JP3828776B2 - Highly rigid panel and vibration reduction method thereof - Google Patents

Highly rigid panel and vibration reduction method thereof Download PDF

Info

Publication number
JP3828776B2
JP3828776B2 JP2001312912A JP2001312912A JP3828776B2 JP 3828776 B2 JP3828776 B2 JP 3828776B2 JP 2001312912 A JP2001312912 A JP 2001312912A JP 2001312912 A JP2001312912 A JP 2001312912A JP 3828776 B2 JP3828776 B2 JP 3828776B2
Authority
JP
Japan
Prior art keywords
plate
partition
rigidity
core
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001312912A
Other languages
Japanese (ja)
Other versions
JP2003119946A (en
Inventor
一樹 次橋
明男 杉本
善三 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001312912A priority Critical patent/JP3828776B2/en
Publication of JP2003119946A publication Critical patent/JP2003119946A/en
Application granted granted Critical
Publication of JP3828776B2 publication Critical patent/JP3828776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Panels For Use In Building Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の部材、特に床構造に用いられる高剛性パネルに関する。
【0002】
【従来の技術】
従来から、床たわみ、遮音性、耐震性等の居住性や施工性等を向上させる目的で、金属製のトラス断面パネル、ハニカムパネル等の軽量高剛性サンドイッチパネルを床構造構成材料として用いることがある。サンドイッチパネルはパネル全体として高剛性であることを特徴としており、遮音性能の中で最も対策が困難である重量床衝撃音の低周波数領域において特に大きな低減効果が得られる。
【0003】
しかし、トラス断面パネルのような高剛性パネルでは、パネル全体としては高剛性であるので上記のように低周波数領域での振動に対して効果を発揮するが、局部的には、つまりパネルを構成する薄板単体では剛性が弱いため、物の落下や人間の歩行等の衝撃力が床上に加わった場合に構成薄板に中〜高周波数領域の局部振動が発生することがある。そして構成薄板における局部振動がフローリングなどの床仕上げ材まで伝播し、床上の歩行者に不快感を与え、びびり振動等と呼ばれる問題になることがある。また、局部振動から天井裏に放射された中〜高周波数領域の音が下階の天井を透過し、びびり音等と呼ばれる問題となることもある。図5は、芯材として折板3を用いた高剛性のサンドイッチパネル、即ちトラス断面パネルにおいて、折板3の局部振動モードを数値解析によって求めた結果の一例であり、150Hzの局部振動が生じた場合を示している。折板の斜面3aには振幅の腹10が生じているのがわかる。
【0004】
上記のような金属パネルの構成薄板における局部振動は、構成薄板の上面全体にコンクリートを打設して合成床とすることによって解消される。建築物の床材として上述のような金属薄板等から構成される高剛性パネルを用いる場合において合成床とするのは一般的であり、コンクリートによって構成薄板における局部振動が拘束されるため、上述のような局部振動によるびびり振動・びびり音の問題が生じることはない。また構成薄板の上面全体へのコンクリート打設により合成床としない場合は、構成薄板の板厚を増加させたり、高剛性パネル内にグラスウール等の防音材を充填したり、構成薄板に制振材を貼り付けたりする対策が取られることもある。
【0005】
また一般に、薄板を構造部材として使用する場合には座屈破壊についても十分に検証しておく必要があり、座屈対策としては構成薄板の板厚を増加させるのが一般的である。
【0006】
【発明が解決しようとする課題】
しかしながら、従来から一般に行われている構成薄板の上面全体にコンクリートを打設するという方法では、床構造全体としての総重量が著しく増加するため、耐震性が低下する。また、床構造の総重量増加に伴って、床構造を支える大梁、柱、壁等の部材の構造強度を高める必要も生じるため、構造設計も困難になり、施工性も低下してしまう。
【0007】
また、構成薄板の上面全体にコンクリートを打設したり、防音材をパネル内に充填したりという局部振動対策方法においては、高剛性パネルを床パネルとして用いる場合には配管・配線等のための空間が必要であるので、配管・配線用の空間が減少するという問題がある。
【0008】
そして、構成薄板の局部振動や座屈に関する対策として有効な構成薄板の上面全体へのコンクリート打設、構成薄板の板厚増加、防音材や制振材の適用、いずれも材料・施工コストが大幅に増加する。
【0009】
本発明は以上の問題を鑑みてなされたものであり、著しい自重増加を抑えながら振動・騒音、特に構成薄板の局部振動によるびびり振動・びびり音を低減させ、十分な座屈強度を有し、経済的な高剛性パネル及びその振動低減方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
【課題を解決するための手段】
本発明の請求項1に記載の高剛性パネルは、平行に配置された2つの板材と、2つの前記板材の間に配置されて前記板材の各々と連結された芯材とを備えた高剛性パネルであって、前記板材と前記芯材との間に形成される空間を仕切るように長手方向の所定位置に配置され、前記板材及び/又は前記芯材に固設された1以上の仕切りを有し、前記仕切りが前記板材及び/又は前記芯材の長手方向における振動モードの腹近傍に設けられていることを特徴とする。
【0011】
本発明の請求項9に記載の高剛性パネルの振動低減方法は、2つの板材を平行に配置し、芯材を2つの前記板材の間に配置して前記板材の各々と連結させ、前記板材と前記芯材との間に形成される空間を仕切る1以上の仕切りを前記板材及び/又は前記芯材の長手方向における振動モードの腹近傍に配置し、前記板材及び/又は前記芯材に固設することを特徴とする。
【0012】
上記記載の高剛性パネル及びその振動低減方法によると、コンクリートを芯材の上面全体に打設しなくても、板材と芯材との間に形成される空間を埋めるように芯材の長手方向の所定位置に仕切りを設けるのみで、振動・騒音、特に構成薄板の局部振動によるびびり振動・びびり音を低減させることが可能であり、床構造全体の著しい自重増加を抑えることができる。またこの仕切りは、局部振動を低減させると共に、座屈破壊を防止するので、構成薄板の板厚を増加する必要もない。従って、耐震性や施工性を損なうという問題がない。また、仕切りを芯材の長手方向の複数箇所に設置することで、芯材や板材をより確実に拘束し、局部振動の低減効果をさらに向上させることができる。また、コンクリートを芯材の上面全体に打設しないので、高剛性パネル内の配管・配線用の空間を十分に確保できる。また、芯材上面全体へのコンクリート打設、防音材や制振材の適用、構成薄板の板厚増加を必要としないのでコストを抑えることができる。また、振動モードの腹近傍(図5参照)に仕切りが設けられて振幅の大きな部分を拘束するので、より効果的に局部振動を低減させることができる。またここで、周波数によって異なる振動モードが生じるので、問題となる周波数領域全ての振動モードの腹近傍に仕切りを設けることがより好ましい。
【0013】
本発明の請求項に記載の高剛性パネルは、請求項1又は2において、前記芯材の幅方向断面が起伏を有する形状であることを特徴とする。
【0014】
本発明の請求項10に記載の高剛性パネルの振動低減方法は、請求項9において、前記芯材の幅方向断面が起伏を有する形状であることを特徴とする。
【0015】
上記記載の高剛性パネル及びその振動低減方法によると、芯材として波形状や折板状のような幅方向断面が起伏を有する形状の板材を用い、パネル全体の剛性を効果的に向上させることが可能である。
【0016】
本発明の請求項に記載の高剛性パネルは、1つの板材と、幅方向断面が起伏を有する形状であり、前記板材に連結された芯材とを備えた高剛性パネルであって前記芯材の前記板材に対向しない側に固設されているとともに、前記板材及び/又は前記芯材の長手方向における振動モードの腹近傍に設けられている1以上の仕切りを有することを特徴とする。
【0017】
本発明の請求項11に記載の高剛性パネルの振動低減方法は、幅方向断面が起伏を有する形状である芯材を板材に連結させ、1以上の仕切りを前記芯材の前記板材に対向しない側かつ長手方向における振動モードの腹近傍に固設することを特徴とする。
【0018】
芯材の両面に板材を連結させないと、板材と芯材との接合部で折れ曲がり易く幅方向の曲げ剛性が著しく低くなるが、上記記載の高剛性パネル及びその振動低減方法によると、パネルとの間に形成される空間を埋めるように長手方向の所定位置に仕切りを固設することで、幅方向の曲げ剛性の低下を抑制することができる。即ち、板材を1枚のみ使用して低コストで高剛性パネルを実現することが可能である。また、請求項1と同様の効果を得ることができる。
【0019】
本発明の請求項に記載の高剛性パネルは、1つの板材と、幅方向断面が起伏を有する形状であり、前記板材に連結された芯材とを備えた高剛性パネルであって前記芯材の前記板材に対向しない側に固設されている1以上の仕切りを有し、前記仕切りが、幅方向に複数個併設された前記高剛性パネル全体に関する前記板材及び/又は前記芯材における幅方向の振動モードの腹近傍に設けられることを特徴とする。
【0020】
芯材の両面に板材を連結させないと、板材と芯材との接合部で折れ曲がり易く幅方向の曲げ剛性が著しく低くなるが、上記記載の高剛性パネルによると、パネルとの間に形成される空間を埋めるように長手方向の所定位置に仕切りを固設することで、幅方向の曲げ剛性の低下を抑制することができる。即ち、板材を1枚のみ使用して低コストで高剛性パネルを実現することが可能である。また、一般に高剛性パネルは複数併設して使用されるので、高剛性パネル単体の振動だけでなく複数個連結された高剛性パネル全体での振動も考慮する必要があるが、上記記載の高剛性パネルによると、仕切りを板材及び/又は芯材における幅方向の振動モードの腹近傍に設けるので、複数個併設された高剛性パネル全体が振動する際生じる局部振動の低減効果を向上させることもできる。
【0021】
本発明の請求項に記載の高剛性パネルは、請求項1〜のいずれか一項において、前記仕切りが粘弾性体を介して固設されていることを特徴とする。
【0022】
上記記載の高剛性パネルによると、粘弾性体の粘性作用によって振動エネルギが熱エネルギに変換され、局部振動の減衰効果が向上する。
【0023】
本発明の請求項に記載の高剛性パネルは、請求項1〜のいずれか一項において、前記仕切りが前記芯材の長手方向に幅のある塊状であることを特徴とする。
【0024】
仕切りが芯材の長手方向に幅のある塊状であるので、芯材や板材との接触面積が増加し、芯材や板材に対する拘束効果が上昇する。従って、局部振動の低減効果をより向上させることができる。
【0025】
本発明の請求項に記載の高剛性パネルは、請求項1〜のいずれか一項において、前記仕切りが前記板材と前記芯材との間に形成される空間の少なくとも一部を連通可能に固設されていることを特徴とする。
【0026】
板材と芯材との間に形成される空間の少なくとも一部が連通可能となるように仕切りを設ける場合と、板材と芯材との間に形成される空間の全体を埋めるように仕切りを設ける場合とでは、局部振動の低減効果がほぼ同じである。これは、図5に示されているように局部振動による振幅は芯材の高さ方向において中央近傍で最も大きくなるため、少なくともその部分を仕切りで拘束すれば局部振動を抑制することができるからである。従って上記記載の高剛性パネルによると、より少ない部材を用いてコストを低減させることができる。また、芯材の形状に合わせて仕切りを嵌合することは困難であり、正確に嵌合しないまま固設させると局部振動により接触音が発生するという不都合がある。上記記載の高剛性パネルはこのような不都合も解消することができる。
【0027】
本発明の請求項に記載の高剛性パネルは、平行に配置された2つの板材と、2つの前記板材の間に配置されて前記板材の各々と連結された芯材とを備えた高剛性パネルであって、前記板材と前記芯材との間に形成される空間を仕切るように長手方向の所定位置に配置され、前記板材及び/又は前記芯材に固設された1以上の仕切りを有し、前記仕切りが、幅方向に複数個併設された前記高剛性パネル全体に関する前記板材及び/又は前記芯材における幅方向の振動モードの腹近傍に設けられることを特徴とする。
【0028】
上記記載の高剛性パネルによると、コンクリートを芯材の上面全体に打設しなくても、板材と芯材との間に形成される空間を埋めるように芯材の長手方向の所定位置に仕切りを設けるのみで、振動・騒音、特に構成薄板の局部振動によるびびり振動・びびり音を低減させることが可能であり、床構造全体の著しい自重増加を抑えることができる。またこの仕切りは、局部振動を低減させると共に、座屈破壊を防止するので、構成薄板の板厚を増加する必要もない。従って、耐震性や施工性を損なうという問題がない。また、仕切りを芯材の長手方向の複数箇所に設置することで、芯材や板材をより確実に拘束し、局部振動の低減効果をさらに向上させることができる。また、コンクリートを芯材の上面全体に打設しないので、高剛性パネル内の配管・配線用の空間を十分に確保できる。また、芯材上面全体へのコンクリート打設、防音材や制振材の適用、構成薄板の板厚増加を必要としないのでコストを抑えることができる。また、一般に高剛性パネルは複数併設して使用されるので、高剛性パネル単体の振動だけでなく複数個連結された高剛性パネル全体での振動も考慮する必要があるが、上記記載の高剛性パネルによると、仕切りを板材及び/又は芯材における幅方向の振動モードの腹近傍に設けるので、複数個併設された高剛性パネル全体が振動する際生じる局部振動の低減効果を向上させることできる。
【0029】
【発明の実施の形態】
以下、本発明の好適な実施形態について添付図面を参照しながら説明する。
【0030】
先ず、本発明の第一の実施形態に係る高剛性パネル1について、図1及び図2に基づいて説明する。本実施形態の高剛性パネル1は、図1に示されているように、2枚の板材2a,2bと、その2枚の板材2a,2bの間に配置されて板材2a,2bの各々と連結された芯材としての折板3とを含む。そして折板3と板材2aとの間に形成される空間には、仕切り4が折板3の長手方向の所定位置に配置され、折板3に固設されている。なお、折板3の局部振動のみが問題となる場合には本実施形態のように仕切り4を折板3のみに固設し、板材2aの局部振動のみが問題となる場合には仕切り4を板材2aのみに固設し、折板3及び板材2aの両方の局部振動が問題となる場合には仕切り4を折板3及び板材2aの両方に固設するのが好ましく、局部振動が問題となる箇所に応じて適宜仕切り設置箇所を決定してよい。
【0031】
折板3は、例えば薄鋼板等の金属からなり、押出し成形、プレス成形、ロールフォーミング成形等によって形成され、高剛性パネル1の長手方向と平行にその山線及び谷線が設置されている。折板3は強度が高く、且つ取り扱いが容易であり、高剛性パネル1の幅方向軸まわりの曲げ剛性を効果的に向上させることができる。
【0032】
板材2a,2bは、例えば薄鋼板等の金属からなり、ベニア合板、パーティクルボード等の平板木材等を用いてよい。また、高剛性パネル1の用途に応じて、例えば床パネルとして用いる場合には、上側の板材2aとしてベニア合板、パーティクルボード等の平板木材を、下側の板材2bとして薄鋼板等を用いる等、2枚の板材2a,2bの材質、板厚等が異なってもよい。
【0033】
折板3と各板材2a,2bとの連結は、例えば螺子、ボルト・ナット、接着剤、スポット溶接等の溶接やこれらの併用による。ボルト・ナット等で連結する場合は、板材2a,2bと折板3との夫々該当する位置にボルト孔を設ける必要があり、また締め付けを強化する為に、矩形の金属薄板等の補強部材を用いることがある。
【0034】
本実施形態における仕切り4は板状のものであり、鉄・鋼等の金属、コンクリート、木材等、様々な材料から構成されてよい。この仕切り4は折板3の長手方向の所定位置に複数配置されているが、長手方向の1ヶ所のみに1つの仕切り4を配置してよい。また、本実施形態の仕切り4は、一方の板材2aと折板3との間に形成される空間の夫々に1枚ずつ配置されているが、設置箇所は様々にとることができる。例えば一方の板材2aと折板3との間に形成される空間に1空間置きに配置したり、もう一方の板材2bと折板3との間に形成される空間に配置したり、両方の空間に配置したりすることもできる。
【0035】
次に、本実施形態の高剛性パネル1に含まれる仕切り4の変形例を図2(a)〜(c)に基づいて説明する。図1の仕切り4は、板材2aと折板3との間に形成される三角形状の空間の全体を埋めているが、図2(a)〜(c)に示されている仕切り4は、その三角形状の空間の一部が連通可能となっている。図2(a)では折板3の谷部、図2(b)では三角形状空間の上部、図2(c)では三角形状空間の上部と下部とが連通可能となっている。
【0036】
図2(a)〜(c)のように板材2aと折板3との間に形成される三角形状空間の少なくとも一部が連通可能となるように仕切り4を設ける場合、より少ない部材でコストを低減させながらも、局部振動の低減効果については、図1のように板材2aと折板3との間に形成される三角形状空間の全体を埋めるように仕切り4を設ける場合とほぼ同じになる。これは、図5に示されているように局部振動による振幅は折板3の高さ方向において中央近傍で最も大きくなるため、少なくともその部分を仕切り4で拘束すれば局部振動を抑制することができるからである。また、折板3の断面形状に合わせて仕切り4を嵌合することは困難であり、正確に嵌合しないまま固設させると局部振動により接触音が発生するという不都合があるが、このような不都合も解消される。なお、局部振動は折板3の高さ方向中央近傍で最大となることから、少なくともその部分は仕切り4で拘束することが好ましい。
【0037】
次いで、本発明に係る第二の実施形態について、図3に基づいて説明する。本実施形態の高剛性パネル11は、本発明に係る第一の実施形態において芯材として使用されている折板3がコ型形材13に置換されたものである。そして、本発明に係る第一の実施形態と同様に、そのコ型形材13の長手方向の所定位置に仕切り4が配置されてコ型形材13に固設されているが、本実施形態における仕切り4は板状ではなくコ型形材13の長手方向に厚さのあるもので、コ型形材13の幅方向断面内部に嵌合され、コ型形材13の形状を拘束している。
【0038】
板材2a,2bは本発明に係る第一の実施形態と同様であり、コ型形材13は、例えば薄鋼板等の金属からなり、押出し成形、プレス成形、ロールフォーミング成形等によって形成され、板材2a,2bの間に間隔をとって平行に複数個併設されている。各コ型形材13と各板材2a,2bとの連結は、本発明に係る第一の実施形態と同様に例えば螺子、ボルト・ナット、接着剤、スポット溶接等の溶接やこれらの併用による。また、仕切り4についても本発明に係る第一の実施形態と同様で、鉄・鋼等の金属、コンクリート、木材等、様々な材料から構成されてよく、各コ型形材13の長手方向の1ヶ所のみに1つの仕切り4を配置したり、コ型形材13の幅方向断面内部に完全に嵌合させずに一部連通可能となるように切り欠きを設けたりしてもよい。
【0039】
なお、本発明に係る芯材は、上記の第一の実施形態における折板3や第二の実施形態におけるコ型形材13のような形態に限定されるものではない。例えば板材2a,2bと平行に上下交互の折り曲げ成形が施された折板、山線・谷線の明確な折り目のない滑らかな曲線を描いて起伏する波板等、様々な形状が考えられ、各板材2a,2bに連結されてパネル1,11全体の剛性を高めるものであればよい。
【0040】
次いで、本発明に係る第三の実施形態について、図4に基づいて説明する。本実施形態の高剛性パネル21は、板材2を1枚のみとし、芯材として折板3を用いており、仕切り4は折板3の板材2に対向しない側に配置されている。この仕切り4は長手方向の所定位置に複数個固設されているのが好ましい。なお、芯材としては、幅方向断面が起伏を有する形状であれば、折板3に限らず、例えば波板等を用いてよい。
【0041】
折板3は本発明に係る第一の実施形態と同様であり、例えば薄鋼板等の金属からなり、押出し成形、プレス成形、ロールフォーミング成形等によって形成され、高剛性パネル21の長手方向と平行にその山線及び谷線が設置される。また板材2は本発明に係る第一及び第二の実施形態と同様であり、例えば薄鋼板等の金属からなり、ベニア合板、パーティクルボード等の平板木材等を用いてよい。また図4に示されている本実施形態における仕切り4は、図2(a)〜(c)と同様に折板3における三角形状の空間の一部が連通可能となっているが、三角形状の空間全てを埋めるように設けてもよく、また折板3の板材2に対向する側にも設けてもよい。
【0042】
折板3の片側のみに板材2を連結させると通常幅方向の曲げ剛性が著しく低くなるが、図4に示されているように、仕切り4を折板3の板材2に対向しない側に固設させることによって、幅方向の曲げ剛性の低下を抑制することができる。即ち、板材2を1枚のみ使用して低コストで高剛性パネル21を実現することが可能である。
【0043】
なお、本発明に係る仕切り4は、上記の第一〜第三の実施形態によるものに限定されず、例えば鉄・鋼等の金属、コンクリート、からなる塊状のもの、砂袋等、芯材の長手方向に幅のあるものを使用してもよい。これによって、折板3、コ型形材13等の芯材や板材2,2a,2bとの接触面積が増加し、芯材や板材2,2a,2bに対する拘束効果が上昇するので、局部振動の低減効果がさらに向上する。また、仕切り4を金属、コンクリート、砂等の重量のあるものとし、幅方向に複数併設された高剛性パネルからなる床構造の振動振幅の大きな部分に局所的に重量を増加させることで、特に重量床衝撃音の低減効果を向上させることもできる。
【0044】
板材2,2a,2b及び/又は折板3、コ型形材13等の芯材に仕切り4を固設するには、例えばボルト・ナット、接着剤等を用いたり、スポット溶接等の溶接を施したりしてもよい。図1に示されているように粘弾性体の接着剤5等を用いると、粘弾性体の粘性作用によって振動エネルギが熱エネルギに変換され、高剛性パネル1の局部振動が早く減衰し、びびり振動・びびり音の不快感を和らげることができる。
【0045】
粘弾性体5としては、損失係数が0.05〜5.0の高分子材料を用いることが好ましく、接着剤5、ゴム等を用いることができる。また他にも、粘弾性の性質を示すものであれば、何でも使用することができる。
【0046】
なお、板材2,2a,2bと折板3との緊結作業や、板材2,2a,2b及び/又は折板3に仕切り4を固設させる作業は、施工現場及び工場のどちらで行ってもよい。
【0047】
以上のように、高剛性パネル1,11,21に仕切り4を備えることで、コンクリートを折板3の上面全体にわたって打設しなくても、振動・騒音、特に構成薄板の局部振動によるびびり振動・びびり音を低減させることが可能であり、高剛性パネル1,11,21を含む床構造全体の著しい自重増加を抑えることができる。またこの仕切り4は、局部振動を低減させると共に、座屈破壊を防止するので、構成薄板の板厚を増加する必要もない。従って、耐震性や施工性を損なうという問題がない。また、仕切り4を折板3、コ型形材13等芯材の長手方向の複数箇所に設置することで、折板3、コ型形材13等の芯材や板材2,2a,2bをより確実に拘束し、局部振動の低減効果をさらに向上させることができる。また、コンクリートを折板3の上面全体にわたって打設しないので、高剛性パネル1,11,21内の配管・配線用の空間を十分に確保できる。また、折板3の上面全体へのコンクリート打設、防音材や制振材の適用、構成薄板の板厚増加を必要としないのでコストを抑えることができる。
【0048】
また、この仕切り4の設置箇所を芯材の振動モードの腹10(図5参照)近傍として、振幅が大きい部分を拘束することが好ましい。また、周波数によって異なる振動モードが生じるので、問題となる周波数領域全ての振動モードの腹近傍に仕切りを設けることがより好ましい。こうすることで、より少ない材料を用いて高剛性パネル1,11,21の総重量の増加を最小限に抑えながら、局部振動の低減効果を向上させることができる。
【0049】
なお、高剛性パネル1,11,21の長手方向の中央近傍に仕切り4を設置することによって、高剛性パネル1,11,21全体の振動を低減する効果が期待できる。
【0050】
また一般に、高剛性パネル1,11,21はその幅方向に複数併設して使用されるので、高剛性パネル1,11,21単体の振動だけでなく複数個連結された高剛性パネル1,11,21全体での振動も考慮する必要がある。そこで、仕切り4の設置位置を、幅方向に複数個併設された高剛性パネル1,11,21全体に関する板材2,2a,2b及び/又は折板3やコ型形材13等の芯材における幅方向の振動モードの腹近傍とすることで、複数個併設された高剛性パネル1,11,21全体が振動する際生じる局部振動の低減効果を向上させることができる。なお、幅方向に複数個併設された高剛性パネル1,11,21全体に関する折板3やコ型形材13等の芯材における幅方向の振動モードは、パネル1,11,21の寸法、併設するパネル1,11,21の個数等によって変化する。
【0051】
【発明の効果】
本発明は以上説明したように構成されるので、以下に記載されるような効果を奏する。
【0052】
板材と芯材との間に形成される空間を埋めるように芯材の長手方向の所定位置に仕切りを設けることによって、コンクリートを芯材の上面全体に打設しなくても、板材と芯材との間に形成される空間を埋めるように芯材の長手方向の所定位置に仕切りを設けるのみで、振動・騒音、特に構成薄板の局部振動によるびびり振動・びびり音を低減させることが可能であり、床構造全体の著しい自重増加を抑えることができる。また、仕切りは、局部振動を低減させると共に、座屈破壊を防止するので、構成薄板の板厚を増加する必要もない。従って、耐震性や施工性を損なうという問題がない。
【0053】
また、仕切りを芯材の長手方向の複数箇所に設置することで、芯材や板材をより確実に拘束し、局部振動の低減効果をさらに向上させることができる。
【0054】
また、コンクリートを芯材の上面全体に打設したり、防音材を充填したりしないので、高剛性パネル内の配管・配線用の空間を十分に確保できる。
【0055】
また、芯材の上面全体へのコンクリート打設、防音材や制振材の適用、構成薄板の板厚増加を必要としないのでコストを抑えることができる。
【0056】
また、芯材として波形状や折板状のような幅方向断面が起伏を有する形状の板材を用いることで、パネル全体の剛性を効果的に向上させることが可能である。
【0057】
また、幅方向断面が起伏を有する形状である芯材を板材に連結させ、仕切りを芯材の板材に対向しない側において長手方向の所定位置に固設することで、板材が芯材の一方にしかないことによる幅方向の曲げ剛性の低下を抑制することができる。即ち、板材を1枚のみ使用して低コストで高剛性パネルを実現することが可能である。
【0058】
また、振動モードの腹近傍に仕切りを設けることで、床構造の総重量の増加を最小限に抑えながら、局部振動の低減効果をより一層向上させることができる。
【0059】
また、粘弾性体を介して仕切りを固設することで、粘弾性体の粘性作用によって振動エネルギが熱エネルギに変換され、局部振動の減衰効果が向上する。
【0060】
また、仕切りを芯材の長手方向に幅のある塊状とすることで、芯材や板材に対する拘束効果が上昇し、局部振動の低減効果をより一層向上させることができる。
【0061】
また、板材と芯材との間に形成される空間の少なくとも一部が連通可能となるように仕切りを設けると、より少ない部材を用いてコストを低減させながらも、板材と芯材との間に形成される空間の全体を埋めるように仕切りを設ける場合と同等の局部振動の低減効果を得ることができる。さらに、仕切りを芯材の形状に正確に合わせないまま固設させて騒音が発生してしまうという不都合を解消するもできる。
【0062】
また、高剛性パネルを複数併設して使用する場合に、仕切りを板材及び/又は芯材における幅方向の振動モードの腹近傍に設けると、複数個併設された高剛性パネル全体が振動する際生じる局部振動の低減効果を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態に係る高剛性パネルを示す斜視分解図である。
【図2】本発明の第一の実施形態に係る高剛性パネルに含まれる仕切りの変形例を示す横断面図である。
【図3】本発明の第二の実施形態に係る高剛性パネルを示す斜視分解図である。
【図4】本発明の第三の実施形態に係る高剛性パネルを示す横断面図である。
【図5】高剛性パネルに用いられる折板の局部振動モードに関する数値解析結果の一例を示す説明図である。
【符号の説明】
1,11,21 高剛性パネル
2,2a,2b 板材
3 折板(芯材)
3a 折板斜面
4 仕切り
5 接着剤(粘弾性体)
10 振動モードの腹
13 コ型形材(芯材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high rigidity panel used for a building member, particularly a floor structure.
[0002]
[Prior art]
Conventionally, lightweight, high-rigidity sandwich panels such as metal truss cross-section panels and honeycomb panels have been used as floor structure constituent materials for the purpose of improving the comfortability and workability such as floor deflection, sound insulation, and earthquake resistance. is there. The sandwich panel is characterized by high rigidity as a whole panel, and a particularly large reduction effect can be obtained in a low frequency region of heavy floor impact sound, which is the most difficult to take countermeasures in sound insulation performance.
[0003]
However, a high-rigidity panel such as a truss cross-sectional panel is highly rigid as a whole, so it is effective against vibrations in the low-frequency region as described above. Since the thin plate itself has low rigidity, local vibrations in the medium to high frequency region may occur in the constituent thin plate when an impact force such as falling of an object or human walking is applied on the floor. And the local vibration in a constituent thin plate propagates to floor finishing materials, such as flooring, and gives discomfort to the pedestrian on a floor, and may become a problem called chatter vibration. In addition, the sound in the middle to high frequency range radiated from the local vibration to the back of the ceiling may pass through the ceiling on the lower floor, resulting in a problem called chatter noise. FIG. 5 is an example of the result of numerical analysis of the local vibration mode of the folded plate 3 in a highly rigid sandwich panel using the folded plate 3 as a core, that is, a truss cross-sectional panel, and a local vibration of 150 Hz occurs. Shows the case. It can be seen that there is an amplitude belly 10 on the slope 3a of the folded plate.
[0004]
The local vibration in the constituent thin plate of the metal panel as described above can be eliminated by placing concrete on the entire upper surface of the constituent thin plate to form a composite floor. In the case of using a high-rigidity panel composed of a metal thin plate as described above as a flooring material for a building, it is common to use a synthetic floor, and local vibrations in the structural thin plate are constrained by concrete. There is no problem of chatter vibration and chatter noise caused by local vibration. In addition, when concrete flooring is not applied to the entire upper surface of the structural thin plate, the structural thin plate is increased in thickness, a high-rigidity panel is filled with soundproofing materials such as glass wool, and the structural thin plate is damped. Measures such as pasting may be taken.
[0005]
In general, when a thin plate is used as a structural member, it is necessary to sufficiently verify the buckling failure, and as a countermeasure against buckling, it is common to increase the thickness of the constituent thin plate.
[0006]
[Problems to be solved by the invention]
However, in the conventional method of placing concrete on the entire top surface of the structural thin plate, the total weight of the entire floor structure is remarkably increased, so that the earthquake resistance is lowered. In addition, as the total weight of the floor structure increases, it becomes necessary to increase the structural strength of members such as large beams, columns, and walls that support the floor structure, which makes structural design difficult and reduces workability.
[0007]
In addition, in the local vibration countermeasure method, such as placing concrete on the entire upper surface of the structural thin plate or filling the panel with soundproofing material, when using a high-rigidity panel as a floor panel, for piping and wiring etc. Since space is required, there is a problem that space for piping and wiring is reduced.
[0008]
And, as a countermeasure for local vibration and buckling of the structural thin plate, concrete placement on the entire upper surface of the structural thin plate, increase in the thickness of the structural thin plate, application of soundproofing materials and vibration damping materials, all have significant material and construction costs To increase.
[0009]
The present invention has been made in view of the above problems, and while suppressing a significant increase in its own weight, vibration and noise, particularly chatter vibration and chatter noise due to local vibrations of a thin plate, are reduced, and has sufficient buckling strength. An object is to provide an economical high-rigidity panel and a vibration reduction method thereof.
[Means for Solving the Problems]
[0010]
[Means for Solving the Problems]
  The high-rigidity panel according to claim 1 of the present invention includes two plate members arranged in parallel and a core member arranged between the two plate members and connected to each of the plate members.High rigidity panel,A space formed between the plate material and the core materialPartitionArranged at a predetermined position in the longitudinal direction and fixed to the plate and / or the core.The partition is provided near the antinode of the vibration mode in the longitudinal direction of the plate member and / or the core member.It is characterized by that.
[0011]
  According to a ninth aspect of the present invention, there is provided a vibration reducing method for a high-rigidity panel in which two plate members are arranged in parallel and a core member is arranged between the two plate members to be connected to each of the plate members.,in frontA space formed between the recording board and the coreOne or more partitions for partitioning the plate material and / or the vicinity of the vibration mode in the longitudinal direction of the core materialIt arrange | positions to the said board | plate material and / or the said core material, It is characterized by the above-mentioned.
[0012]
  According to the high-rigidity panel and the vibration reduction method described above, the longitudinal direction of the core material fills the space formed between the plate material and the core material without placing concrete on the entire upper surface of the core material. It is possible to reduce vibration and noise, particularly chatter vibration and chatter noise due to local vibration of the constituent thin plates, and suppress a significant increase in the weight of the entire floor structure. Further, since this partition reduces local vibration and prevents buckling failure, it is not necessary to increase the thickness of the constituent thin plate. Therefore, there is no problem of impairing earthquake resistance and workability. In addition, by installing the partitions at a plurality of locations in the longitudinal direction of the core material, the core material and the plate material can be more reliably restrained, and the effect of reducing local vibration can be further improved. Further, since concrete is not placed over the entire top surface of the core material, a sufficient space for piping and wiring in the high-rigidity panel can be secured. Further, it is not necessary to place concrete on the entire upper surface of the core material, to apply a soundproofing material or a vibration damping material, and to increase the thickness of the constituent thin plate, thereby reducing costs.In addition, since a partition is provided near the antinode of the vibration mode (see FIG. 5) and a portion having a large amplitude is constrained, local vibration can be more effectively reduced. Here, since different vibration modes are generated depending on the frequency, it is more preferable to provide a partition in the vicinity of the antinodes of the vibration modes in all frequency regions in question.
[0013]
  Claims of the invention3The high-rigidity panel according to claim 1.Or 2The cross-section in the width direction of the core material has a undulating shape.
[0014]
The vibration reducing method for a high-rigidity panel according to claim 10 of the present invention is characterized in that, in claim 9, the cross-section in the width direction of the core member has a undulation shape.
[0015]
According to the above-described high-rigidity panel and its vibration reduction method, a plate material having a wavy cross-sectional shape such as a corrugated or folded plate shape is used as the core material, and the rigidity of the entire panel is effectively improved. Is possible.
[0016]
  Claims of the invention4The high-rigidity panel described inA high-rigidity panel comprising one plate and a core having a undulation in a cross section in the width direction and connected to the plate.,The core member is fixed to a side not facing the plate member, and has one or more partitions provided in the vicinity of the antinode of the vibration mode in the longitudinal direction of the plate member and / or the core member.It is characterized by that.
[0017]
  According to the eleventh aspect of the present invention, in the vibration reducing method for a high-rigidity panel, a core material having a undulation in the cross section in the width direction is connected to the plate material, and one or more partitions are not opposed to the plate material of the core material. ~ sideAnd near the belly of the vibration mode in the longitudinal directionIt is characterized by being fixed to.
[0018]
  If the plate material is not connected to both sides of the core material, it is easy to bend at the joint between the plate material and the core material, and the bending rigidity in the width direction is remarkably reduced.However, according to the above-described high-rigidity panel and its vibration reduction method, By fixing the partition at a predetermined position in the longitudinal direction so as to fill the space formed therebetween, it is possible to suppress a decrease in the bending rigidity in the width direction. That is, it is possible to realize a high-rigidity panel at a low cost by using only one plate material. Also billedItem 1The same effect can be obtained.
[0019]
  Claims of the invention5The high-rigidity panel described inOneBoard material,The cross section in the width direction is a shape having undulations, and is a high-rigidity panel comprising a core material connected to the plate material,,The plate member and / or the core member relating to the entire high-rigidity panel having one or more partitions fixed on a side of the core member that does not face the plate member, and a plurality of the partitions provided side by side in the width direction. In the width directionIt is provided near the antinode of the vibration mode.
[0020]
  If the plate material is not connected to both sides of the core material, it is easy to bend at the joint between the plate material and the core material, and the bending rigidity in the width direction is remarkably reduced. However, according to the high-rigidity panel described above, it is formed between the panels. By fixing the partition at a predetermined position in the longitudinal direction so as to fill the space, it is possible to suppress a decrease in bending rigidity in the width direction. That is, it is possible to realize a high-rigidity panel at a low cost by using only one plate material. In general, since a plurality of high-rigidity panels are used side by side, it is necessary to consider not only the vibration of a single high-rigidity panel but also the vibrations of the entire high-rigidity panel connected. According to the panel, since the partition is provided in the vicinity of the antinode of the vibration mode in the width direction in the plate material and / or the core material, it is possible to improve the effect of reducing the local vibration generated when the entire high rigidity panel provided in plurality is vibrated. .
[0021]
  Claims of the invention6The high-rigidity panel according to claim 1.5In any one of these, The said partition is fixedly provided through the viscoelastic body.
[0022]
According to the above-described high-rigidity panel, the vibration energy is converted into heat energy by the viscous action of the viscoelastic body, and the local vibration damping effect is improved.
[0023]
  Claims of the invention7The high-rigidity panel according to claim 1.6In any one of these, The said partition is a lump shape with the width | variety in the longitudinal direction of the said core material, It is characterized by the above-mentioned.
[0024]
Since the partition is in the form of a lump having a width in the longitudinal direction of the core material, the contact area with the core material or the plate material is increased, and the restraining effect on the core material or the plate material is increased. Therefore, the effect of reducing local vibration can be further improved.
[0025]
  Claims of the invention8The high-rigidity panel according to claim 1.7In any one of these, The said partition is fixedly provided so that at least one part of the space formed between the said board | plate material and the said core material can be connected.
[0026]
When providing a partition so that at least a part of the space formed between the plate material and the core material can communicate, and providing a partition so as to fill the entire space formed between the plate material and the core material In the case, the effect of reducing local vibration is almost the same. This is because, as shown in FIG. 5, the amplitude due to local vibration is the largest in the vicinity of the center in the height direction of the core material, so that local vibration can be suppressed if at least that portion is constrained by a partition. It is. Therefore, according to the high-rigidity panel described above, the cost can be reduced by using fewer members. Further, it is difficult to fit the partition in accordance with the shape of the core material, and there is a disadvantage that contact noise is generated due to local vibration if fixed without being fitted accurately. The above-described high-rigidity panel can eliminate such inconvenience.
[0027]
  Claims of the invention2The high-rigidity panel described inA high-rigidity panel comprising two plate members arranged in parallel and a core member arranged between the two plate members and connected to each of the plate members, between the plate member and the core member Is arranged at a predetermined position in the longitudinal direction so as to partition the space formed, and has one or more partitions fixed to the plate member and / or the core member, and a plurality of the partitions are provided in the width direction. Further, in the width direction of the plate material and / or the core material related to the entire high-rigidity panel.It is provided near the antinode of the vibration mode.
[0028]
  According to the high-rigidity panel described above, the concrete is divided into predetermined positions in the longitudinal direction of the core material so as to fill the space formed between the plate material and the core material without placing concrete on the entire top surface of the core material. It is possible to reduce vibration and noise, particularly chatter vibration and chatter noise due to local vibration of the constituent thin plates, and suppress a significant increase in the weight of the entire floor structure. Further, since this partition reduces local vibration and prevents buckling failure, it is not necessary to increase the thickness of the constituent thin plate. Therefore, there is no problem of impairing earthquake resistance and workability. In addition, by installing the partitions at a plurality of locations in the longitudinal direction of the core material, the core material and the plate material can be more reliably restrained, and the effect of reducing local vibration can be further improved. Further, since concrete is not placed over the entire top surface of the core material, a sufficient space for piping and wiring in the high-rigidity panel can be secured. Further, it is not necessary to place concrete on the entire upper surface of the core material, to apply a soundproofing material or a vibration damping material, and to increase the thickness of the constituent thin plate, thereby reducing costs. Also,In general, since multiple high-rigidity panels are used together, it is necessary to consider not only the vibration of a single high-rigidity panel but also the vibrations of the entire high-rigidity panel connected together.But,According to the high-rigidity panel described above, the partition is provided near the antinode of the vibration mode in the width direction of the plate material and / or the core material, so that the effect of reducing local vibration generated when the entire high-rigidity panel provided in plural is vibrated. To improveAlsoit can.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.
[0030]
First, the highly rigid panel 1 which concerns on 1st embodiment of this invention is demonstrated based on FIG.1 and FIG.2. As shown in FIG. 1, the high-rigidity panel 1 of the present embodiment is arranged between two plate members 2a and 2b and the two plate members 2a and 2b, and each of the plate members 2a and 2b. And a folded plate 3 as a connected core material. A partition 4 is disposed at a predetermined position in the longitudinal direction of the folded plate 3 and fixed to the folded plate 3 in a space formed between the folded plate 3 and the plate material 2a. If only the local vibration of the folded plate 3 is a problem, the partition 4 is fixed only to the folded plate 3 as in this embodiment, and if only the local vibration of the plate member 2a is a problem, the partition 4 is provided. If only the plate member 2a is fixed and local vibrations of both the folded plate 3 and the plate member 2a are problematic, it is preferable to fix the partition 4 to both the folded plate 3 and the plate member 2a. The partition installation location may be determined as appropriate according to the location.
[0031]
The folded plate 3 is made of, for example, a metal such as a thin steel plate, and is formed by extrusion molding, press molding, roll forming molding, or the like, and the crest and trough lines are installed in parallel to the longitudinal direction of the high-rigidity panel 1. The folded plate 3 has high strength and is easy to handle, and can effectively improve the bending rigidity around the width direction axis of the high-rigidity panel 1.
[0032]
The plate members 2a and 2b are made of a metal such as a thin steel plate, for example, and flat wood such as a veneer plywood or a particle board may be used. Further, depending on the use of the high-rigidity panel 1, for example, when used as a floor panel, a flat wood such as a veneer plywood or a particle board is used as the upper plate member 2a, a thin steel plate or the like is used as the lower plate member 2b, etc. The material and thickness of the two plate members 2a and 2b may be different.
[0033]
The folded plate 3 and the plate members 2a and 2b are connected by, for example, a screw, a bolt / nut, an adhesive, welding such as spot welding, or a combination thereof. When connecting with bolts and nuts, etc., it is necessary to provide bolt holes at the corresponding positions of the plate members 2a, 2b and the folded plate 3, and in order to strengthen tightening, a reinforcing member such as a rectangular thin metal plate is used. May be used.
[0034]
The partition 4 in this embodiment is plate-shaped, and may be composed of various materials such as metals such as iron and steel, concrete, and wood. A plurality of the partitions 4 are arranged at predetermined positions in the longitudinal direction of the folded plate 3, but one partition 4 may be arranged only at one place in the longitudinal direction. Moreover, although the partition 4 of this embodiment is arrange | positioned 1 each in each of the space formed between one board | plate material 2a and the folded board 3, an installation location can be taken variously. For example, it arranges every other space in the space formed between one plate material 2a and the folded plate 3, or arranges it in the space formed between the other plate material 2b and the folded plate 3, It can also be placed in space.
[0035]
Next, a modified example of the partition 4 included in the high-rigidity panel 1 of the present embodiment will be described with reference to FIGS. The partition 4 in FIG. 1 fills the entire triangular space formed between the plate member 2a and the folded plate 3, but the partition 4 shown in FIGS. A part of the triangular space can communicate. 2A, the valley of the folded plate 3, the upper part of the triangular space in FIG. 2B, and the upper and lower parts of the triangular space in FIG. 2C can communicate.
[0036]
When the partition 4 is provided so that at least a part of the triangular space formed between the plate material 2a and the folded plate 3 can be communicated as shown in FIGS. 2A to 2C, the cost is reduced with fewer members. The effect of reducing local vibration is almost the same as the case where the partition 4 is provided so as to fill the entire triangular space formed between the plate material 2a and the folded plate 3 as shown in FIG. Become. This is because, as shown in FIG. 5, the amplitude due to the local vibration becomes the largest in the vicinity of the center in the height direction of the folded plate 3, so that local vibration can be suppressed by constraining at least that portion with the partition 4. Because it can. In addition, it is difficult to fit the partition 4 in accordance with the cross-sectional shape of the folded plate 3, and there is a disadvantage that contact noise is generated due to local vibration if fixed without being fitted accurately. Inconvenience is also eliminated. In addition, since local vibration becomes the maximum in the height direction center vicinity of the folding plate 3, it is preferable to restrain at least the part with the partition 4. FIG.
[0037]
Next, a second embodiment according to the present invention will be described with reference to FIG. The high-rigidity panel 11 of this embodiment is obtained by replacing the folded plate 3 used as the core material in the first embodiment according to the present invention with a U-shaped profile 13. And like 1st embodiment which concerns on this invention, although the partition 4 is arrange | positioned in the predetermined position of the longitudinal direction of the co-shaped member 13, and is fixed to the co-shaped member 13, this embodiment The partition 4 in FIG. 1 is not plate-shaped but has a thickness in the longitudinal direction of the U-shaped member 13, and is fitted into the cross-section in the width direction of the U-shaped member 13 to restrain the shape of the U-shaped member 13. Yes.
[0038]
The plate materials 2a and 2b are the same as those of the first embodiment according to the present invention, and the U-shaped profile 13 is made of a metal such as a thin steel plate, and is formed by extrusion molding, press molding, roll forming molding or the like. A plurality of parallel lines are provided between 2a and 2b at intervals. As in the first embodiment according to the present invention, for example, a screw, a bolt / nut, an adhesive, spot welding, or the like, or a combination thereof is used to connect each of the U-shaped members 13 and the plate members 2a and 2b. Further, the partition 4 is also similar to the first embodiment according to the present invention, and may be composed of various materials such as metals such as iron and steel, concrete, and wood. One partition 4 may be arranged at only one place, or a notch may be provided so that a part of the partition 4 can be communicated without being completely fitted inside the cross section in the width direction.
[0039]
In addition, the core material which concerns on this invention is not limited to forms like the folded plate 3 in said 1st embodiment, or the U-shaped profile 13 in 2nd embodiment. For example, various shapes such as a folded plate that is alternately bent and formed in parallel with the plate materials 2a and 2b, and a corrugated plate that undulates with a smooth curve without a clear crease in a mountain line and a valley line are considered. What is necessary is just to connect with each board | plate material 2a, 2b and to raise the rigidity of the panel 1 and 11 whole.
[0040]
Next, a third embodiment according to the present invention will be described with reference to FIG. The high-rigidity panel 21 of the present embodiment includes only one plate 2 and uses the folded plate 3 as a core, and the partition 4 is disposed on the side of the folded plate 3 that does not face the plate 2. A plurality of the partitions 4 are preferably fixed at predetermined positions in the longitudinal direction. The core material is not limited to the folded plate 3 as long as the cross section in the width direction has an undulation, and for example, a corrugated plate or the like may be used.
[0041]
The folded plate 3 is the same as that of the first embodiment according to the present invention. For example, the folded plate 3 is made of a metal such as a thin steel plate, is formed by extrusion molding, press molding, roll forming molding, or the like, and is parallel to the longitudinal direction of the high-rigidity panel 21. The mountain line and the valley line will be installed. Moreover, the board | plate material 2 is the same as that of 1st and 2nd embodiment which concerns on this invention, for example, consists of metals, such as a thin steel plate, You may use flat timbers, such as a veneer plywood and a particle board. Moreover, although the partition 4 in this embodiment shown by FIG. 4 can communicate a part of triangular space in the folded plate 3 like FIG.2 (a)-(c), it is triangular shape. It may be provided so as to fill the entire space, or may be provided on the side of the folded plate 3 facing the plate member 2.
[0042]
When the plate member 2 is connected to only one side of the folded plate 3, the bending rigidity in the width direction is usually extremely low. However, as shown in FIG. 4, the partition 4 is fixed to the side of the folded plate 3 not facing the plate member 2. By providing, the fall of the bending rigidity of the width direction can be suppressed. That is, it is possible to realize the high-rigidity panel 21 at low cost by using only one sheet material 2.
[0043]
In addition, the partition 4 which concerns on this invention is not limited to what is based on said 1st-3rd embodiment, For example, metal, such as iron and steel, the lump which consists of concrete, sandbags, etc. of core materials, etc. You may use a thing with a width | variety in a longitudinal direction. As a result, the contact area with the core material such as the folded plate 3 and the U-shaped profile 13 and the plate materials 2, 2 a, 2 b is increased, and the restraining effect on the core material and the plate materials 2, 2 a, 2 b is increased. The reduction effect is further improved. In addition, by making the partition 4 heavy with metal, concrete, sand, etc., and increasing the weight locally on the part with a large vibration amplitude of the floor structure composed of a plurality of high-rigidity panels arranged in the width direction, It is also possible to improve the effect of reducing heavy floor impact sound.
[0044]
In order to fix the partition 4 to the core material such as the plate materials 2, 2 a, 2 b and / or the folded plate 3, the U-shaped profile 13, for example, bolts / nuts, adhesives, etc. are used, or spot welding or the like is used. You may give it. As shown in FIG. 1, when the viscoelastic adhesive 5 or the like is used, the vibration energy is converted into heat energy by the viscous action of the viscoelastic body, and the local vibration of the high-rigidity panel 1 is quickly attenuated. It can relieve the discomfort of vibration and chatter sound.
[0045]
As the viscoelastic body 5, a polymer material having a loss coefficient of 0.05 to 5.0 is preferably used, and an adhesive 5, rubber, or the like can be used. In addition, anything that exhibits viscoelastic properties can be used.
[0046]
It should be noted that the work of binding the plate materials 2, 2 a, 2 b and the folded plate 3 and the operation of fixing the partition 4 to the plate materials 2, 2 a, 2 b and / or the folded plate 3 can be performed at either the construction site or the factory. Good.
[0047]
As described above, by providing the partition 4 on the high-rigidity panels 1, 11 and 21, vibration and noise, particularly chatter vibration due to local vibration of the structural thin plate, can be achieved without placing concrete over the entire upper surface of the folded plate 3. -Chatter noise can be reduced, and a significant increase in the weight of the entire floor structure including the high-rigidity panels 1, 11, 21 can be suppressed. Further, since the partition 4 reduces local vibration and prevents buckling failure, it is not necessary to increase the thickness of the constituent thin plate. Therefore, there is no problem of impairing earthquake resistance and workability. Further, by installing the partition 4 at a plurality of locations in the longitudinal direction of the core material such as the folded plate 3 and the U-shaped profile 13, the core materials such as the folded plate 3 and the U-shaped profile 13 and the plate materials 2, 2a and 2b It is possible to more reliably restrain and further improve the local vibration reduction effect. Further, since concrete is not placed over the entire top surface of the folded plate 3, a sufficient space for piping and wiring in the high-rigidity panels 1, 11 and 21 can be secured. Further, since it is not necessary to place concrete on the entire upper surface of the folded plate 3, apply a soundproofing material or a vibration damping material, and increase the thickness of the constituent thin plate, the cost can be reduced.
[0048]
In addition, it is preferable to constrain a portion having a large amplitude with the installation location of the partition 4 being in the vicinity of the antinode 10 (see FIG. 5) of the vibration mode of the core material. In addition, since different vibration modes are generated depending on the frequency, it is more preferable to provide a partition in the vicinity of the antinodes of the vibration modes in the frequency range in question. By doing so, it is possible to improve the local vibration reduction effect while minimizing the increase in the total weight of the high-rigidity panels 1, 11 and 21 using less material.
[0049]
In addition, the effect which reduces the vibration of the high rigid panels 1,11,21 whole can be anticipated by installing the partition 4 in the center vicinity of the longitudinal direction of the high rigid panels 1,11,21.
[0050]
In general, since a plurality of high-rigidity panels 1, 11 and 21 are used side by side in the width direction, not only vibration of the high-rigidity panels 1, 11 and 21 but also a plurality of connected high-rigidity panels 1 and 11 are used. , 21 also needs to be considered. Therefore, the installation positions of the partitions 4 in the core members such as the plate members 2, 2 a, 2 b and / or the folded plate 3 and the U-shaped member 13 related to the entire high rigidity panels 1, 11, 21 arranged in the width direction. By making it near the antinode of the vibration mode in the width direction, it is possible to improve the effect of reducing local vibrations that occur when the entire high-rigidity panels 1, 11, 21 arranged in plurality are vibrated. It should be noted that the vibration mode in the width direction of the core material such as the folded plate 3 and the U-shaped profile 13 relating to the whole of the high-rigidity panels 1, 11 and 21 provided side by side in the width direction is the dimensions of the panels 1, 11 and 21, It varies depending on the number of panels 1, 11 and 21 provided.
[0051]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0052]
By providing a partition at a predetermined position in the longitudinal direction of the core material so as to fill the space formed between the plate material and the core material, the concrete material does not have to be placed on the entire top surface of the core material and the core material. It is possible to reduce vibration and noise, especially chatter vibration and chatter noise due to local vibration of the thin plate, only by providing a partition at a predetermined position in the longitudinal direction of the core material so as to fill the space formed between Yes, a significant increase in the weight of the entire floor structure can be suppressed. Moreover, since the partition reduces local vibration and prevents buckling failure, it is not necessary to increase the thickness of the constituent thin plate. Therefore, there is no problem of impairing earthquake resistance and workability.
[0053]
In addition, by installing the partitions at a plurality of locations in the longitudinal direction of the core material, the core material and the plate material can be more reliably restrained, and the effect of reducing local vibration can be further improved.
[0054]
In addition, since concrete is not placed over the entire top surface of the core material and is not filled with a soundproof material, a sufficient space for piping and wiring in the high-rigidity panel can be secured.
[0055]
Further, it is not necessary to place concrete on the entire top surface of the core material, to apply a soundproofing material or a vibration damping material, and to increase the thickness of the constituent thin plate, thereby reducing costs.
[0056]
Moreover, it is possible to effectively improve the rigidity of the entire panel by using a plate material having a corrugated shape such as a corrugated shape or a folded plate shape as the core material.
[0057]
In addition, by connecting the core material having a undulation in the cross section in the width direction to the plate material, and fixing the partition at a predetermined position in the longitudinal direction on the side of the core material not facing the plate material, the plate material becomes one of the core materials. It is possible to suppress a decrease in the bending rigidity in the width direction due to the presence of the gap. That is, it is possible to realize a high-rigidity panel at a low cost by using only one plate material.
[0058]
Further, by providing a partition near the antinode of the vibration mode, the effect of reducing local vibration can be further improved while minimizing the increase in the total weight of the floor structure.
[0059]
Further, by fixing the partition via the viscoelastic body, the vibration energy is converted into heat energy by the viscous action of the viscoelastic body, and the local vibration damping effect is improved.
[0060]
Moreover, by making the partition into a lump shape having a width in the longitudinal direction of the core material, the effect of restraining the core material and the plate material is increased, and the effect of reducing local vibration can be further improved.
[0061]
In addition, if a partition is provided so that at least a part of the space formed between the plate material and the core material can communicate with each other, the cost between the plate material and the core material can be reduced while using fewer members. The effect of reducing local vibrations equivalent to the case where the partition is provided so as to fill the entire space formed in the case can be obtained. Furthermore, it is possible to eliminate the inconvenience that noise is generated by fixing the partition without accurately matching the shape of the core material.
[0062]
In addition, when a plurality of high-rigidity panels are used in combination, if the partition is provided near the antinode of the vibration mode in the width direction of the plate material and / or the core material, it occurs when the entire high-rigidity panel provided in plurality vibrates. The effect of reducing local vibration can be improved.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a high-rigidity panel according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a modification of the partition included in the high-rigidity panel according to the first embodiment of the present invention.
FIG. 3 is an exploded perspective view showing a high-rigidity panel according to a second embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a highly rigid panel according to a third embodiment of the present invention.
FIG. 5 is an explanatory diagram showing an example of a numerical analysis result regarding a local vibration mode of a folded plate used in a high-rigidity panel.
[Explanation of symbols]
1,11,21 High rigidity panel
2,2a, 2b Plate material
3 Folded plate (core material)
3a Folded plate slope
4 partitions
5 Adhesive (viscoelastic body)
10 Belly of vibration mode
13 U-shaped section (core)

Claims (11)

平行に配置された2つの板材と、
2つの前記板材の間に配置されて前記板材の各々と連結された芯材とを備えた高剛性パネルであって、
前記板材と前記芯材との間に形成される空間を仕切るように長手方向の所定位置に配置され、前記板材及び/又は前記芯材に固設された1以上の仕切りを有し、
前記仕切りが前記板材及び/又は前記芯材の長手方向における振動モードの腹近傍に設けられていることを特徴とする高剛性パネル。
Two plates arranged in parallel;
A high-rigidity panel comprising a core member disposed between two plate members and connected to each of the plate members ;
Arranged at a predetermined position in the longitudinal direction so as to partition a space formed between the plate material and the core material, and having one or more partitions fixed to the plate material and / or the core material ,
A high-rigidity panel, wherein the partition is provided in the vicinity of a vibration mode antinode in the longitudinal direction of the plate member and / or the core member .
平行に配置された2つの板材と、Two plates arranged in parallel;
2つの前記板材の間に配置されて前記板材の各々と連結された芯材とを備えた高剛性パネルであって、A high-rigidity panel comprising a core member disposed between two plate members and connected to each of the plate members;
前記板材と前記芯材との間に形成される空間を仕切るように長手方向の所定位置に配置され、前記板材及び/又は前記芯材に固設された1以上の仕切りを有し、Arranged at a predetermined position in the longitudinal direction so as to partition a space formed between the plate material and the core material, and having one or more partitions fixed to the plate material and / or the core material,
前記仕切りが、幅方向に複数個併設された前記高剛性パネル全体に関する前記板材及び/又は前記芯材における幅方向の振動モードの腹近傍に設けられることを特徴とする高剛性パネル。A high-rigidity panel, wherein a plurality of the partitions are provided in the vicinity of an antinode of a vibration mode in the width direction of the plate member and / or the core member with respect to the entire high-rigidity panel provided in a plurality in the width direction.
前記芯材の幅方向断面が起伏を有する形状であることを特徴とする請求項1又は2に記載の高剛性パネル。The high-rigidity panel according to claim 1 or 2 , wherein a cross section in the width direction of the core material has a shape with undulations. 1つの板材と、幅方向断面が起伏を有する形状であり、前記板材に連結された芯材とを備えた高剛性パネルであって
前記芯材の前記板材に対向しない側に固設されているとともに、前記板材及び/又は前記芯材の長手方向における振動モードの腹近傍に設けられている1以上の仕切りを有することを特徴とする高剛性パネル。
It is a high-rigidity panel comprising one plate material, and a cross-section in the width direction having an undulation, and a core material connected to the plate material ,
The core member is fixed on the side not facing the plate member, and has one or more partitions provided in the vicinity of the antinode of the vibration mode in the longitudinal direction of the plate member and / or the core member. High rigidity panel.
1つの板材と、幅方向断面が起伏を有する形状であり、前記板材に連結された芯材とを備えた高剛性パネルであって
前記芯材の前記板材に対向しない側に固設されている1以上の仕切りを有し、
前記仕切りが、幅方向に複数個併設された前記高剛性パネル全体に関する前記板材及び/又は前記芯材における幅方向の振動モードの腹近傍に設けられることを特徴とする高剛性パネル。
It is a high-rigidity panel comprising one plate material, and a cross-section in the width direction having an undulation, and a core material connected to the plate material,
Having one or more partitions fixed to the side of the core material not facing the plate material;
A high-rigidity panel, wherein a plurality of the partitions are provided in the vicinity of an antinode of a vibration mode in the width direction of the plate member and / or the core member with respect to the entire high-rigidity panel provided in a plurality in the width direction.
前記仕切りが粘弾性体を介して固設されていることを特徴とする請求項1〜のいずれか一項に記載の高剛性パネル。The high-stiffness panel according to any one of claims 1 to 5 , wherein the partition is fixed via a viscoelastic body. 前記仕切りが前記芯材の長手方向に幅のある塊状であることを特徴とする請求項1〜のいずれか一項に記載の高剛性パネル。The high-stiffness panel according to any one of claims 1 to 6 , wherein the partition has a lump shape having a width in the longitudinal direction of the core member. 前記仕切りが前記板材と前記芯材との間に形成される空間の少なくとも一部を連通可能に固設されていることを特徴とする請求項1〜のいずれか一項に記載の高剛性パネル。The high rigidity according to any one of claims 1 to 7 , wherein the partition is fixed so that at least a part of a space formed between the plate member and the core member can be communicated. panel. 2つの板材を平行に配置し、
芯材を2つの前記板材の間に配置して前記板材の各々と連結させ、
記板材と前記芯材との間に形成される空間を仕切る1以上の仕切りを前記板材及び/又は前記芯材の長手方向における振動モードの腹近傍に配置し、前記板材及び/又は前記芯材に固設することを特徴とする高剛性パネルの振動低減方法。
Two plates are placed in parallel,
A core material is disposed between the two plate members and connected to each of the plate members;
Place 1 or more partition that partitions the space formed on the ventral vicinity of the vibration mode in the longitudinal direction of the plate and / or the core material between the front Symbol plate the core, the plate and / or the core A method for reducing vibration of a high-rigidity panel, characterized by being fixed to a material.
前記芯材の幅方向断面が起伏を有する形状であることを特徴とする請求項9に記載の高剛性パネルの振動低減方法。  The method for reducing vibration of a high-rigidity panel according to claim 9, wherein a cross-section in the width direction of the core material has a undulation shape. 幅方向断面が起伏を有する形状である芯材を板材に連結させ、
1以上の仕切りを前記芯材の前記板材に対向しない側かつ長手方向における振動モードの腹近傍に固設することを特徴とする高剛性パネルの振動低減方法。
The cross-section in the width direction is connected to the plate material having a shape with undulations,
One or more partitions are fixed on the side of the core member not facing the plate member and in the vicinity of the antinode of the vibration mode in the longitudinal direction .
JP2001312912A 2001-10-10 2001-10-10 Highly rigid panel and vibration reduction method thereof Expired - Fee Related JP3828776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001312912A JP3828776B2 (en) 2001-10-10 2001-10-10 Highly rigid panel and vibration reduction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001312912A JP3828776B2 (en) 2001-10-10 2001-10-10 Highly rigid panel and vibration reduction method thereof

Publications (2)

Publication Number Publication Date
JP2003119946A JP2003119946A (en) 2003-04-23
JP3828776B2 true JP3828776B2 (en) 2006-10-04

Family

ID=19131485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001312912A Expired - Fee Related JP3828776B2 (en) 2001-10-10 2001-10-10 Highly rigid panel and vibration reduction method thereof

Country Status (1)

Country Link
JP (1) JP3828776B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720999B1 (en) * 2005-04-12 2007-05-23 조은판넬 주식회사 Prefabricated panel for construction
WO2008081929A1 (en) 2007-01-04 2008-07-10 Nippon Steel Corporation Floor structure
GB2445740A (en) * 2007-01-18 2008-07-23 Intelligent Engineering Flooring panels
KR200465350Y1 (en) * 2011-02-23 2013-02-14 김봉재 Heating plumbing panels to prevent noise between floors in buildings
CN102296716A (en) * 2011-09-06 2011-12-28 周国柱 Total reflection sound insulation structure
SG11201901896VA (en) * 2017-03-10 2019-04-29 Nippon Steel & Sumikin Coated Sheet Corp Building structure

Also Published As

Publication number Publication date
JP2003119946A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
MX2012001855A (en) Metal panel assembly.
JP5336145B2 (en) Damping structure and building with damping structure
KR20000059277A (en) Method of manufacturing a sandwich board and a board and structure manufactured by the method
JPH09111910A (en) Sound absorptive damping shape-material
JP3828776B2 (en) Highly rigid panel and vibration reduction method thereof
JP5319902B2 (en) Building vibration control structure
US6112851A (en) Partition wall panel
CN105283615A (en) Sound-insulating floor structure
JP2532310B2 (en) Vibration suppression device for buildings
JPH0344519Y2 (en)
JP6277234B2 (en) Damping device and building
JP4739032B2 (en) Slab reinforcement structure in existing buildings
JP4167627B2 (en) Reinforcement structure and reinforcement member of building or building
JPH084185A (en) Floor structure of building
JP6117748B2 (en) Floor structure and floor panel
KR200400845Y1 (en) A double truss type binders for reduce floor noise sounds
KR100704395B1 (en) Connecting structure in corrugated steel plate for box-typed bridge
KR200395897Y1 (en) Connecting structure in corrugated steel plate for box-typed bridge
JP3908553B2 (en) High rigidity panel
JP2003074141A (en) Floor construction and manufacturing method for floor panel used therefor
JP7496580B2 (en) Floor structure and floor panel used in said floor structure
JP6182857B2 (en) Sound insulation for road bridges
JP3542854B2 (en) Damping structure of unit building
JP2023175573A (en) Dry double-floor structure, floor panel, and supporting leg
JP5670675B2 (en) Sound insulation dry double floor and its construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees