JP3828651B2 - Molybdenum forged molded part and manufacturing method thereof - Google Patents

Molybdenum forged molded part and manufacturing method thereof Download PDF

Info

Publication number
JP3828651B2
JP3828651B2 JP33536997A JP33536997A JP3828651B2 JP 3828651 B2 JP3828651 B2 JP 3828651B2 JP 33536997 A JP33536997 A JP 33536997A JP 33536997 A JP33536997 A JP 33536997A JP 3828651 B2 JP3828651 B2 JP 3828651B2
Authority
JP
Japan
Prior art keywords
molybdenum
molded part
forging
sintered body
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33536997A
Other languages
Japanese (ja)
Other versions
JPH11169993A (en
Inventor
晃 市田
保夫 山渕
正 有川
和仁 大場
重賢 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
ALMT Corp
Original Assignee
Kyocera Corp
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, ALMT Corp filed Critical Kyocera Corp
Priority to JP33536997A priority Critical patent/JP3828651B2/en
Publication of JPH11169993A publication Critical patent/JPH11169993A/en
Application granted granted Critical
Publication of JP3828651B2 publication Critical patent/JP3828651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,鍛造によって成形された高温下で用いられる凹状部を備えたモリブデン製容器等のモリブデン鍛造成形部品及びその製造方法に関する。
【0002】
【従来の技術】
モリブデンを用いた金属蒸発用容器,金属酸化物溶解容器,あるいは類似の結晶製作用容器等は,種々の製品の製造工程において,高温下で用いられる製造装置一式のうちの一構成部品ととらえることが出来る。この構成部品として,凹状部を備えた容器が多く用いられている。
【0003】
このモリブデン製の容器は,コストもさることながら,その寿命が短いという問題がある。したがって,この容器を用いて構成される各種製造装置の稼働寿命が短く,その結果,非処理物のコストにおけるランニング単価相当分が増大し,各種製品の製造には大きな障害になっている。
【0004】
現在,この意での寿命に関しては,上記モリブデン製容器において充分満足する物は得られてはいない。特に,モリブデン製容器の凹状部を規定する基部とそこから所定角度をなして延在する閉塞した側部との境界である曲がり部の高温における耐変形強度不足が最大の欠点であり最大の課題でもある。
【0005】
ところで,生産的規模で用いられるモリブデン製容器には,概ねφ100×50mmH以上の大きいサイズも必要で,その実用的寿命は大切である。
【0006】
このようなモリブデン製の上凹状容器を製造するには,次の製法が考えられる。(i)モリデンのムク材を座刳る方法,(ii)加工された板材を絞る方法など。
【0007】
【発明が解決しようとする課題】
上記(i)の方法では,材料となるモリブデン焼結体素材の芯まで充分に焼結させなければならず,他の生産すべき焼結対象材料とは,異なる操炉条件としなければならない。しかも,また切削により発生する切り粉は無駄になる上,材料には圧延や鍛造等の加工は殆ど加えられてないのが通常で強度は不充分である。
【0008】
また,上記(ii)の方法は,一般に用いられているが,最終仕上げの容器等の凹状部を備えた形状への加工後も比較的肉厚を大きく採ることが必要である。この方法は,スピニング絞りもターニング絞りも,変形抵抗が大きいモリブデンの5〜15mm厚程度のものでも,900℃以上好ましくは950〜1000℃の熱間加工により曲がり部を精度良く加工できる。しかし,得られるモリブデン部品の側部の肉厚減少は避けられず,側部と基部との境界である曲がり部への加工歪みは著しく大きく,繊維組織もみだれる事があるだけでなく高温での強度バラツキが大きく,高温での安定使用は困難である。しかし,この方法は,材料的に無駄が少なく,コスト上は魅力があることは事実である。
【0009】
さらに,金属の塑性加工のうち,永久変形加工としてはプレス加工が多用されている。400〜600℃程度の温間も一般的に利用されている。
【0010】
しかし,モリブデンについては薄い板材での冷間加工例はあるものの,前述した厚さ,大きさでは熱間加工は欠かせず,しかも大きい変形抵抗に打ち勝つ力で加工しなければならない。また,凹状部を備えたモリブデン部品をプレス機により形成させるには,粗形部材を圧縮成形し型内で材料を流動させる必要がある。ところが,プレス型自体は金型の劣化温度(例えば,SKT4材では650℃で実質的には450℃が限界)を充分に考慮しなければならず,加工中の温度低下(モリブデンの熱伝導率140W/mKに対しステンレスは,12W/mKで差は大きい)は避けられず,良好な加工ができない。
【0011】
そこで,本発明の技術的課題は,高温で用いられるのに適するとともに,コストも低く特に曲がり部の耐高温変形強度の充分な凹状部を備えたモリブデン鍛造成形部品及びその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは,プレス機において,400〜450℃に型を予備加熱すると,モリブデンを良好に加工できることを見出した。
【0013】
本発明によれば、理論密度比が少なくとも94%で酸素含有量30ppm以下、結晶粒径が80μm以下であるモリブデン焼結体を鍛造することによって作製されたモリブデン鍛造成形部品を製造する方法であって、前記モリブデン鍛造成形部品は、基部と前記基部から曲がり部を介して延在するとともに側部とによって形成された凹状部を備え、前記凹状部を規定する前記側部の立ち上がりの角度が85度以下で、前記基部と前記底部の境界をなす曲がり部がR35mmよりも大きく、且つ、当該曲がり部における結晶粒の大きさが80μm以下で、平均粒径が15〜40μmとなるようにハンマー熱間型鍛造を行うことを特徴とするモリブデン鍛造成形部品の製造方法が得られる。
【0014】
また,モリブデン自体は1000℃以上,好ましくは,取り扱いの冷却を考慮して1150℃に加熱後速やかに鍛造工程に入る配慮をする必要がある。一方,少なくとも1250℃を越えると再結晶が急進展するため避ける必要がある。この加熱温度の大切な事,及び加工の途中での温度低下を防ぎ,且つ突端胴部の加工後の形状安定性を保つため,雌型の中心部に後の加工に支障のない程度の凹状くぼみを形成させ,モリブデン素材を,成形させるべき凹状部の中心に容易に位置させることも大切である。
【0016】
即ち,本発明においては,型の形状は,凸(雄型)の傾斜は85度まで可能であり,凹(雌型)のそれは7〜10度とする事で加工性も型からの離脱も可能であることが得られた。また,使用条件から立ち上げ部を正確に90度にしなければならない場合は,旋盤などによる切削により形を整える。
【0018】
ここで,ハンマー鍛造によるモリブデン鍛造成形部品の製造は,高速で加工出来る上,加工途中での材料自体からの発熱も有り,時間をかけずにうまく加工を終了させる事が出来れば,型加工の際の面倒な再加熱を必要としないという利点を備えている。
【0019】
一方、本発明によれば、前記モリブデン鍛造成形部品の製造に用いるモリブデン焼結素材であって、前記モリブデン焼結素材は、対理論密度が少なくとも94%で酸素含有量が30ppm以下、総炭素量が10ppm以下、結晶粒径が80μm以下であることを特徴とするモリブデンモリブデン焼結素材が得られる
【0020】
即ち,ハンマー鍛造に際して,モリブデン部品の曲がり部の高温での強度を上げるために,組織みだれのない望ましくは曲がり部の結晶粒の大きさ(写真法により測定)が80μm以下で,平均粒径ではその範囲が15〜40μm程度で安定した組織にする材料流れが可能になれば望ましい。少なくとも80μmを越える大きさの粒子の存在は加工時の割れる程度も増えるが高温での割れにも大きく影響する。
【0021】
また,モリブデンの素材は芯まで焼結されていることは当然で,理論密度比93%以下では曲がり部の大きな割れが抑えられなく,一方,96%を越えるまで焼結するには,コストがかかる上,大きな粒子の発生にもつながる恐れもある。また,材料流れをスムースにするには,焼結体での酸素含有量が通常40〜80ppmであるのに対し30ppm以下に,しかも総炭素量が10ppm以下,結晶粒径が80μm以下とすることで素材としては良好なものが得られることも判明した。この製造条件としては,原料粉の汚染に気を付けることと,露点−20度以下の水素中1800℃で6〜15時間保持させる事で本発明の目的に叶う焼結素材が得られる。
【0022】
また,本発明によれば,前記モリブデン鍛造成形部品の製造方法であって、前記型鍛造は、ハンマー熱間型鍛造であることを特徴とするモリブデン鍛造成形部品の製造方法が得られる。また、本発明によれば、前記モリブデン鍛造成形部品の製造方法において、前記型鍛造は3TONm〜12TONm程度の加工エネルギーで行うことを特徴とするモリブデン鍛造成形部品の製造方法が得られる。また、本発明によれば、前記モリブデン鍛造成形部品の製造方法において、前記型鍛造は、ハンマー熱間型鍛造によって鍛造成形することを特徴とするモリブデン鍛造成形部品の製造方法が得られる。
【0023】
そして,鍛造加工の方法において,前述のハンマーの加工エネルギーは,モリブデンに対して6〜12TONm程度で加工が可能である。小さなサイズのものに大きな力を加え過ぎてはいけないことも自明である。しかし,加工過程で常にこの力を加えると割れが発生するばかりか,表面のスケールが剥離,飛散し危険である。加工の終盤は,他の材料でも一般的に強加工しないが,モリブデンも同様の配慮が望ましい。
【0024】
また,本発明において用いられる離型剤としては,例えば,市販のピアシングオイル41(市販品)等を用いて良いが,通常の希釈では高温雰囲気のため離型効果は少なくほぼ無希釈で用いるのが良い。特に雄型はモリデンと付着したら,殆どの場合モリブデンを割らねば外せず不都合である。此のように離型剤を用いながら,加工時のハンマーは凡そ2〜4TONmで,加工初期ではそれ以降の加工条件の1/3位にすることが好ましいことが分かった。割れ,剥離が防げるのは,温度降下し硬化した層が次のハンマーの衝撃を和らげる事と型への馴染みが効いている為と思われる。
【0025】
また、本発明によれば、前記モリブデン鍛造成形部品の製造方法において、平均粒径3μmの金属モリブデン粉末を静水圧プレスして成形体を作製するモリブデン粉末成形工程と、前記モリブデン粉末成形体を露点−20度以下の水素中1800℃で6〜15時間保持させて、理論密度比が少なくとも94%で、酸素含有量が30ppm以下、総炭素量10ppm以下、結晶粒径が80μm以下のモリブデン焼結体を作製する焼結工程と、前記モリブデン焼結体を1150℃で加熱するための焼結体加熱工程と、前記モリブデン焼結体をハンマー型鍛造するための雌型を余熱する金型余熱工程と、前記雌型に離型剤であるピアジングオイル又はデルタフォージを塗布する離型剤塗布工程と、前記離型剤が塗布された雌型に前記モリブデン焼結体をセットし、3TONm〜12TONm程度の加工エネルギーで型鍛造し、前記モリブデン鍛造成形部品を形成するハンマー熱間型鍛造工程とを備えることを特徴とするモリブデン鍛造成形部品の製造方法の製造方法が得られる。
【0026】
更に,モリブデン鍛造成形部品に,割れや剥離,ダブルスキンを生じさせないようにするには,全加工量の1/3程度まで板に鍛造(一般には荒打ちと呼ぶ)加工し,その後先述の型鍛造により加工を進めれば,更に曲がり部の高温変形強度も優れ,かつ加工後の寸法精度も良好な凹状部を備えたモリブデン部品が出来ることが掴めた。
【0027】
全体の加工度は一般的には60%以上が望ましく80%あればその効果は充分と言える。一般には鍛造加工したものの表面は1〜1.5mm削り取ることが多く,本発明の方法によれば,0.2〜0.4mm,多くても0.5mm表面をけずれば良く,ダブルスキンが発生しても0.6mmを越えて削る必要はない。此のことは上述の手立てによる効果であって,高価なモリブデンの加工では経済的効果は大きい。
【0028】
また,モリブデンを鍛造にて板材とし(概ねT11〜15mm),絞りにより凹状部を備えたモリブデン部品とする方法では,全体の材料歩留は40〜60%程度に留まる事多く高価な材料の無駄が避けがたい。しかし,本発明によれば,凡そ85%以上の歩留まりが期待出来る。
【0029】
また、本発明によれば、前記いずれか一つのモリブデン鍛造成形部品の製造方法によって製造されたモリブデン鍛造成形部品が得られる。また、本発明によれば、前記モリブデン鍛造成形部品から製造されていることを特徴とするモリブデン容器が得られる
【0030】
即ち,採取する結晶の幅形状が広くあれば,他方の長さ(深さ,幅以外の寸法)はむしろ小さくし,結果として溶解の溶湯容積を小さくし消費される熱的経済性を高める要望に対しては角形状の容器が望まれる。絞りによる方法も,座刳りによる方法も角形状に対しては著しく困難で,少なくてもモリブデン単身から成る径φ100mm×高さH50mm以上に相当する大きさの角筒容器に対して実例は無い。しかし,本発明によれば,材料の張り出し量を一度把握すれば容易に製作することができることが判明した。
【0031】
先述した円筒形状との違いは,例えば幅×長さの比率に応じて被加工物の形状比率を変更することで原則的に可能になる。丸い素材では,ハンマー型鍛造による形成は不可能である。ただし,かなり大きい場合,途中の再加熱や離型材の再塗布の必要な場合があるので,表皮の荒れを注意深く観察しておく必要がある。
【0032】
本発明において,曲がり部は,R35mm程度が無理なく出来る範囲と言える。曲がり部での材料流れは,直接組織の在り方に影響する。曲がり部のRが大きいほど鍛造により造られる結晶組織が残るため望ましく,厳密には寿命にも影響する。従って金型の曲がり部での金型表面にあるバリやササクレ,異物等の突起は注意が必要である。
【0033】
更に,本発明により得られた容器を金属の蒸発容器として,または金属酸化物の溶解用容器として用いた場合,従来の座刳りや絞りのものより大幅に高温での曲がり部の耐変形性に優れていることが確認された。使用不能になるまでの寿命も優れている。
【0034】
【発明の実施の形態】
以下,本発明の実施の形態について説明する。
【0035】
(第1の実施の形態)
図1は本発明の第1の実施の形態によるモリブデン鍛造成形部品を示す断面図である。図1に示すように,第1の実施の形態によるモリブデン鍛造成形部品は,基部1と,側部2と,基部1及び側部2との境界をなす曲がり部3とを備えたモリブデン製の凹状容器10からなる。この凹状容器10において,側部2の基部1からの立ち上がり角αは,45度である。
【0036】
図1に示す凹状容器10は,具体的には,次のように製造されている。
【0037】
原料モリブデン酸化物を,一般的な方法で還元して平均粒径が約3μmの金属モリブデン粉末を得た。静水圧プレスにより成形した後,露点−26度の水素中,1800℃で約10時間焼結したところ,外観の良好な焼結体が得られ,その結晶粒径は平均で約18μmで最大粒径は凡そ45μmであった。さらに,酸素含有量22ppm.総炭素量5ppm,理論密度比95.4%であった。また,サイズは予定通り直径φ180mm×高さH50mmとなり,13kgであった。この焼結体を予めセラミック製の炉内で1150℃に加熱し,ピアシングオイル41を濃いまま刷毛で型に塗り,別途420℃に余熱された型に先の焼結体をセットし,上部より初め3.5TONmで3回たたき,次いで11.8TONmで5回たたいた。型もモリブデンも再加熱は行なわなかった。
【0038】
加工後の形状は,図1に示す通りで基部1の厚み18mm,開口部φ260mmで,高さは55mm,ダブルスキンは殆ど発生せず僅かにささくれた表皮での切削代は,ほぼ0.3mmでその部分を除去したところ良好な外観品が得られた。型鍛造故のバリ部いわゆる余剰部も除去した結果,11.2kgの加工物が得られた。材料歩留は86%であった。
【0039】
この容器を900〜1200℃の範囲で銅の蒸発実験に用いたところ,従来の座刳りや絞りにより得られた物に比べ,それぞれ約2.5倍,1.3倍の寿命となった。
【0040】
(第2の実施の形態)
第1の実施の形態と同様の処理により,200×80×H50/7.6kgの焼結体を得た。デルタフオージ31(日本アチソン社製)を濃いまま刷毛で型に塗り,1150℃に加熱した前記モリブデンを雌型にセット後,初め3.0TONmで4回たたき,次いで8.8TONmで8回たたくことでほぼ所望のB(幅)100×L(長さ)250×H(高さ)55の形状に出来,最後に3.0TONmで,これも3〜4回たたいてR35内側のウネリが消えた。上部のバリ部は若干突端で割れもみられたがバリを切削した所良好な組繊が現われた。表面は酸洗浄した後,上端部と底の部分を切削により所望の形状精度に仕上げた。1950℃より高温での使用に対し従来よりの円筒状容器より寿命延長が期待出来る。
【0041】
また,第1の比較試料として,第1の実施の形態と同様の焼結体の製作方法において,焼結条件の管理ミスによる変動から結晶粒径が90〜100μmのものが混在していて,理諭密度比も93.5%であった。モリブデンと金型の予熱も離型材塗布方法も所定通り処置したが,第2回目のハンマーで極僅かの表面クラックが発生しハンマーの回数が増えるに従って亀裂が進行したため正常な加工状態を保てなかった。また露点や水素の条件が設定通り行なわれなかったため酸素含有量が45ppm,総炭素量が30ppmあった焼結体については,額縁中央に僅かに亀裂が発生していた上,ハリの外周位への内側にも同様の亀裂が発生していたため,少なくても切削量を大きく取らねばならず所望の形状を得る事は出来なかった。
【0042】
さらに,第2の比較試料として,第1の実施の形態による鍛造加工において,凹状容器の突端側部の立ち上がりを88度にしたところ,曲がり部の組織が大きく乱れた上雄型よりの離脱に不具合が生じた。実質的には切削工程を無くす必要はなく,85度まで可能にした事で良いことが確かめられた。
【0043】
(第3の実施の形態)
図2は本発明の第3の実施の形態によるモリブデン鍛造成形部品を示す断面図である。図2に示すように,第3の実施の形態によるモリブデン鍛造成形部品は,基部5と,側部6と,基部5及び側部6との境界をなす曲がり部7とを備えたモリブデン製の凹状容器20からなる。この凹状容器20において,側部6の基部5からの立ち上がり角βは,85度である。
【0044】
図2に示す凹状容器20は,具体的には,次のように製造されている。
【0045】
第1の実施の形態と同様の処理により,直径φ150×高さH60の焼結体(11.4kg)の素材を得た。モリブデン素材及び型も第1の実施の形態と同様に予熱して,デルタフオーシ31(日本アチソン製市販品)型材を濃いままで刷毛により,上部より初め2.5〜3.5T0Nmで3回たたき,次いで8〜11TONmで7回叩いた後3.5TONm以下で2〜3回たたいて終了とした。型もモリブデン素材も再加熱は行なわなかった。加工後の形状は,図2に示す通りで,基部5の厚みT15mm,開口部φ230で高さHは70mm,切削代はほぼ0.5mm除去して表皮に僅かに縞状クラックが見られたが,使用には差しつかえなく概ね良好な外観品のものが得られた。第1の実施の形態と同様バリ除去後10.8kgとなり,材料歩留は94%であった。この容器を約2000℃の雰囲気で金属酸化物溶解用に用いたところ,従来の技術の絞りによる方法で得られた容器に比べ,曲がり部での変形や割れによる溶湯モレも著しく向上し,従来技術よりも結果として1.4倍の寿命となった。
【0046】
同様の手順で鍛造加工する方法において,最初の鍛造は据え込み鍛造とし,T40mmまで加工した後,再度加熱し前記実施例1と同様の方法にて型鍛造を行なった。この場合は,目視外観では,ほぼクラックは見い出されず,表皮が全体に切削面外観とするには,概ね0.2mm,部位により0.3mm除去すれは良い。しかも同一条件で金属酸化物を溶解したところ,型鍛造品よりも向上し寿命は絞り品の1.8倍で,使用前の曲がり部の結晶組織も,粒状結晶が消失してなく,加工工程は増えるが,寸法精度の向上も得られる為設定目的により自由に使い分ければ良い。
【0047】
このようにして得られた本発明の第2の実施の形態によるモリブデン製の凹状容器20は,高温における特に曲がり部の耐変形強度が優れ,かつ寸法精度が良好な形状が得られるものとなる。
【0048】
尚,上記実施の形態においては,凹状容器10及び20は,るつぼに最適であるが,その他に高温下に用いられる金属蒸発用容器,金属酸化物溶解容器,結晶作製用容器等の高温下に用いられるような,一部に凹状部を備えた部品に用いることができる。
【0049】
【発明の効果】
以上説明したように,本発明によれば,高温で用いられるのに適するとともに,コストも低く特に曲がり部の耐高温変形強度の充分な凹状部を備えたモリブデン容器等のモリブデン鍛造成形部品とその製造方法とを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態によるモリブデン鍛造成形部品を示す断面図である。
【図2】本発明の第3の実施の形態によるモリブデン鍛造成形部品を示す断面図である。
【符号の説明】
1,5 基部
2,6 側部
3,7 曲がり部
10,20 凹状容器
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a molybdenum forged molded part such as a molybdenum container provided with a concave portion formed by forging and used at a high temperature, and a manufacturing method thereof.
[0002]
[Prior art]
A metal evaporation vessel using molybdenum, a metal oxide dissolution vessel, or a similar crystal production vessel, etc., should be regarded as a component of a set of production equipment used at high temperatures in the production process of various products. I can do it. As this component, a container having a concave portion is often used.
[0003]
This molybdenum container has the problem of short life as well as cost. Therefore, the operating life of various manufacturing apparatuses constructed using this container is short, and as a result, the amount equivalent to the running unit price in the cost of non-processed materials increases, which is a major obstacle to the manufacture of various products.
[0004]
Currently, for the life of this meaning, not are ones obtained to sufficiently satisfactory in the molybdenum container. In particular, the lack of deformation resistance at high temperatures at the bend, which is the boundary between the base defining the concave part of the molybdenum container and the closed side extending at a predetermined angle therefrom, is the biggest drawback and the biggest problem. There is also.
[0005]
Incidentally, the molybdenum container used in the production scale, generally phi 100 × 50 mm H or more larger sizes required, its practical life is important.
[0006]
In order to manufacture such an upper concave container made of molybdenum, the following manufacturing method can be considered. (I) Mori Bed solid wood seat scoop method den, and a method of narrowing the (ii) processed plate material.
[0007]
[Problems to be solved by the invention]
In the method (i), the core of the molybdenum sintered body material that is the material must be sufficiently sintered, and the furnace operating conditions must be different from those of other materials to be sintered. In addition, chips generated by cutting are wasted and the material is usually not subjected to processing such as rolling or forging, and its strength is insufficient.
[0008]
Further, although the method (ii) is generally used, it is necessary to take a relatively large thickness even after processing into a shape having a concave portion such as a final finished container. In this method, even if the spinning diaphragm and the turning diaphragm are made of molybdenum having a large deformation resistance of about 5 to 15 mm, the bent portion can be processed with high accuracy by hot working at 900 ° C. or more, preferably 950 to 1000 ° C. However, a reduction in the thickness of the side parts of the resulting molybdenum parts is inevitable, and the processing strain at the bent part, which is the boundary between the side part and the base part, is extremely large, and not only the fiber structure can be found but also at high temperatures. The strength variation is large, and stable use at high temperatures is difficult. However, this method is less wasteful in terms of material and is attractive in terms of cost.
[0009]
Further, among metal plastic working, press working is often used as permanent deformation. A warm temperature of about 400 to 600 ° C. is also generally used.
[0010]
However, although there is an example of cold working with a thin plate material for molybdenum, hot working is indispensable for the above-mentioned thickness and size, and it must be processed with a force that overcomes large deformation resistance. In addition, in order to form a molybdenum part having a concave portion with a press, it is necessary to compress a rough member and flow the material in the mold. However, the press die itself must fully consider the deterioration temperature of the die (for example, 650 ° C and practically 450 ° C is the limit for SKT4 materials), and the temperature drop during processing (thermal conductivity of molybdenum) Stainless steel is inevitable with a difference of 12 W / mK compared to 140 W / mK), and good processing cannot be performed.
[0011]
Therefore, the technical problem of the present invention is to provide a molybdenum forged molded part suitable for use at a high temperature and at a low cost, in particular, having a concave part with sufficient high-temperature deformation resistance at a bent part, and a method for manufacturing the same. It is in.
[0012]
[Means for Solving the Problems]
The present inventors have found that in the press, the pre-heating the mold to 400 to 450 ° C., it was heading to be able to satisfactorily process the molybdenum.
[0013]
According to the present invention, there is provided a method for producing a molybdenum forged molded part produced by forging a molybdenum sintered body having a theoretical density ratio of at least 94%, an oxygen content of 30 ppm or less, and a crystal grain size of 80 μm or less. Te, the molybdenum forging components is provided with a concave portion formed by the side portions together when extending through the bending portion from the base portion and the base portion, the rising angle of the sides defining said recess 85 degrees or less, the bending portion forms a boundary of the said base bottom portion is larger than R35mm, and the crystal grain size of definitive to the bent portion at 80μm or less, so that the average particle diameter is 15~40μm A method for producing a molybdenum forged molded part characterized by performing hammer hot die forging is obtained.
[0014]
Molybdenum itself should be 1000 ° C. or higher, preferably considering the cooling of handling, and considering that the forging process should be started immediately after heating to 1150 ° C. On the other hand, if the temperature exceeds at least 1250 ° C., recrystallization rapidly progresses, so it must be avoided. In order to prevent the heating temperature from being lowered during processing and to maintain the shape stability of the tip body after processing, the center of the female mold has a concave shape that does not hinder subsequent processing. It is also important to form a recess and easily place the molybdenum material in the center of the concave part to be formed.
[0016]
In other words, in the present invention, the shape of the mold can be inclined up to 85 degrees for the convex (male mold), and that of the concave (female mold) can be set to 7 to 10 degrees, so that the workability and detachment from the mold can be prevented. It was obtained that it was possible. In addition, when it is necessary to accurately set the rising portion to 90 degrees from the usage conditions, the shape is adjusted by cutting with a lathe or the like.
[0018]
Here, molybdenum forged parts produced by hammer forging can be processed at high speed, and there is also heat generated from the material itself during processing. It has the advantage of not requiring troublesome reheating.
[0019]
On the other hand, according to the present invention, a molybdenum sintered material used for manufacturing the molybdenum forged molded part, the molybdenum sintered material having a theoretical density of at least 94%, an oxygen content of 30 ppm or less, and a total carbon content. Is a molybdenum- molybdenum sintered material characterized by having a crystal grain size of 80 μm or less.
[0020]
That is, during hammer forging, in order to increase the strength of the bent part of the molybdenum part at high temperature, the size of the crystal grain of the bent part, preferably without bending (measured by photographic method) is 80 μm or less, and the average grain size is It is desirable that the material flow in which the range is about 15 to 40 μm and a stable structure is made possible. The presence of particles having a size of at least 80 μm increases the degree of cracking during processing, but greatly affects cracking at high temperatures.
[0021]
Naturally, the molybdenum material is sintered to the core, and if the theoretical density ratio is 93% or less, large cracks in the bent portion cannot be suppressed. In addition, large particles may be generated. In order to make the material flow smooth, the oxygen content in the sintered body is usually 40 to 80 ppm, but 30 ppm or less, the total carbon content is 10 ppm or less, and the crystal grain size is 80 μm or less. It was also found that good materials can be obtained. As for the production conditions, a sintered material meeting the object of the present invention can be obtained by paying attention to contamination of the raw material powder and holding at 1800 ° C. in hydrogen at a dew point of −20 degrees or less for 6 to 15 hours.
[0022]
In addition, according to the present invention, there is provided a method for manufacturing a molybdenum forged molded part, wherein the molybdenum forged molded part is manufactured by hammer die hot forging. According to the present invention, in the method for producing a molybdenum forged molded part, the method for producing a molybdenum forged molded part is characterized in that the die forging is performed with a processing energy of about 3 TONm to 12 TONm . According to the present invention, in the method for producing a molybdenum forged molded part, the method for producing a molybdenum forged molded part is characterized in that the die forging is forged by hammer hot die forging.
[0023]
In the forging method, the above-described hammer processing energy can be processed at about 6 to 12 TONm of molybdenum. Obviously, don't put too much power on small sizes. However, if this force is always applied during the machining process, not only will cracking occur, but the scale on the surface may peel off and scatter. At the end of processing, other materials are generally not strongly processed, but molybdenum should have the same considerations.
[0024]
In addition, as the mold release agent used in the present invention, for example, commercially available piercing oil 41 (commercially available product) may be used. Is good. In particular, the male is Once you have attached the Mori Breakfast Den, it is inconvenient not take off if Ne divided most of the case molybdenum. Thus, it was found that the hammer during processing was about 2 to 4 TONm while using a release agent, and it was preferable to set it to 1/3 of the subsequent processing conditions at the initial stage of processing. The reason why cracking and peeling can be prevented is that the hardened layer is reduced in temperature and softens the impact of the next hammer, and the familiarity with the mold works.
[0025]
According to the present invention, in the method for producing a molybdenum forged molded part, a molybdenum powder molding step for producing a molded body by hydrostatic pressing a metal molybdenum powder having an average particle size of 3 μm, and the molybdenum powder molded body has a dew point. Sintered molybdenum at 1800 ° C. for 6 to 15 hours in hydrogen of −20 ° C. or less, having a theoretical density ratio of at least 94%, an oxygen content of 30 ppm or less, a total carbon content of 10 ppm or less, and a crystal grain size of 80 μm or less. A sintering process for producing a body, a sintered body heating process for heating the molybdenum sintered body at 1150 ° C., and a mold preheating process for preheating a female mold for forging the molybdenum sintered body with a hammer die A release agent application step of applying piercing oil or delta forge as a release agent to the female mold, and the molybdenum sintered body on the female mold to which the release agent is applied And a forging process for forming a molybdenum forged part by forging with a processing energy of about 3 TONm to 12 TONm, and a method for producing a molybdenum forged molded part. It is done.
[0026]
Furthermore, in order to prevent cracking, peeling and double skin from occurring in the molybdenum forged parts, forging (generally referred to as roughing) to the plate up to about 1/3 of the total processing amount, then the above-mentioned mold if Susumere the by Ri processed forging, excellent high-temperature deformation strength of further bend, and molybdenum component dimensional accuracy with good concave portion after processing it was grasp possible.
[0027]
The overall degree of processing is generally preferably 60% or more, and if 80%, the effect is sufficient. In general, the surface of the forged product is often cut off by 1 to 1.5 mm. According to the method of the present invention, the surface of 0.2 to 0.4 mm, at most 0.5 mm, may be removed, and a double skin is formed. Even if it occurs, it is not necessary to cut beyond 0.6 mm. This is the effect of the above-mentioned method, and the economic effect is great when processing expensive molybdenum.
[0028]
Further, in the method of using molybdenum as a plate material by forging (generally T11 to 15 mm) and a molybdenum part having a concave portion by drawing, the overall material yield is often only about 40 to 60%, and expensive material is wasted. Is inevitable. However, according to the present invention, a yield of about 85% or more can be expected.
[0029]
Moreover, according to this invention, the molybdenum forge molded part manufactured by the manufacturing method of any one said molybdenum forged molded part is obtained. Moreover, according to this invention, the molybdenum container characterized by being manufactured from the said molybdenum forge molded part is obtained .
[0030]
In other words, if the width shape of the crystal to be collected is wide, the other length (dimensions other than depth and width) is rather small, and as a result, the molten metal volume is reduced and the thermal economy consumed is increased. In contrast, a rectangular container is desired. Neither the method of squeezing nor the method of sitting down is remarkably difficult with respect to the square shape, and there is no actual example for a rectangular tube container having a diameter corresponding to at least 100 mm in diameter × 50 mm in height and made of molybdenum alone. However, according to the present invention, it has been found that it can be easily manufactured once the amount of overhang of the material is grasped.
[0031]
The difference from the above-described cylindrical shape can be made in principle by changing the shape ratio of the workpiece in accordance with, for example, the ratio of width × length. For round materials, formation by hammer die forging is impossible. However, if it is quite large, it may be necessary to reheat in the middle or reapply the release material, so it is necessary to carefully observe the roughness of the skin.
[0032]
In the present invention, it can be said that the bent portion is a range in which R35 mm can be reasonably achieved. The material flow at the bend directly affects the structure. The larger the radius R of the bent portion, the more desirable the crystal structure produced by forging is left, which strictly affects the life. Therefore, it is necessary to pay attention to the protrusions such as burrs, crusts and foreign matters on the mold surface at the bent part of the mold.
[0033]
Furthermore, when the container obtained according to the present invention is used as a metal evaporation container or a metal oxide dissolution container, the deformation resistance of the bent portion at a high temperature is significantly higher than that of the conventional buckling or squeezing. It was confirmed to be excellent. The life until it becomes unusable is also excellent.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0035]
(First embodiment)
FIG. 1 is a sectional view showing a molybdenum forged molded part according to the first embodiment of the present invention. As shown in FIG. 1, the molybdenum forged molded part according to the first embodiment is made of molybdenum having a base portion 1, a side portion 2, and a bent portion 3 that forms a boundary between the base portion 1 and the side portion 2. It consists of a concave container 10. In this concave container 10, the rising angle α of the side portion 2 from the base portion 1 is 45 degrees.
[0036]
Specifically, the concave container 10 shown in FIG. 1 is manufactured as follows.
[0037]
The raw material molybdenum oxide was reduced by a general method to obtain a metal molybdenum powder having an average particle diameter of about 3 μm. After forming by isostatic pressing and sintering at 1800 ° C for about 10 hours in hydrogen with a dew point of -26 degrees, a sintered body with a good appearance is obtained. The average grain size is about 18 µm and the maximum grain size The diameter was approximately 45 μm. Furthermore, the oxygen content is 22 ppm. The total carbon content was 5 ppm, and the theoretical density ratio was 95.4%. Further, the size was 13 kg, as planned, with a diameter of φ180 mm × height of H50 mm. This sintered body is heated to 1150 ° C. in a ceramic furnace in advance, and the piercing oil 41 is applied to the mold with a brush while it is dark, and the previous sintered body is set in a mold preheated to 420 ° C. from above. First, it was hit 3 times at 3.5 TONm and then 5 times at 11.8 TONm. Neither the mold nor molybdenum was reheated.
[0038]
The shape after processing is as shown in FIG. 1. The thickness of the base 1 is 18 mm, the opening is φ260 mm, the height is 55 mm, the double skin is hardly generated, and the cutting allowance with a slightly raised skin is about 0.3 mm. When this part was removed, a good appearance product was obtained. As a result of removing the so-called surplus part due to die forging, a workpiece of 11.2 kg was obtained. The material yield was 86%.
[0039]
When this container was used in a copper evaporation experiment in the range of 900 to 1200 ° C., the lifetime was about 2.5 times and 1.3 times that of those obtained by the conventional scooping and squeezing, respectively.
[0040]
(Second Embodiment)
A sintered body of 200 × 80 × H50 / 7.6 kg was obtained by the same processing as in the first embodiment. Applying Delta Forge 31 (Nippon Atchison Co., Ltd.) to a mold with a dark brush and setting the molybdenum heated to 1150 ° C. to a female mold, first tapping it at 3.0 TONm four times, then tapping it at 8.8 TONm eight times. Almost the desired B (width) 100 x L (length) 250 x H (height) It can be made into 55 shape, and finally it was 3.0 TONm. . The upper burr part was slightly cracked at the tip, but a good fabric appeared when the burr was cut. After the surface was acid cleaned, the top and bottom portions were finished to the desired shape accuracy by cutting. For use at a temperature higher than 1950 ° C., the life can be expected to be longer than that of a conventional cylindrical container.
[0041]
In addition, as a first comparative sample, in the sintered body manufacturing method similar to that of the first embodiment, the one having a crystal grain size of 90 to 100 μm is mixed due to a variation due to a management error of the sintering condition. The reason density ratio was 93.5%. Molybdenum and mold preheating and mold release material application were performed as prescribed, but a slight surface crack was generated by the second hammer, and the crack progressed as the number of hammers increased, so normal processing could not be maintained. It was. In addition, because the dew point and hydrogen conditions were not set as set, the sintered body with an oxygen content of 45 ppm and a total carbon content of 30 ppm had a slight crack at the center of the frame and moved to the outer peripheral position of the frame. Since the same crack was also generated inside, the cutting amount had to be made large at least, and the desired shape could not be obtained.
[0042]
Furthermore, as a second comparative sample, in the forging process according to the first embodiment, when the rise of the protruding side of the concave container was set to 88 degrees, the bent portion was greatly disturbed in the upper male mold. A malfunction occurred. In practice, it was not necessary to eliminate the cutting process, and it was confirmed that it was possible to make it possible up to 85 degrees.
[0043]
(Third embodiment)
FIG. 2 is a sectional view showing a molybdenum forged molded part according to a third embodiment of the present invention. As shown in FIG. 2, the molybdenum forged molded part according to the third embodiment is made of molybdenum having a base portion 5, a side portion 6, and a bent portion 7 that forms a boundary between the base portion 5 and the side portion 6. It consists of a concave container 20. In the concave container 20, the rising angle β of the side portion 6 from the base portion 5 is 85 degrees.
[0044]
Specifically, the concave container 20 shown in FIG. 2 is manufactured as follows.
[0045]
A sintered body ( 11.4 kg) having a diameter φ150 × height H60 was obtained by the same process as in the first embodiment. Molybdenum material and mold are preheated in the same manner as in the first embodiment, and the Delta Forge 31 (commercially available product from Japan Atchison) mold material is brushed three times at 2.5 to 3.5 T0 Nm from the top with a brush until dark. Then, after hitting 7 times with 8 to 11 TONm, hit 2 to 3 times with 3.5 TONm or less to finish. Neither the mold nor the molybdenum material was reheated. Shape after processing, are as shown in FIG. 2, the thickness of the base portion 5 T15mm, the height H at the opening phi 230 is 70 mm, the cutting allowance is observed slightly striped cracks in epidermis almost 0.5mm removed However, a product with a generally good appearance could be obtained for use. As with the first embodiment, after removing the burrs, the weight was 10.8 kg, and the material yield was 94%. When this container was used to dissolve metal oxides in an atmosphere of about 2000 ° C, the molten metal due to deformation and cracking at the bent part was significantly improved compared to the container obtained by the conventional method of drawing. The result is 1.4 times longer than the technology.
[0046]
In the method of forging in the same procedure, the first forging was upset forging, and after processing to T40 mm, heating was performed again and die forging was performed in the same manner as in Example 1. In this case, almost no cracks are found in the visual appearance, and in order to make the entire surface of the cut surface appear, it is good to remove approximately 0.2 mm and 0.3 mm depending on the part. Moreover, when the metal oxide was melted under the same conditions, it was improved over the die-forged product and the life was 1.8 times that of the drawn product, and the crystalline structure of the bent part before use was not lost, and the machining process However, it can be used freely according to the setting purpose because it can improve the dimensional accuracy.
[0047]
The thus obtained molybdenum-made concave container 20 according to the second embodiment of the present invention has a shape with excellent deformation resistance at a bent portion and high dimensional accuracy at a high temperature. .
[0048]
In the above-described embodiment, the concave containers 10 and 20 are optimal for crucibles, but are not limited to high temperatures such as metal evaporation containers, metal oxide dissolution containers, and crystal production containers used at high temperatures. It can be used for a part having a concave part in a part as used.
[0049]
【The invention's effect】
As described above, according to the present invention, a molybdenum forged molded part such as a molybdenum container having a concave portion that is suitable for use at a high temperature and is low in cost and particularly has a sufficient high-temperature deformation resistance at a bent portion, and its A manufacturing method.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a molybdenum forged molded part according to a first embodiment of the present invention.
FIG. 2 is a sectional view showing a molybdenum forged molded part according to a third embodiment of the present invention.
[Explanation of symbols]
1,5 Base part 2,6 Side part 3,7 Bent part 10,20 Concave container

Claims (4)

理論密度比が少なくとも94%で酸素含有量30ppm以下、結晶粒径が80μm以下であるモリブデン焼結体を鍛造することによって作製されたモリブデン鍛造成形部品を製造する方法であって、前記モリブデン鍛造成形部品は、基部と前記基部から曲がり部を介して延在するとともに側部とによって形成された凹状部を備え、前記凹状部を規定する前記側部の立ち上がりの角度が85度以下で、前記基部と前記底部の境界をなす曲がり部がR35mmよりも大きく、且つ、当該曲がり部における結晶粒の大きさが80μm以下で、平均粒径が15〜40μmとなるようにハンマー熱間型鍛造を行うことを特徴とするモリブデン鍛造成形部品の製造方法 Oxygen content 30ppm or less the theoretical density ratio of at least 94%, the crystal grain size to a method for producing the fabricated molybdenum forged part by forging molybdenum sintered body is 80μm or less, the molybdenum forging parts, when extending through the bending portion from the base portion and the base portion includes a concave portion formed by the side portions together, with the following rising edge of the angle of 85 degrees of said sides defining said concave portion, wherein section bends bounding the base and the bottom portion is larger than R35mm, and the crystal grain size of definitive to the bent portion at 80μm or less, an average particle diameter of the hammer heat between forging so that 15~40μm A method for producing a molybdenum forged molded part, characterized in that : 請求項1に記載のモリブデン鍛造成形部品の製造方法において、平均粒径3μmの金属モリブデン粉末を静水圧プレスして成形体を作製するモリブデン粉末成形工程と、前記モリブデン粉末成形体を露点−20度以下の水素中1800℃で6〜15時間保持させて、理論密度比が少なくとも94%で、酸素含有量が30ppm以下、総炭素量10ppm以下、結晶粒径が80μm以下のモリブデン焼結体を作製する焼結工程と、前記モリブデン焼結体を1150℃で加熱するための焼結体加熱工程と、前記モリブデン焼結体をハンマー型鍛造するための雌型を余熱する金型余熱工程と、前記雌型に離型剤であるピアジングオイル又はデルタフォージを塗布する離型剤塗布工程と、前記離型剤が塗布された雌型に前記モリブデン焼結体をセットし、3TONm〜12TONm程度の加工エネルギーで型鍛造し、前記モリブデン鍛造成形部品を形成するハンマー熱間型鍛造工程とを備えることを特徴とするモリブデン鍛造成形部品の製造方法The method for producing a molybdenum forged molded part according to claim 1 , wherein a molybdenum powder molding step of producing a molded body by hydrostatic pressing a metal molybdenum powder having an average particle diameter of 3 µm, and dew point of -20 degrees. A molybdenum sintered body having a theoretical density ratio of at least 94%, an oxygen content of 30 ppm or less, a total carbon content of 10 ppm or less, and a crystal grain size of 80 μm or less is produced by holding at 1800 ° C. in the following hydrogen for 6 to 15 hours. A sintering step for heating, a sintered body heating step for heating the molybdenum sintered body at 1150 ° C., a mold preheating step for preheating a female die for hammer die forging the molybdenum sintered body, A mold release agent coating step of applying a piercing oil or delta forge as a mold release agent to the female mold, and setting the molybdenum sintered body on the female mold coated with the mold release agent. A method for producing a molybdenum forged molded part, comprising: a hammer hot die forging step for die forging with a processing energy of about 3 TONm to 12 TONm to form the molybdenum forged molded part . 請求項1又は2に記載のモリブデン鍛造成形部品の製造方法によって製造されたことを特徴とするモリブデン鍛造成形部品。 A molybdenum forged molded part produced by the method for producing a molybdenum forged molded part according to claim 1 or 2 . 請求項3に記載のモリブデン鍛造成形部品から製造されていることを特徴とするモリブデン容器 A molybdenum container manufactured from the molybdenum forged molded part according to claim 3 .
JP33536997A 1997-12-05 1997-12-05 Molybdenum forged molded part and manufacturing method thereof Expired - Fee Related JP3828651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33536997A JP3828651B2 (en) 1997-12-05 1997-12-05 Molybdenum forged molded part and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33536997A JP3828651B2 (en) 1997-12-05 1997-12-05 Molybdenum forged molded part and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11169993A JPH11169993A (en) 1999-06-29
JP3828651B2 true JP3828651B2 (en) 2006-10-04

Family

ID=18287771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33536997A Expired - Fee Related JP3828651B2 (en) 1997-12-05 1997-12-05 Molybdenum forged molded part and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3828651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006000A (en) * 2014-05-30 2016-01-14 株式会社アライドマテリアル Crucible, and production method of single crystal sapphire using the same
JPWO2015137340A1 (en) * 2014-03-12 2017-04-06 株式会社アライドマテリアル Crucible and method for producing single crystal sapphire using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350709A (en) * 2004-06-09 2005-12-22 Allied Material Corp Seamless pipe made of molybdenum, and manufacturing method therefor
JP6374333B2 (en) * 2014-03-12 2018-08-15 株式会社アライドマテリアル Crucible and method for producing single crystal sapphire using the same
CN113727475B (en) * 2021-08-31 2022-10-14 北京航星机器制造有限公司 Combined long-life heating body and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015137340A1 (en) * 2014-03-12 2017-04-06 株式会社アライドマテリアル Crucible and method for producing single crystal sapphire using the same
JP2016006000A (en) * 2014-05-30 2016-01-14 株式会社アライドマテリアル Crucible, and production method of single crystal sapphire using the same

Also Published As

Publication number Publication date
JPH11169993A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
CN109355530B (en) Preparation method and application of heat-resistant titanium alloy wire
CN1305597C (en) Hot-forming and forging method for large-sized high-temperature alloy turbine disc
CN101580924B (en) Pure titanium two-step plastic deformation processing method
WO2020037759A1 (en) Micro-textured cutter based on silicon brass structure and processing method and application thereof
WO2023035773A1 (en) Method for preparing large mold blank for isothermal forging
JP3828651B2 (en) Molybdenum forged molded part and manufacturing method thereof
CN100386558C (en) Sticking adiabatic cotton and method of making the same
JP2002509191A (en) High-density components made by uniaxial compression of agglomerated spherical metal powder
CN107234196A (en) The atomic ratio Ti-Ni alloy large-sized casting ingot forging method such as one kind
JP3221850B2 (en) Heating chip and method of manufacturing the same
CN111889535B (en) Preparation method of zirconium alloy bar
CN107282670A (en) A kind of extrusion blooming method of turbine disk high temperature alloy ingot casting
CN107414001A (en) Especially big Type Titanium Alloy propeller hub forging substep forging forming method
CN1161199C (en) Technology for manufacturing seamless Al-alloy pipe
JPS5881562A (en) Production of soldering chip
JP2006212699A (en) Method for manufacturing stepped shaft component of titanium alloy
CN1084438A (en) (TJ) foreign steamer crude green body manufacture method of truck drive shaft CV joint
CN112792273B (en) Titanium alloy forging method, titanium alloy watch back shell and manufacturing method thereof
CN116329464A (en) Hot die forging forming method for Ti2AlNb alloy turbine disk forging
JP4714875B2 (en) Implant for in-vivo implantation and method for producing the same
CN2769660Y (en) Adhesive thermal insulating cotton
JP2002035884A (en) Gear die for warm or hot forging and manufacturing method thereof
JP2524433B2 (en) Golf club head manufacturing method
JP3266053B2 (en) Anvil for free forging
CN116060466B (en) Roller composite extrusion method and roller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees