JP3828366B2 - Regenerative heat exchanger - Google Patents

Regenerative heat exchanger Download PDF

Info

Publication number
JP3828366B2
JP3828366B2 JP2001000309A JP2001000309A JP3828366B2 JP 3828366 B2 JP3828366 B2 JP 3828366B2 JP 2001000309 A JP2001000309 A JP 2001000309A JP 2001000309 A JP2001000309 A JP 2001000309A JP 3828366 B2 JP3828366 B2 JP 3828366B2
Authority
JP
Japan
Prior art keywords
pipe
exhaust gas
air
particles
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001000309A
Other languages
Japanese (ja)
Other versions
JP2002206704A (en
Inventor
知宣 麻生
宗親 井藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2001000309A priority Critical patent/JP3828366B2/en
Publication of JP2002206704A publication Critical patent/JP2002206704A/en
Application granted granted Critical
Publication of JP3828366B2 publication Critical patent/JP3828366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【0001】
【発明の属する技術分野】
本発明は、例えば都市ごみや産業廃棄物等のごみを焼却処理してその焼却廃熱を発電に利用する様にしたごみ焼却発電プラントに用いられる蓄熱式熱交換器に関する。
【0002】
【従来の技術】
従来、この種のごみ焼却発電プラントとしては、都市ごみや産業廃棄物等のごみを焼却炉に依り焼却すると共に、焼却に依り発生した排ガスを焼却炉に付設したボイラへ導いて蒸気を発生させ、この蒸気に依りタービンを介して発電機を駆動して発電を行なうものが知られている。
【0003】
而して、この様なごみ焼却発電プラントは、発電効率を高める為に、図3に示す如く、焼却炉50から排出される排ガスAの排出経路の高温部、つまり焼却炉50の出口側に連なる排ガスダクト51には、金属製の過熱器52が設置されて居り、その過熱管内を流れる蒸気Bと高温の排ガスAとの間で熱交換が行なわれて蒸気Bが過熱される様になっている。図3に於て、53はダスト排出装置、54は、二次空気送風機を示している。
【0004】
【発明が解決しようとする課題】
然しながら、この様なものは、廃棄物の焼却に伴なって発生する酸性ガスと塩類を含むダストに依る過熱器の高温腐食の問題から、蒸気温度を400℃程度までしか上げる事ができず、発電効率も20%程度に留まっていた。
【0005】
本発明は、叙上の問題点に鑑み、これを解消する為に創案されたもので、その課題とする処は、過熱器の腐食を抑制できてそれでいて発電効率を向上させる事ができる蓄熱式熱交換器を提供するにある。
【0006】
【課題を解決するための手段】
本発明の蓄熱式熱交換器は、排ガスが通流する排ガスダクトと、排ガスダクトに鉛直方向に貫通して設けられたパイプと、パイプに流動可能に充填されて排ガスとの間で熱交換が行なわれる粒体と、パイプの下部に設けられて熱交換後の粒体に依り蒸気を過熱する過熱器と、過熱後の粒体をパイプの上部に戻す循環手段と、から構成した事に特徴が存する。
【0007】
パイプに流動可能に充填された粒体は、パイプを介して排ガスダクトを通流する排ガスとの間で熱交換が行なわれる。過熱器の過熱管内を流れる蒸気は、熱交換後の粒体に依り過熱される。蒸気過熱後の粒体は、循環手段に依りパイプの上部に戻される。そして、これらの事が繰り返して行なわれる。
過熱器は、排ガスダクトを流れる排ガスと直接接触しないので、これに依る高温腐食が発生する事がない。この為、過熱器に依る蒸気の過熱温度を高める事ができ、この蒸気に依る発電効率を大幅に向上させる事ができる。
【0008】
パイプより上流側の排ガスダクトに排ガス中のダストを除去する高温除塵器を設けるのが好ましい。この様にすれば、排ガス中のダストを除塵する事ができ、パイプへのダストの付着を防止する事ができ、その後の熱交換効率を向上させる事ができる。
【0009】
パイプは、セラミック製であると共に、粒体は、粒径が10〜1000μmの硅砂若しくはアルミナ等のセラミック粒体であるのが好ましい。この様にすれば、排ガスに依りパイプが高温腐食される事がないと共に、粒体の流動性と熱伝達性が高められて効率の良い熱交換を行なう事ができる。
【0010】
循環手段は、粒体を空気で輸送する空気輸送方式とし、輸送した粒体を含む空気を集塵し、集塵後の粒体をパイプへ戻すのが好ましい。この様にすれば、粒体を比較的簡単且つ確実に移送する事ができる。
【0011】
輸送用空気は、焼却炉の燃焼用空気(一次空気や二次空気)として使用するのが好ましい。この様にすれば、加熱された輸送用空気をそのまま焼却炉の燃焼用空気として利用する事ができるので、極めて合理的である。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づいて説明する。
図1は、本発明の蓄熱式熱交換器を備えた焼却炉を示す概要図。図2は、蓄熱式熱交換器を拡大して示す概要図である。
【0013】
蓄熱式熱交換器1は、排ガスダクト2、パイプ3、粒体4、過熱器5、循環手段6とからその主要部が構成されている。
【0014】
排ガスダクト2は、排ガスAが通流するもので、この例では、焼却炉20の出口側に連設されて居り、焼却炉20で発生した750〜800℃の排ガスAが通流される。
【0015】
パイプ3は、排ガスダクト2に鉛直方向に貫通して設けられたもので、この例では、セラミック製であり、直径が100〜200φmmのものが複数設けられて所謂パイプ群を為している。各パイプ3の下部には、これらに連通すべく漏斗状の下部貯留層7が設けられている。
【0016】
粒体4は、パイプ3に流動可能に充填されて排ガスAとの間で熱交換が行なわれるもので、この例では、粒径が10〜1000μm、好ましくは100〜200μmの硅砂にしてある。粒径が10μmより小さい場合には、ハンドリング性が悪くなると共に、粒径が1000μmより大きい場合には、流動性が悪くなる。
【0017】
過熱器5は、パイプ3の下部に設けられて熱交換後の粒体4に依り蒸気Bを過熱するもので、この例では、パイプ3の下部に設けられた下部貯留層7にその過熱管が挿入されて設けられている。
【0018】
循環手段6は、蒸気過熱後の粒体4をパイプ3の上部に戻すもので、この例では、粒体4を空気Cで輸送する空気輸送方式とし、輸送した粒体4を含む空気Cを集塵し、集塵後の粒体4をパイプ3へ戻すと共に、輸送用空気Cは、焼却炉20の燃焼用空気として使用する様にしてある。
【0019】
つまり、循環手段6は、下部貯留層7の下部に連設されてここに貯留された粒体4を排出するスクリュフィーダ8と、これから排出された粒体4に対して空気Cを供給するブロワ9と、これからの空気Cに依り粒体4を輸送する空気輸送管10と、これからの空気Cと粒体4とを分離する分離器11と、各パイプ3の上部に連通すべく設けられて分離器11からの粒体4を各パイプ3に分配する上部分配槽12と、これに設けられてこの内部の粒体4を流動化して均一化する為のバブリング用空気配管13とから成っている。
【0020】
スクリュフィーダ8は、その回転軸が低圧蒸気や空気等に依り冷却される様になっている。分離器11は、マルチサイクロンやセラミックフィルタが用いられる。分離器11に依り分離された輸送用空気Cは、配管14を介して二次空気送風機21の吐出側に供給されて焼却炉20の二次空気(燃焼用空気)として使用する様にしている。バブリング用空気配管13は、図略しているが、空気供給源に接続されている。
図1に於て、22は一次空気送風機を示している。
【0021】
次に、この様な構成に基づいてその作用を述解する。
ごみ焼却発電プラントの焼却炉20で発生した排ガスAは、排ガスダクト2に依り排出されてその途中で蓄熱式熱交換器1のパイプ3群を通過する。
各パイプ3に流動可能に充填された粒体4は、各パイプ3を介して排ガスAとの間で熱交換が行なわれる。排ガスAは、熱交換前には略750〜800℃であり、熱交換後には略650〜700℃である。
熱交換後の粒体4は、下部貯留槽7に貯留される。そして、下部貯留槽7に設けられた過熱器5の過熱管内を流れる蒸気Bは、熱交換後の粒体4に依り過熱される。
【0022】
粒体4は、腐食性がないと共に、パイプ3に依り外部から腐食成分が混入する事がないので、蒸気温度を500℃程度まで過熱する事が可能であり、発電効率を27〜28%程度まで上げる事ができる。
下部貯留槽7に貯留された過熱後の粒体4は、適時、循環手段6のスクリュフィーダ8に依り排出され、ブロワ9からの加圧された空気Cに依り空気輸送管10を通って分離器11まで輸送される。この時、空気輸送管10内の流速は、略1〜10m/sであり、粒体4の性状に依り適宜調整される。分離器11に送られた空気Cと粒体4は、ここで分離されて粒体4がその下の上部分配槽12に落下される。上部分配槽12に送られた粒体4は、バブリング用空気配管13からの空気に依り流動化されて各パイプ3の上部に均等に分配される。
粒体4は、循環手段6に依り循環使用するので、初期の投入のみで良い。
【0023】
分離器11に依り分離された輸送用空気Cは、粒体4に依り加熱されているので、配管14に依り二次空気送風機21の吐出側に送られ、焼却炉20の二次空気として利用される。
【0024】
次に、本発明の第二例に就いて説明する。
第二例は、図2の鎖線で示す如く、排ガスダクト2のパイプ3より上流側位置に排ガスAを除去する高温除塵器15を設けたものである。高温除塵器15としては、セラミックフィルタ等が用いられる。この様にすれば、焼却炉20からの排ガスAに含まれているダストをこの高温除塵器15に依り除去する事ができ、パイプ3にダストが付着する事がなくなる。この為、熱交換効率が大幅に向上する。
【0025】
尚、パイプ3は、先の例では、複数であったが、これに限らず、例えば単一でも良い。
粒体4は、先の例では、硅砂であったが、これに限らず、例えば石灰石等でも良い。
輸送後の空気Cは、先の例では、焼却炉20の二次空気として利用したが、これに限らず、例えば焼却炉20の一次空気等に利用しても良い。
【0026】
【発明の効果】
以上、既述した如く、本発明に依れば、次の様な優れた効果を奏する事ができる。
(1) 排ガスダクト、パイプ、粒体、過熱器、循環手段とで構成し、とりわけパイプを介して排ガスと粒体との間で熱交換を行なうと共に、熱交換後の粒体に依り過熱器を流れる蒸気を過熱する様にしたので、過熱器の腐食を抑制できてそれでいて発電効率を向上させる事ができる。
(2) 過熱後の粒体をパイプの上部に戻す循環手段を設けているので、粒体を再利用でき、初期の投入だけで済む。
【図面の簡単な説明】
【図1】本発明の蓄熱式熱交換器を備えた焼却炉を示す概要図。
【図2】蓄熱式熱交換器を拡大して示す概要図。
【図3】従来の焼却炉を示す概要図。
【符号の説明】
1…蓄熱式熱交換器、2,51…排ガスダクト、3…パイプ、4…粒体、5,52…過熱器、6…循環手段、7…下部貯留槽、8…スクリュフィーダ、9…ブロワ、10…空気輸送管、11…分離器、12…上部分配槽、13…バブリング用空気配管、14…配管、15…高温除塵器、20,50…焼却炉、21,54…二次空気送風機、22…一次空気送風機、50…焼却炉、53…ダスト排出装置、A…排ガス、B…蒸気、C…輸送用空気。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a regenerative heat exchanger used in a waste incineration power plant that incinerates garbage such as municipal waste and industrial waste and uses the incineration waste heat for power generation.
[0002]
[Prior art]
Conventionally, this kind of waste incineration power plant has incinerated municipal waste and industrial waste with an incinerator, and the exhaust gas generated by incineration is led to a boiler attached to the incinerator to generate steam. It is known that power is generated by driving a generator via a turbine using this steam.
[0003]
Thus, in order to increase the power generation efficiency, such a waste incineration power plant is connected to the high temperature portion of the discharge path of the exhaust gas A discharged from the incinerator 50, that is, the outlet side of the incinerator 50, as shown in FIG. A metal superheater 52 is installed in the exhaust gas duct 51, and heat exchange is performed between the steam B flowing in the superheat pipe and the high-temperature exhaust gas A so that the steam B is superheated. Yes. In FIG. 3, 53 indicates a dust discharge device, and 54 indicates a secondary air blower.
[0004]
[Problems to be solved by the invention]
However, such a thing can only raise the steam temperature up to about 400 ° C due to the problem of high temperature corrosion of the superheater due to the dust containing acid gas and salt generated with incineration of waste, The power generation efficiency remained at around 20%.
[0005]
The present invention has been devised to solve this problem in view of the above-mentioned problems, and the problem is that a heat storage type that can suppress corrosion of the superheater and still improve power generation efficiency. To provide a heat exchanger.
[0006]
[Means for Solving the Problems]
The heat storage heat exchanger according to the present invention includes an exhaust gas duct through which exhaust gas flows, a pipe provided through the exhaust gas duct in a vertical direction, and a heat exchange between the pipe and the exhaust gas that is filled in a flowable manner. It is characterized in that it is composed of granules to be performed, a superheater that is provided at the bottom of the pipe and superheats the steam by the granules after heat exchange, and a circulation means for returning the granules after overheating to the top of the pipe Exist.
[0007]
The particles filled in the pipe in a flowable manner undergo heat exchange with the exhaust gas flowing through the exhaust gas duct via the pipe. The steam flowing in the superheater tube of the superheater is heated by the granules after heat exchange. The particles after the steam overheating are returned to the upper part of the pipe by the circulation means. And these things are repeated.
Since the superheater does not come into direct contact with the exhaust gas flowing through the exhaust gas duct, high temperature corrosion due to this does not occur. For this reason, the superheat temperature of the steam depending on the superheater can be increased, and the power generation efficiency due to this steam can be greatly improved.
[0008]
It is preferable to provide a high-temperature dust remover for removing dust in the exhaust gas in the exhaust gas duct upstream of the pipe. In this way, dust in the exhaust gas can be removed, dust can be prevented from adhering to the pipe, and the subsequent heat exchange efficiency can be improved.
[0009]
The pipe is made of ceramic, and the particles are preferably ceramic particles such as cinnabar or alumina having a particle size of 10 to 1000 μm. In this way, the pipe is not corroded at high temperature due to the exhaust gas, and the fluidity and heat transferability of the particles are enhanced, so that efficient heat exchange can be performed.
[0010]
The circulating means is preferably an air transport system that transports the particles by air, collects air containing the transported particles, and returns the collected particles to the pipe. In this way, the particles can be transferred relatively easily and reliably.
[0011]
The transport air is preferably used as combustion air (primary air or secondary air) in an incinerator. In this way, the heated transportation air can be used as it is as combustion air for the incinerator, which is extremely reasonable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing an incinerator equipped with a heat storage type heat exchanger according to the present invention. FIG. 2 is an enlarged schematic view showing a heat storage type heat exchanger.
[0013]
The main part of the heat storage heat exchanger 1 is composed of an exhaust gas duct 2, a pipe 3, a granule 4, a superheater 5, and a circulation means 6.
[0014]
The exhaust gas duct 2 is used for the exhaust gas A to flow therethrough. In this example, the exhaust gas duct 2 is connected to the outlet side of the incinerator 20, and the exhaust gas A generated at the incinerator 20 at 750 to 800 ° C. is passed therethrough.
[0015]
The pipe 3 is provided through the exhaust gas duct 2 in the vertical direction. In this example, the pipe 3 is made of ceramic, and a plurality of pipes having a diameter of 100 to 200 mm are provided to form a so-called pipe group. A funnel-shaped lower reservoir 7 is provided at the lower part of each pipe 3 so as to communicate therewith.
[0016]
The granule 4 is filled in the pipe 3 so as to be flowable and exchanges heat with the exhaust gas A. In this example, the granule 4 is made of dredged sand having a particle size of 10 to 1000 μm, preferably 100 to 200 μm. When the particle size is smaller than 10 μm, the handling property is deteriorated, and when the particle size is larger than 1000 μm, the fluidity is deteriorated.
[0017]
The superheater 5 is provided at the lower part of the pipe 3 and superheats the steam B by the particles 4 after heat exchange. In this example, the superheater 5 is provided in the lower reservoir 7 provided at the lower part of the pipe 3. Is provided.
[0018]
The circulation means 6 returns the particles 4 after steam overheating to the upper part of the pipe 3. In this example, the circulation means 6 is an air transport system in which the particles 4 are transported by the air C, and the air C including the transported particles 4 is removed. While collecting the dust and returning the collected particles 4 to the pipe 3, the transport air C is used as combustion air in the incinerator 20.
[0019]
In other words, the circulation means 6 is connected to the lower part of the lower reservoir 7 and discharges the granules 4 stored therein, and the blower that supplies air C to the granules 4 discharged therefrom. 9, an air transport pipe 10 that transports the granule 4 by the air C in the future, a separator 11 that separates the air C and the granule 4 from now on, and an upper part of each pipe 3. It consists of an upper distribution tank 12 that distributes the granules 4 from the separator 11 to each pipe 3, and a bubbling air pipe 13 that is provided in this pipe and fluidizes and homogenizes the granules 4 inside. Yes.
[0020]
The screw feeder 8 is cooled by a low-pressure steam or air. As the separator 11, a multi-cyclone or a ceramic filter is used. The transportation air C separated by the separator 11 is supplied to the discharge side of the secondary air blower 21 via the pipe 14 and used as secondary air (combustion air) of the incinerator 20. . Although not shown, the bubbling air pipe 13 is connected to an air supply source.
In FIG. 1, reference numeral 22 denotes a primary air blower.
[0021]
Next, the operation will be described based on such a configuration.
The exhaust gas A generated in the incinerator 20 of the garbage incineration power plant is discharged by the exhaust gas duct 2 and passes through the pipe 3 group of the regenerative heat exchanger 1 on the way.
The particles 4 filled in the pipes 3 so as to be flowable are subjected to heat exchange with the exhaust gas A through the pipes 3. The exhaust gas A is about 750 to 800 ° C. before heat exchange, and is about 650 to 700 ° C. after heat exchange.
The granules 4 after heat exchange are stored in the lower storage tank 7. And the vapor | steam B which flows through the inside of the superheater pipe | tube of the superheater 5 provided in the lower storage tank 7 is overheated by the granule 4 after heat exchange.
[0022]
Since the granule 4 is not corrosive and no corrosive components are mixed from the outside depending on the pipe 3, the steam temperature can be overheated to about 500 ° C., and the power generation efficiency is about 27 to 28%. Can be raised.
The overheated granule 4 stored in the lower storage tank 7 is discharged by the screw feeder 8 of the circulation means 6 and separated through the air transport pipe 10 by the pressurized air C from the blower 9 at an appropriate time. It is transported to the vessel 11. At this time, the flow velocity in the air transport pipe 10 is approximately 1 to 10 m / s and is appropriately adjusted depending on the properties of the particles 4. The air C and the granules 4 sent to the separator 11 are separated here, and the granules 4 are dropped into the upper distribution tank 12 below. The granules 4 sent to the upper distribution tank 12 are fluidized by the air from the bubbling air pipe 13 and are evenly distributed to the upper part of each pipe 3.
Since the granule 4 is circulated by the circulation means 6, only the initial charging is required.
[0023]
Since the transportation air C separated by the separator 11 is heated by the granule 4, it is sent to the discharge side of the secondary air blower 21 by the pipe 14 and used as the secondary air of the incinerator 20. Is done.
[0024]
Next, a second example of the present invention will be described.
In the second example, a high temperature dust remover 15 for removing the exhaust gas A is provided at a position upstream of the pipe 3 of the exhaust gas duct 2 as indicated by a chain line in FIG. A ceramic filter or the like is used as the high temperature dust remover 15. In this way, dust contained in the exhaust gas A from the incinerator 20 can be removed by the high temperature dust remover 15, and dust does not adhere to the pipe 3. For this reason, the heat exchange efficiency is greatly improved.
[0025]
In the above example, the number of pipes 3 is plural. However, the number of pipes 3 is not limited to this.
In the previous example, the granule 4 was cinnabar sand, but is not limited thereto, and may be, for example, limestone.
The air C after transport is used as the secondary air of the incinerator 20 in the previous example, but is not limited thereto, and may be used as the primary air of the incinerator 20, for example.
[0026]
【The invention's effect】
As described above, according to the present invention, the following excellent effects can be obtained.
(1) Consists of exhaust gas ducts, pipes, granules, superheater, and circulation means. In particular, heat exchange is performed between exhaust gas and granules via pipes, and superheaters depend on the granules after heat exchange. Since the steam flowing through is overheated, the corrosion of the superheater can be suppressed and the power generation efficiency can be improved.
(2) Since a circulating means for returning the heated granule to the upper part of the pipe is provided, the granule can be reused and only the initial charging is required.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an incinerator equipped with a heat storage type heat exchanger according to the present invention.
FIG. 2 is an enlarged schematic diagram showing a heat storage type heat exchanger.
FIG. 3 is a schematic diagram showing a conventional incinerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Thermal storage type heat exchanger, 2,51 ... Exhaust gas duct, 3 ... Pipe, 4 ... Granule, 5,52 ... Superheater, 6 ... Circulation means, 7 ... Lower storage tank, 8 ... Screw feeder, 9 ... Blower DESCRIPTION OF SYMBOLS 10 ... Air transport pipe, 11 ... Separator, 12 ... Upper distribution tank, 13 ... Air piping for bubbling, 14 ... Piping, 15 ... High temperature dust remover, 20, 50 ... Incinerator, 21, 54 ... Secondary air blower 22 ... primary air blower, 50 ... incinerator, 53 ... dust discharge device, A ... exhaust gas, B ... steam, C ... air for transportation.

Claims (3)

排ガスが通流する排ガスダクトと、排ガスダクトに鉛直方向に貫通して設けられたパイプと、パイプに流動可能に充填されて排ガスとの間で熱交換が行なわれる粒体と、パイプの下部に設けられて熱交換後の粒体に依り蒸気を過熱する過熱器と、過熱後の粒体をパイプの上部に戻す循環手段と、から構成し、循環手段は、粒体を空気で輸送する空気輸送方式とし、輸送した粒体を含む空気を集塵し、集塵後の粒体をパイプへ戻すと共に、輸送用空気は、焼却炉の燃焼用空気として使用する事を特徴とする蓄熱式熱交換器。An exhaust gas duct through which the exhaust gas flows, a pipe provided vertically through the exhaust gas duct, a granule that is filled in the pipe in a flowable manner and exchanges heat with the exhaust gas, and a lower part of the pipe A superheater that superheats the steam by the granules after heat exchange and a circulating means for returning the superheated granules to the upper part of the pipe, and the circulating means is air that transports the granules by air Regenerative heat that is characterized by the fact that the air containing the transported particles is collected, the collected particles are returned to the pipe, and the transport air is used as combustion air for the incinerator. Exchanger. 排ガスダクトのパイプより上流側位置に排ガス中のダストを除去する高温除塵器を設けた請求項1に記載の蓄熱式熱交換器。  The regenerative heat exchanger according to claim 1, wherein a high-temperature dust remover for removing dust in the exhaust gas is provided at a position upstream of the pipe of the exhaust gas duct. パイプは、セラミック製であると共に、粒体は、粒径が10〜1000μmの硅砂若しくはアルミナ等のセラミック粒体である請求項1又は2に記載の蓄熱式熱交換器。  The heat storage heat exchanger according to claim 1 or 2, wherein the pipe is made of ceramic, and the particles are ceramic particles such as cinnabar or alumina having a particle size of 10 to 1000 µm.
JP2001000309A 2001-01-05 2001-01-05 Regenerative heat exchanger Expired - Fee Related JP3828366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000309A JP3828366B2 (en) 2001-01-05 2001-01-05 Regenerative heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000309A JP3828366B2 (en) 2001-01-05 2001-01-05 Regenerative heat exchanger

Publications (2)

Publication Number Publication Date
JP2002206704A JP2002206704A (en) 2002-07-26
JP3828366B2 true JP3828366B2 (en) 2006-10-04

Family

ID=18869122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000309A Expired - Fee Related JP3828366B2 (en) 2001-01-05 2001-01-05 Regenerative heat exchanger

Country Status (1)

Country Link
JP (1) JP3828366B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287369B (en) * 2017-05-22 2019-12-10 中冶南方工程技术有限公司 Air-cooled metallurgical sediment processing apparatus
WO2021119416A1 (en) * 2019-12-11 2021-06-17 Lawrence Livermore National Security, Llc Multi-fluid, earth battery energy systems and methods
WO2019178447A1 (en) 2018-03-16 2019-09-19 Lawrence Livermore National Security, Llc Multi-fluid, earth battery energy systems and methods

Also Published As

Publication number Publication date
JP2002206704A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
JP5563098B2 (en) Method and apparatus for recovering heat from bottom ash
JP2003207115A (en) Circulation fluidized bed boiler
CZ297796A3 (en) Purification of gas combustion products and apparatus for making the same
JPH11148625A (en) Device and method of recovering combustion heat of waste
JP5053279B2 (en) Boiler generating steam from flue gas with high electrical efficiency and improved slag quality
JP3828366B2 (en) Regenerative heat exchanger
JP2001248804A (en) Circulating fluidized bed boiler
JP2004347145A (en) Aluminum deposition preventing method for rpf fired circulation fluidized bed boiler
JP3797781B2 (en) Waste treatment equipment
CN206281365U (en) A kind of high-temp waste gas afterheat utilizing system
JP2002168423A (en) Circulation fluidized bed boiler
JP3514838B2 (en) Heat recovery system in waste treatment plant
JP2021021503A (en) Exhaust gas treatment device and exhaust gas treatment method
JP3480144B2 (en) Waste generation fuel-fired fluidized bed boiler
JP2022107226A (en) Heat exchange device, circulating fluidized bed boiler plant, and heat exchange method
JPH01217107A (en) Method and device for cooling ash of pfbc power plant
JP3491783B2 (en) Fluidized bed incinerator with fluidized media circulation path
JP4390173B2 (en) Combustion treatment equipment and method
JP5807903B2 (en) Heat recovery utilization method and heat recovery utilization system of intermittent operation type waste incineration facility
JP3765555B2 (en) Fluidized bed combustor
JP2719309B2 (en) Garbage incineration plant
JPH11108320A (en) Waste combustion treatment method
JP5329213B2 (en) How to increase the capacity of waste treatment facilities
KR20130077657A (en) A circulating fluidized bed combustion boiler and combustion method thereof
JP2004278992A (en) Fluidized bed incinerator and its operating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees