高分子学会編「高分子材料試験法2」第267頁、共立出版(1965)に記載の銅エチレンジアミン法により測定。
[中空率の測定]
繊維束から任意に取り出した単繊維5本の繊維切片を光学顕微鏡で観察し、得られた断面写真から中空部分の面積を繊維外周を囲む面積で除し、100を乗じて得られた値の平均値を中空率とした。
【0036】
実施例1
セルロースとしてレーヨン用パルプを使用し、その15重量部をNMMO:73重量部と水:12重量部の混合液に110℃で溶解し、紡糸原液とした。この紡糸原液を使用し、吐出部がC形状(開孔部の外径1500μ、内径1400μ、非開孔部の幅500μ)で導入角の異なる紡糸口金A(α=30度)及びB(α=80度)を使用し、表1に示す条件で乾湿式紡糸を行ない、得られたフィラメントを水洗・乾燥して巻き取り、夫々について繊維の物性と中空率を測定し、表1に示す結果を得た。
【0037】
【表1】

Figure 0003829954
表1からも明らかである様に、紡糸口金の導入角αが小さく、エアーギャップ長および冷却風条件として適切な条件を採用した場合に限り、紡糸が可能で且つ優れた糸質と中空断面の再生セルロースを得ることができる。
実施例2
高重合度のセルロースとしてレーヨン用パルプを、また低重合度のセルロースとしてレーヨン繊維を使用し、前者対後者を20/80の重量比で配合した混合セルロース15重量部を、NMMO:73重量部と水:12重量部の混合液に110℃で減圧溶解した。高重合度セルロースおよび低重合度セルロースの各単独ドープから水で沈殿凝固させて得た各セルロースの重合度は、高重合度セルロースで重合度750、低重合度セルロースで重合度300であり、平均重合度は368であった。
この紡糸原液を使用し、表2に示す条件で乾湿式紡糸を行ない、口金形状Aの紡糸口金を用い紡速50m/分とし、200mmのエアーギャップを介して吐出糸条を凝固浴に導びいた。エアーギャップで10℃のクエンチ風を0.50m/秒の速度でドープフィラメントに直角に吹き付け糸状の冷却を行った。20重量%の濃度で10℃凝固浴で凝固させて得られたフィラメントを水洗・乾燥して巻き取って物性と中空率を測定した。結果は表2に併記する通りであり、繊維物性の高い中空断面の再生セルロース繊維が得られている。
【0038】
【表2】
Figure 0003829954
【0039】
【発明の効果】
本発明は以上の様に構成されており、溶媒としてNMMOを含む溶媒を用いて、これまで提供されたことのない中空断面で光沢、風合い等に優れた再生セルロース繊維を提供すると共に、原料セルロースとして、高重合度のセルローと低重合度のセルロースを所定の比率で併用することによりフィブリル化の問題も解消し、強度的にもまた風合い等においても優れた性能の再生セルロース繊維が得られる。
【図面の簡単な説明】
【図1】紡糸ノズルの形状を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hollow cellulose regenerated cellulose fiber obtained by using a spinning stock solution in which cellulose is dissolved in a solvent containing N-methylmorpholine-N-oxide (hereinafter abbreviated as NMMO), and a method for producing the same. The present invention relates to a technique for obtaining a high-quality hollow cross-section regenerated cellulose fiber having excellent texture and enhanced fibril resistance.
[0002]
[Prior art]
A method for producing a regenerated cellulose fiber using a solvent containing NMMO has been known for a long time as described in, for example, Japanese Patent Publication Nos. 57-11566 and 60-28848. However, the conventional production method using the above-mentioned solvent has a great drawback that the obtained regenerated cellulose fiber is likely to be fibrillated, which has been an obstacle to generalization. However, this method has been attracting attention again recently because it has little adverse effects on the environment and is economically efficient, and the properties of the resulting recycled fibers are also good to some extent.
[0003]
On the other hand, improvement research has also been made on the above-mentioned problem of fibrillation, and several patent applications have been filed as seen in, for example, JP-A-8-501356, JP-A-7-508320, and JP-A-8-49167. In reality, it has not yet reached a satisfactory effect on a practical scale.
[0004]
In addition, when the regenerated cellulose fiber obtained using the above solvent is applied to the clothing field, etc., it is effective to make the cross section hollow in order to enhance the gloss and texture of the fiber itself or woven / knitted fabric. Although it is conceivable, no regenerated cellulose fiber having a hollow cross-sectional shape using an NMMO-containing solvent has been studied at present.
[0005]
[Problems to be solved by the invention]
The present invention has been made paying attention to the situation as described above. The purpose of the present invention is to utilize the characteristics of the method for producing regenerated cellulose fiber using the NMMO-containing solvent described above, and to maintain the maintenance characteristics thereof in the cross section. While further improving by hollowing out the shape, eliminating the problem of fibrillation pointed out as its disadvantage, providing regenerated cellulose fibers excellent in appearance such as clothing and excellent physical properties and texture, An attempt is made to establish a production method capable of stably producing such fibers.
[0006]
[Means for Solving the Problems]
The hollow cross-section regenerated cellulose fiber of the present invention that has solved the above-mentioned problems is a regenerated cellulose fiber produced using a spinning stock solution in which cellulose is dissolved in a solvent containing NMMO, and its cross section is hollow. However, its characteristics exist.
[0007]
Among these regenerated cellulose fibers, those having an average degree of polymerization of 400 or less in the fibers and 5 to 30% by weight of the cellulose having a degree of polymerization of 500 or more have excellent physical properties and texture. In addition to having the above-mentioned appearance characteristics, it is very excellent in fibril resistance and can be widely used for clothing.
[0008]
Further, the production method of the present invention is a method for producing a hollow cross-section regenerated cellulose fiber having the above-mentioned characteristics. When producing a regenerated cellulose fiber using a spinning stock solution in which cellulose is dissolved in a solvent containing NMMO, a C-shaped cross section is produced. There is a gist of producing a regenerated cellulose fiber having a hollow cross section by spinning by a dry and wet spinning method using the above spinneret. When carrying out this method, the average degree of polymerization of the cellulose in the spinning dope is suppressed to 400 or less, and if 5 to 30% by weight of the cellulose is adjusted to a degree of polymerization of 500 or more, the hollow ratio can be adjusted. It is preferable because the fibril resistance of the resulting fibers can be increased.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have advanced improvement studies from various angles in order to prevent the fibrillation pointed out in the regenerated cellulose fiber using a solvent containing NMMO, particularly the drawbacks of the prior art as described above. As a result, when producing a regenerated cellulose fiber using the above-mentioned solvent, using a spinning stock solution that causes a pseudo liquid crystal phenomenon in the spinning process, the obtained regenerated cellulose fiber is extremely less fibrillated. I found new facts that no one had ever recognized.
[0010]
In addition, using the spinning solution that produces the above-mentioned pseudo-liquid crystal phenomenon and dry-wet spinning using a spinneret with a C-shaped cross-section, the cross-sectional shape is hollow, and extremely excellent reproduction such as gloss and texture. I knew that cellulose fibers could be easily obtained.
[0011]
As a result of further research, the degree of polymerization of cellulose dissolved in the spinning stock solution is extremely important in order to produce the above-mentioned pseudo liquid crystal formation in the spinning process, and the average degree of polymerization of the cellulose is specified. In addition, it is sufficient to use a cellulose containing a high degree of polymerization and a low degree of cellulose in a specific ratio. When spinning using such a mixed cellulose solution as a spinning dope, fibrillation is extremely low. In addition, it was found that a high-quality regenerated cellulose fiber having a hollow cross section can be obtained reliably and easily. Here, the “pseudo liquid crystal phenomenon” refers to a phenomenon in which cellulose undergoes a liquid crystal transition in the flow field and elongation field during spinning.
[0012]
In addition, as for the well-known regenerated cellulose fiber obtained using an NMMO containing solvent, the cross-sectional shape is a substantially circular hollow shape, and the thing of a hollow cross section is not known. Therefore, the hollow regenerated cellulose fiber of the present invention is very excellent in gloss and texture as a regenerated cellulose fiber itself and a woven or knitted fabric using the regenerated cellulose fiber as compared with a conventional regenerated cellulose having a substantially circular cross section. Therefore, it should be recognized as a new invention that can be clearly distinguished from conventional regenerated cellulose fibers.
[0013]
The hollow cross-section regenerated cellulose fiber having the above-described characteristics is obtained by using a solvent containing NMMO, using a spinning stock solution in which cellulose is dissolved, and dry and wet spinning using a spinneret having a C-shaped cross section. However, if the average degree of polymerization of cellulose dissolved in the spinning stock solution and the content ratio of cellulose with a high degree of polymerization are adjusted appropriately, a pseudo-liquid crystal phenomenon occurs in the spinning process, and the fibril resistance is very good. Regenerated cellulose fibers can be obtained.
[0014]
That is, in producing the regenerated cellulose fiber, the average degree of polymerization of cellulose dissolved in the spinning dope is set to 400 or less, and the content ratio of high polymerization degree cellulose having a degree of polymerization of 500 or more in the cellulose is 5 to 5. It is good to keep in the range of 30% by weight. When cellulose mixtures having different degrees of polymerization are used in this way, the cellulose component having a high degree of polymerization forms a structure mainly composed of extended chains by phase separation in the spinning process. The gaps are filled with cellulose having a low polymerization degree, and the resulting regenerated cellulose fibers form a composite structure, which is thought to suppress fibrillation.
[0015]
In other words, high-polymerized cellulose is the main cause of the pseudo-liquid crystallizing phenomenon and converges in the longitudinal direction to bear mechanical properties, while low-polymerized cellulose fills the gaps and enhances the required properties as clothing such as texture. These additive and synergistic effects provide a degree of deformation according to the shape of the spinneret, and give excellent strength characteristics and texture, and the fiber structure combined in a composite form makes the fibrils. It is possible to suppress the conversion as much as possible.
[0016]
In order to ensure such a composite structure and perform the spinning operation smoothly, it is better to keep the average degree of polymerization of cellulose dissolved in the spinning dope to 400 or less, and to ensure a pseudo-liquid crystal phenomenon in the spinning process. In order to secure sufficient mechanical properties in the longitudinal direction as the regenerated cellulose fiber obtained, the content ratio of the high polymerization degree cellulose having a polymerization degree of 500 or more in the cellulose should be 5% by weight or more. It becomes extremely effective. That is, when the content of the highly polymerized cellulose is less than 5% by weight, the above pseudo liquid crystal phenomenon does not easily occur in the spinning process, and not only the effect of preventing fibrillation by phase separation becomes insufficient, but also in the longitudinal direction. On the other hand, when the content ratio of the high polymerization degree cellulose having a polymerization degree of 500 or more exceeds 30% by weight, phase separation does not occur even if a pseudo liquid crystal phenomenon occurs in the spinning process, and the present invention. This makes it difficult not only to obtain a regenerated cellulose having a hollow cross section as intended, but also to prevent the effect of preventing fibrillation. From the above viewpoint, the more preferable content ratio of the high polymerization degree cellulose having a polymerization degree of 500 or more is 5 to 25% by weight, and more preferably 5 to 20% by weight.
[0017]
In the present invention, as described above, the ratio of low-polymerized cellulose is large, and the strength of the regenerated cellulose fiber tends to be slightly lower. However, in the clothing application, which is the main application of the present invention, As described above, the fiber strength at such a high level is not required, but rather the texture, fibril resistance, etc. are emphasized, so that lack of strength does not become a problem in practical use.
[0018]
The type of the high-polymerization cellulose used in the present invention is not particularly limited as long as the polymerization degree is 500 or more when used as a spinning dope, but the most common is a polymerization degree of 750 or more using wood pulp as a raw material. Of cellulose. However, as long as it satisfies the above requirements for the degree of polymerization, it is of course possible to use linter or cotton fiber. On the other hand, as the cellulose having a low polymerization degree, a recovered product of rayon fiber or the like is preferably used, but in addition, cellulose obtained from recovered products such as used paper or recovered used cotton can be used. These raw material celluloses are used after being wetted with ethanol or the like, pulverized or cut, and dried.
[0019]
In preparing the spinning dope, the cellulose has an average polymerization degree of 400 or less and a high polymerization degree cellulose content ratio of 500 or more is 5 to 30% by weight, more preferably 5 to 25% by weight. Further, the blending ratio of the high-polymerized cellulose and the low-polymerized cellulose may be adjusted so that it is more preferably in the range of 5 to 20% by weight.
[0020]
As the solvent used for the preparation of the spinning dope, a solvent containing NMMO is used. Preferred is a mixed solvent of NMMO and water, and particularly preferred is a NMMO / water mixing ratio of 90/10 to 40 /. A 90 weight ratio mixture.
[0021]
Then, a spinning dope is prepared by adding to these solvents so that the concentration of cellulose is preferably 15 to 25% by weight and dissolving it with a shear mixer or the like at a temperature of usually about 80 to 135 ° C. If the cellulose concentration in the spinning dope is too low, pseudo-liquid crystal spinning will not occur, and conversely if it is too high, the viscosity will be too high and spinning will be difficult, so the cellulose concentration in the spinning dope will be 15-25% by weight as described above. More preferably, it is desirable to prepare it in the range of 15 to 20% by weight.
[0022]
Since the raw material cellulose slightly lowers the degree of polymerization in the dissolving step, the degree of polymerization of the cellulose specified in the present invention is measured in the state after passing through the dissolving step, and the average degree of polymerization and the high degree of polymerization are measured. What is necessary is just to prepare the compounding quantity of the high polymerization degree cellulose used as a melt | dissolution raw material, and a low polymerization degree cellulose so that the content ratio of may satisfy | fill the above-mentioned requirements. At this time, it is preferable to add a stabilizer such as hydrogen peroxide, oxalic acid or a salt thereof, gallic acid, methyldigallic acid, glycoside, etc., in order to suppress degradation of the degree of polymerization of cellulose and decomposition of NMMO during dissolution. Recommended.
[0023]
A solution obtained by dissolving a cellulose raw material in a mixed solvent of NMMO and water has a relatively low viscosity and a high-concentration solution can be easily obtained, and its viscosity is also suitable for wet spinning. 51, 423 (1995).
[0024]
The solution having a high viscosity (zero shear viscosity at the melting temperature of about 5,000 poise or more) thus obtained is defoamed with a thin film evaporator, filtered, and then supplied to the spinning section. The high-viscosity spinning dope is sent to the spinning head, measured by a gear pump, and supplied to the spin pack. The spinning temperature is preferably in the range of 90 to 135 ° C. If the viscosity is lower than 90 ° C, spinning becomes difficult because the dope viscosity is too high, and if the temperature exceeds 135 ° C, the polymerization degree decreases due to decomposition of cellulose. The physical properties of the recycled fiber, especially the tensile strength, become poor.
[0025]
For the orifice used for spinning, it is effective to lengthen the L / D in order to increase the stability of the dope. However, since this causes a problem that the spinning back pressure becomes high, a tapered shape with a small introduction angle is preferable. It is desirable to suppress the generation of turbulence by using an orifice.
[0026]
At this time, in order to obtain a regenerated cellulose fiber having a hollow cross-sectional shape, for example, a C-shaped cross-sectional base as shown in FIGS. 1A to 1B is used as the spinneret. If a spinneret is used, the spinnability of the spinning dope will deteriorate, so it will be difficult to obtain a sufficient spinning draw ratio in the air gap from when the spinneret exits the spinneret until it enters the coagulation liquid. Even when a spinning stock solution using cellulose having a degree of polymerization as described above is used, the pseudo-liquid crystal phenomenon does not easily occur, and the effect of improving the hollow ratio and improving the fibril resistance is hardly exhibited.
[0027]
Therefore, as a result of continuing investigations on means capable of ensuring a sufficient spinning draw ratio even when using a C-shaped cross-section die as described above, for example, as shown in FIG. If the taper angle α of the part is made sufficiently small, turbulent flow generated in the orifice can be suppressed, and a sufficient stretching ratio can be secured even if the tip shape of the die is C-shaped, thereby causing a pseudo liquid crystal phenomenon. Thus, it was confirmed that the hollow cross-section was achieved and the fibril resistance was also efficiently increased. In order to obtain such an effect, it is desirable that the taper angle α of the introduction portion is preferably 45 degrees or less, more preferably 35 degrees or less, but it is difficult to make the taper angle α too small in machining. In addition, turbulent flow tends to occur at the entrance to the introduction portion, and on the contrary, there is a tendency to inhibit the spinnability. A more preferable taper angle is 15 to 30 degrees in consideration of the stringiness and workability in a comprehensive manner.
[0028]
The dope discharged from the base is stretched by a so-called air gap (a section until the dope discharged from the discharge part enters the coagulating liquid). However, when the tapered orifice as described above is used, a sufficient spinning draft is given. As a result, the pseudo-liquid crystal phenomenon is surely expressed, a predetermined hollowness is given, and the fibril resistance is also improved.
[0029]
Therefore, when practicing the present invention, in order to reduce the solution viscosity of a high-viscosity spinning stock solution, spinning is performed at a high temperature, and solidification is performed at a temperature lower than the spinning temperature. For example, this is described in JP-A-8-500863. As shown, it is necessary to adopt a dry and wet spinning method in which an air gap is provided until the discharge dope discharged from the spinning nozzle enters the coagulation bath. That is, when such a dry / wet prevention method is employed in carrying out the present invention, the high-polymerized cellulose in the high-concentration solution containing the high-polymerized cellulose and the low-polymerized cellulose as described above is converted into the air gap portion. In the flow field or elongation field formed in this, phase transition and phase separation are caused, and a pseudo liquid crystal transition phenomenon is caused in this part, so that high-polymerized cellulose forms a fiber skeleton, and regenerated cellulose fibers having a hollow cross section are easily obtained. In addition, the obtained regenerated cellulose exhibits sufficient strength even if it contains a large amount of cellulose having a low polymerization degree. The spinning speed is not particularly limited, but is usually 100 m / min or more, preferably 150 m / min or more.
[0030]
If the air gap has only non-solidifying gas such as normal air, the gap between the die and the coagulating liquid surface is set to 5 so that a large deformation speed can be obtained while suppressing molecular relaxation. What is necessary is just to set to about ~ 50 mm. Alternatively, when a method of positively cooling the discharged yarn using a quench chamber or the like is adopted, molecular relaxation does not occur, so the air gap may be long, and this is preferable in particular when spinning at high speed.
[0031]
As the coagulation bath, an aqueous solution of NMMO is preferably used, and it is desirable to use an aqueous solution having an NMMO concentration of 10 to 50% by weight. Therefore, if the NMMO concentration is less than 10% by weight, the recovery rate of the evaporated NMMO becomes low and it becomes uneconomical. Conversely, if the concentration exceeds 50% by weight, the filament becomes insufficiently solidified. . A more preferred NMMO concentration of the coagulation bath is in the range of 15-40% by weight. The preferable temperature of the coagulation bath is in the range of -20 to 20 ° C, more preferably -10 to 15 ° C. When the temperature exceeds 20 ° C, the fiber performance is deteriorated due to insufficient coagulation, while the coagulation bath is set to -20 ° C. Even if the temperature is excessively cooled to a temperature lower than 1, the fiber performance is not improved further, so it is economically wasteful to cool further.
[0032]
The yarn that has passed through the coagulation bath is subsequently sent to the washing and drying process. At this time, collecting and processing the yarn using a collection device such as a net conveyor simplifies the equipment. It is extremely effective in the above. Furthermore, in order to further facilitate the collection by the net conveyor, it is also recommended as a preferable method to use a known double kickback roll or aspirator as disclosed in, for example, Japanese Patent Publication No. 47-29926. Moreover, when using the obtained regenerated cellulose fiber as a short fiber, it is also effective to provide a crimper in a process and to provide expansion / contraction. As the crimper, a so-called stuffing box type crimper is preferable, but a gear crimper may of course be used. When a box type crimper is used, it can also be used as a net conveyor collecting device.
[0033]
The fiber bundle washed with water and dried using a net conveyor is wound up as a filament with a predetermined fineness by a winder when it is obtained as long fiber, and when it is obtained as short fiber, the bundled long fiber is immediately or separately cut with a cutter. You can get it. As the cutter, a rotary cutter or a guillotine cutter is generally used.
[0034]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention. In addition, the measuring method of each performance employ | adopted by the following Example and the comparative example is as follows.
[0035]
[Measurement of polymerization degree of cellulose]
Measured by the copper ethylenediamine method described in “Polymer Material Test Method 2”, page 267, Kyoritsu Shuppan (1965), edited by Polymer Society of Japan.
[Measurement of hollowness]
The fiber section of 5 single fibers arbitrarily taken out from the fiber bundle was observed with an optical microscope, the area of the hollow part was divided by the area surrounding the outer periphery of the fiber from the obtained cross-sectional photograph, and the value obtained by multiplying by 100 The average value was defined as the hollow ratio.
[0036]
Example 1
A pulp for rayon was used as cellulose, and 15 parts by weight thereof was dissolved in a mixed solution of NMMO: 73 parts by weight and water: 12 parts by weight at 110 ° C. to obtain a spinning dope. Using this spinning stock solution, the spinnerets A (α = 30 degrees) and B (α) having different discharge angles with a C-shaped discharge portion (outer diameter 1500 μ, inner diameter 1400 μ, non-open portion width 500 μ). = 80 degrees), dry and wet spinning was performed under the conditions shown in Table 1, and the filaments obtained were washed with water, dried and wound, and the physical properties and the hollowness of the fibers were measured for each. The results shown in Table 1 Got.
[0037]
[Table 1]
Figure 0003829954
As is apparent from Table 1, spinning is possible only when the introduction angle α of the spinneret is small and appropriate conditions are adopted as the air gap length and cooling air conditions. Regenerated cellulose can be obtained.
Example 2
15 parts by weight of mixed cellulose in which 15% by weight of the mixed cellulose containing 20% / 80 weight ratio of the former and the latter is used as NMMO: 73 parts by weight using rayon pulp as cellulose having a high degree of polymerization and rayon fiber as cellulose having a low degree of polymerization. Water: dissolved in a mixed solution of 12 parts by weight under reduced pressure at 110 ° C. The degree of polymerization of each cellulose obtained by precipitating and coagulating with water from each single dope of the high polymerization degree cellulose and the low polymerization degree cellulose is a polymerization degree of 750 for the high polymerization degree cellulose and a polymerization degree of 300 for the low polymerization degree cellulose. The degree of polymerization was 368.
Using this spinning dope, dry and wet spinning was performed under the conditions shown in Table 2, using a spinneret with a base A, spinning speed was 50 m / min, and the discharged yarn was introduced into the coagulation bath through a 200 mm air gap. It was. A 10 ° C. quench air was blown at right angles to the dope filament at a speed of 0.50 m / sec through an air gap to cool the yarn. Filaments obtained by coagulation in a 10 ° C. coagulation bath at a concentration of 20% by weight were washed with water, dried and wound up, and the physical properties and the hollow ratio were measured. The results are as shown in Table 2, and a regenerated cellulose fiber having a hollow cross section with high fiber properties is obtained.
[0038]
[Table 2]
Figure 0003829954
[0039]
【The invention's effect】
The present invention is configured as described above, and using a solvent containing NMMO as a solvent, provides a regenerated cellulose fiber excellent in gloss, texture, etc. with a hollow cross section that has not been provided so far, and raw material cellulose As described above, by combining cellulose having a high degree of polymerization and cellulose having a low degree of polymerization at a predetermined ratio, the problem of fibrillation can be solved, and a regenerated cellulose fiber having excellent performance in terms of strength and texture can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the shape of a spinning nozzle.

Claims (3)

N−メチルモルホリン−N−オキシドを含む溶剤にセルロースを溶解した紡糸原液を用いて製造された再生セルロース繊維であって、該繊維中に含まれるセルロースの平均重合度が400以下であり、且つ該セルロースのうち5〜30重量%が重合度500以上であり、その横断面が中空であることを特徴とする中空断面再生セルロース繊維。Regenerated cellulose fiber produced using a spinning stock solution in which cellulose is dissolved in a solvent containing N-methylmorpholine-N-oxide, and the average degree of polymerization of cellulose contained in the fiber is 400 or less, and A hollow cross-section regenerated cellulose fiber characterized in that 5 to 30% by weight of the cellulose has a degree of polymerization of 500 or more and the cross section is hollow. N−メチルモルホリン−N−オキシドを含む溶剤にセルロースを溶解した紡糸原液を用いて再生セルロース繊維を製造するに当たり、紡糸原液中で平均重合度が400以下であり、且つ5〜30重量%が重合度500以上であるセルロースを用い、C形断面の紡糸口金を用いて、乾湿式紡糸法によって紡糸を行なうことを特徴とする中空断面再生セルロース繊維の製法。In producing a regenerated cellulose fiber using a spinning stock solution in which cellulose is dissolved in a solvent containing N-methylmorpholine-N-oxide , the average degree of polymerization is 400 or less and 5 to 30% by weight is polymerized in the spinning stock solution. A process for producing a hollow cross-section regenerated cellulose fiber, characterized in that cellulose having a degree of 500 or more is spun by a dry-wet spinning method using a spinneret having a C-shaped cross section. 紡糸口金から凝固浴の間で、気体流によって紡出フィラメントを冷却することを特徴とする請求項2記載の製法。The process according to claim 2, wherein the spinning filament is cooled by a gas flow between the spinneret and the coagulation bath.
JP31626196A 1996-11-21 1996-11-27 Hollow cross-section regenerated cellulose fiber and process for producing the same Expired - Fee Related JP3829954B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP31626196A JP3829954B2 (en) 1996-11-27 1996-11-27 Hollow cross-section regenerated cellulose fiber and process for producing the same
AT97912541T ATE245214T1 (en) 1996-11-21 1997-11-21 FIBERS FROM REGENERATED CELLULOSE AND METHOD FOR THE PRODUCTION THEREOF
CN97199924A CN1080779C (en) 1996-11-21 1997-11-21 Regenerated cellulosic fibers and process for producing the same
EP97912541A EP0952243B1 (en) 1996-11-21 1997-11-21 Regenerated cellulosic fibers and process for producing the same
AU49684/97A AU4968497A (en) 1996-11-21 1997-11-21 Regenerated cellulosic fibers and process for producing the same
DE69723582T DE69723582T2 (en) 1996-11-21 1997-11-21 REGENERATED CELLULOSE FIBERS AND METHOD FOR THEIR PRODUCTION
PCT/JP1997/004269 WO1998022642A1 (en) 1996-11-21 1997-11-21 Regenerated cellulosic fibers and process for producing the same
US09/308,608 US6183865B1 (en) 1996-11-21 1999-07-06 Regenerated cellulosic fibers and process for producing the same
US09/697,434 US6527987B1 (en) 1996-11-21 2000-10-27 Process for producing regenerated cellulosic fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31626196A JP3829954B2 (en) 1996-11-27 1996-11-27 Hollow cross-section regenerated cellulose fiber and process for producing the same

Publications (2)

Publication Number Publication Date
JPH10158922A JPH10158922A (en) 1998-06-16
JP3829954B2 true JP3829954B2 (en) 2006-10-04

Family

ID=18075138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31626196A Expired - Fee Related JP3829954B2 (en) 1996-11-21 1996-11-27 Hollow cross-section regenerated cellulose fiber and process for producing the same

Country Status (1)

Country Link
JP (1) JP3829954B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221487B1 (en) 1996-08-23 2001-04-24 The Weyerhauser Company Lyocell fibers having enhanced CV properties
US6235392B1 (en) 1996-08-23 2001-05-22 Weyerhaeuser Company Lyocell fibers and process for their preparation
US8066799B2 (en) * 2008-01-10 2011-11-29 Chevron U.S.A. Inc. Method of making a crosslinked fiber membrane from a high molecular weight, monoesterified polyimide polymer
JP2017179622A (en) * 2016-03-28 2017-10-05 帝人株式会社 Production method for copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber

Also Published As

Publication number Publication date
JPH10158922A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US6527987B1 (en) Process for producing regenerated cellulosic fibers
US6852413B2 (en) Lyocell multi-filament for tire cord and method of producing the same
Ozipek et al. Wet spinning of synthetic polymer fibers
KR100575378B1 (en) Process for preparing a cellulose fiber
CN101195933B (en) Method for producing Lyocell fibre for tire cord
WO2006128346A1 (en) Method for preparing regenerated cellulose fibre by two-step coagulating bath process
JP2005042286A (en) Lyocell monofilament, lyocell multifilament, and method for producing lyocell filament
JP2005530916A (en) Highly homogeneous cellulose solution and high strength lyocell fiber using the same
Schurz et al. Investigations on the structure of regenerated cellulose fibers; Herrn Professor Janeschitz‐Kriegl zum 70. Geburtstag mit den besten Wünschen gewidmet
JPS59163418A (en) Preparation of polyamide yarn
KR100486812B1 (en) Lyocell multi-filament for tire cord and process for preparing the same
JPH08508555A (en) Method for producing cellulose molded body
JP3832000B2 (en) Modified cross-section regenerated cellulose fiber and process for producing the same
JP3852631B2 (en) Regenerated cellulose fiber and method for producing the same
KR100769974B1 (en) Production method of lyocell filament having uniformity for the clothes
JP4593667B2 (en) Industrial cellulose fiber
CN101307509A (en) Ultra-high molecular weight polyethylene fiber spinning method
JP3829954B2 (en) Hollow cross-section regenerated cellulose fiber and process for producing the same
JP4127693B2 (en) Industrial cellulose fiber and method for producing the same
JP3831999B2 (en) Regenerated cellulose fiber and process for producing the same
US6190596B1 (en) Process for producing cellulosic shaped objects
JP3829955B2 (en) Regenerated cellulose fiber with excellent dyeability and production method thereof
JP2000226720A (en) Cellulose yarn having controlled fibrillation and its production
CN112111808B (en) Cellulose/protein blend fiber and preparation method thereof
TW202235707A (en) Cellulose fiber manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees