JP3828214B2 - Peptides and their salts - Google Patents

Peptides and their salts Download PDF

Info

Publication number
JP3828214B2
JP3828214B2 JP29681696A JP29681696A JP3828214B2 JP 3828214 B2 JP3828214 B2 JP 3828214B2 JP 29681696 A JP29681696 A JP 29681696A JP 29681696 A JP29681696 A JP 29681696A JP 3828214 B2 JP3828214 B2 JP 3828214B2
Authority
JP
Japan
Prior art keywords
gly
peptide
pro
phe
thrombin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29681696A
Other languages
Japanese (ja)
Other versions
JPH10139797A (en
Inventor
正夫 谷原
好海 柿丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP29681696A priority Critical patent/JP3828214B2/en
Publication of JPH10139797A publication Critical patent/JPH10139797A/en
Application granted granted Critical
Publication of JP3828214B2 publication Critical patent/JP3828214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はトロンビン切断性を有するペプチドおよびその塩に関する。本発明のペプチドおよびその塩は、トロンビンによって選択的に切断されかつ安全性に優れることから、トロンビン検出システムおよびトロンビン応答性材料、例えば凝固系の状態、創治癒状態、炎症状態等のモニター、凝固系の異常、創傷、炎症等の診断および治療に用いる材料の構成要素として有用である。
【0002】
【従来の技術】
トロンビンは血液凝固因子IIaと呼ばれる凝固系を代表する酵素であり、フィブリノーゲンをフィブリンに分解する。最近、トロンビンの凝固系に対する作用以外の作用、すなわち創傷治癒促進作用[例えば、R. Morris, et al., Annals Rheumat. Diseases, 53, 72-79(1994); J. Stiernberg, et al., Thrombosis and Haemostasis, 70, 158-162(1993); D. H. Carney, et al., J. Clin. Invest., 89, 1469-1477(1992)]、単球遊走タンパク産生刺激作用[ 例えば、G. Grandaliano, et al., J. Exp. Med., 179, 1737-1741(1994)]、マトリクスフィブロネクチン産生刺激作用[ 例えば、M. T. Armstrong, et al., J. Cell. Phys., 166 , 112-120 (1996)] 、血管内皮細胞活性化および透過性亢進作用[例えば、J. G. N. Garcia, Blood Coagulation and Fibrinolysis, 6, 609-626(1995)]等が報告されている。
【0003】
トロンビン切断性ペプチドとしては、トロンビンの酵素活性測定のために用いる蛍光性のトリペプチド誘導体(t-Butyloxycarbonyl-L-Valyl-L-Propyl-L-Arginine 4-Methyl-Coumaryl-7-Amide:Boc-Val-Pro-Arg-MCA)[例えば、T. Morita, et al., J. Biochem., 82, 1495(1977)]、フィブリノーゲンのトロンビン切断部位と同じアミノ酸配列を有する7〜16量体のペプチド[H. C. Marsh, et al., Biochemistry, 21, 6167-6171(1982)]、アミノ酸もしくはペプチドのエステルまたはアミドからなる合成基質[C.Izquierdo and F.J.Burguillo, Int, J. Biochem., 21, 579-592(1989)]、30種のポリペプチドホルモンおよびその誘導体[J-Y. Chang, Eur. J. Biochem., 151, 217-224(1985)]等が報告されている。
また発色性のペプチド基質を用いた検討により、トロンビンによって切断されるアミド結合からアミノ末端方向へ1番目のアミノ酸(P1)はArgが好適であり、2番目のアミノ酸(P2)はProまたはPro誘導体が好適であり、3番目のアミノ酸(P3)は非極性アミノ酸が好適であることが報告されている[R. Lottenberg, et al., Biochim. Biophys. Acta, 742 , 539-557(1983)]。
【0004】
【発明が解決しようとする課題】
従来のトロンビン切断性ペプチドの研究は、トロンビンによって切断されるアミド結合からアミノ末端方向へ1〜4番目までのアミノ酸配列に関する検討がほとんどであり、酵素切断部位からカルボキシル末端側のアミノ酸配列に関する詳細な検討は極めて少ない。
酵素切断部位からカルボキシル末端側にもペプチド鎖を持つペプチドの切断性の検討例としては、上記のフィブリノーゲンのトロンビン切断部位と同じアミノ酸配列を有する7〜16量体のペプチド、並びに30種のポリペプチドホルモンおよびその誘導体の例があるが、これらのうちのほとんどは実用的な速度では切断されなかった。なかには実用的な速度で切断されるものもあるが、強い生理活性を有するため、トロンビン検出システムやトロンビン応答性材料の構成要素に用いる場合には副作用の心配がある。
また、酵素切断部位に直接アミド結合またはエステル結合で発色性あるいは蛍光性色素が結合された上記の合成基質では、色素の代わりに薬剤や生理活性蛋白質を結合し、これを酵素産生等の刺激に応答して放出しようとすることは、立体障害等のために困難であった。
しかるに、本発明の目的は、トロンビンによって選択的に切断され、トロンビン検出システム、トロンビン応答性材料の構成要素として有用な安全性に優れるペプチドおよびその塩を提供することにある。
【0005】
【課題を解決するための手段】
本発明によれば、上記の目的は、下記の一般式(I):
H−X−(D)Phe−Pro−Arg−Gly−Phe−Y−OH (I)
[式中、XはGly 、Yは Pro Ala Gly Ala Pro Ala Gly Gly または Gly Ala Gly Glyを表す。]
で示されるペプチドまたはその塩を提供することによって達成される。
【0006】
本明細書においては各種アミノ酸残基を次の略号で記述する。
Ala :L−アラニン残基
Arg :L−アルギニン残基
Asn :L−アスパラギン残基
Asp :L−アスパラギン酸残基
Cys :L−システイン残基
Gln :L−グルタミン残基
Glu :L−グルタミン酸残基
Gly :グリシン残基
His :L−ヒスチジン残基
Ile :L−イソロイシン残基
Leu :L−ロイシン残基
Lys :L−リシン残基
Phe :L−フェニルアラニン残基
(D)Phe :D−フェニルアラニン残基
Pro :L−プロリン残基
Ser :L−セリン残基
Thr :L−トレオニン残基
Trp :L−トリプトファン残基
Tyr :L−チロシン残基
Val :L−バリン残基
Nle :L−ノルロイシン残基
また、本明細書においては、常法に従ってペプチドのアミノ酸配列を、そのアミノ末端側のアミノ酸残基が左側に位置し、カルボキシル末端側のアミノ酸残基が右側に位置するように記述する。
【0007】
【発明の実施の形態】
本発明のペプチドは、式:−(D)Phe−Pro−Arg−Gly−Phe−で示される配列を含有することが必要である。該配列において、(D)PheがPhe、Tyr、(D)Tyrの場合、Proがピペコリン酸等のプロリン類縁化合物の場合、ArgがLys等の塩基性アミノ酸残基の場合でもトロンビンによって切断され得るが、これらの場合には切断速度が遅く、またトロンビン選択性が低くなる。さらに、Proがピペコリン酸等のプロリン類縁化合物の場合には、光学純度の高い化合物が得られ難い。
【0008】
上記の一般式(I)におけるXはGly ある。XがGly以外の場合には、切断速度が遅く、またトロンビン選択性が低くなることがある。
【0009】
上記の一般式(I)におけるYは、トロンビンによる切断のされ易さおよびその切断速度の点から、 Pro−Ala、Gly−Ala、Pro−Ala−Gly−GlyまたはGly−Ala−Gly−Glyである。
【0010】
本発明のペプチドの具体例としては、下式に示すものが挙げられる。
(2):Gly−(D)Phe−Pro−Arg−Gly−Phe−Pro−Ala (配列番号:2)
(3):Gly−(D)Phe−Pro−Arg−Gly−Phe−Pro−Ala−Gly−Gly(配列番号:3)
(4):Gly−(D)Phe−Pro−Arg−Gly−Phe−Gly−Ala (配列番号:4)
(5):Gly−(D)Phe−Pro−Arg−Gly−Phe−Gly−Ala−Gly−Gly(配列番号:5)
【0011】
本発明のペプチドは、ペプチドの合成において通常用いられる方法、例えば固相合成法または液相合成法によって調製されるが、固相合成法が操作上簡便である〔例えば、日本生化学会編「続生化学実験講座2 タンパク質の化学(下)」(昭和62年5月20日 株式会社東京化学同人発行)、第641〜694頁参照〕。
【0012】
本発明のペプチドの固相合成法による調製は、例えば、反応溶媒に不溶性であるスチレン−ジビニルベンゼン共重合体等の樹脂に目的とするペプチドのカルボキシル末端に対応するアミノ酸をそれが有するα−カルボキシル基を介して結合させ、次いで該アミノ酸に目的とするペプチドのアミノ末端の方向に向かって、対応するアミノ酸またはペプチド断片を該アミノ酸またはペプチド断片が有するα−カルボキシル基以外のα−アミノ基等の官能基を保護したうえで縮合させて結合させる操作と、該結合したアミノ酸またはペプチド断片におけるα−アミノ基等のペプチド結合を形成するアミノ基が有する保護基を除去する操作とを順次繰り返すことによってペプチド鎖を伸長させ、目的とするペプチドに対応するペプチド鎖を形成し、次いで該ペプチド鎖を樹脂から脱離させ、かつ保護されている官能基から保護基を除去することにより目的とするペプチドを得、次いでこれを精製することによって実施される。ここで、ペプチド鎖の樹脂からの脱離および保護基の除去は、トリフルオロ酢酸を用いて同時に行うのが副反応を抑制する観点から好ましい。また、得られたペプチドの精製は逆相液体クロマトグラフィ−で行うのが効果的である。
【0013】
本発明のペプチドの塩は生理学的に許容される塩であり、その塩としては、例えば、塩酸、硫酸、燐酸、乳酸、酒石酸、マレイン酸、フマル酸、シュウ酸、リンゴ酸、クエン酸、オレイン酸、パルミチン酸等の酸との塩;ナトリウム、カリウム、カルシウム、アルミニウム等のアルカリ金属またはアルカリ土類金属の水酸化物または炭酸塩との塩;トリエチルアミン、ベンジルアミン、ジエタノ−ルアミン、t−ブチルアミン、ジシクロヘキシルアミン、アルギニン等との塩などが挙げられる。これらは、通常の塩生成反応を利用することにより調製される。
【0014】
本発明のペプチドおよびその塩(以下、これらをペプチド類と略称することがある)は、トロンビン切断性を有し、かつ毒性試験において低毒性であることが確認されている。
したがって、本発明のペプチド類は凝固の亢進や低下等の凝固系の状態、肉芽形成や上皮化等の創治癒状態、血管透過性や単球遊走活性化等の炎症状態のモニター、凝固系の異常、創傷、炎症等の診断および治療に用いる材料の構成要素として用いることができる。
【0015】
本発明のペプチド類が構成要素となる材料は、例えば水膨潤性高分子ゲルに適当なスぺーサーと本発明のペプチド類を介して薬剤を結合することにより製造される(特開平8−24325号参照)。製造された材料はトロンビンの量に応じた薬剤の放出が可能になるので、トロンビンが産生される病巣においてのみ治療に有効な量の薬剤が放出され、トロンビンが産生されない部位では薬剤が放出されないので薬剤耐性発現や副作用を低減できる。したがって、本発明のペプチド類が構成要素となる材料は、創傷被覆材、生体組織接着材、癒着防止材、骨補強材、生体信号検出材料および薬剤放出基材として有用である。
【0016】
本発明のペプチド類が構成要素となる材料は、多糖類やポリエチレングリコール、ポリビニルアルコール等の水溶性高分子化合物を、本発明のペプチド類を含む架橋剤で架橋処理することによっても製造することができる。該材料は接触する環境のトロンビン濃度に応じて架橋が切断されるので、内包する薬剤や結合した薬剤を刺激に応答して放出することができる。
【0017】
本発明のペプチド類が構成要素となる材料は、凝固系異常が関与する疾患、創傷、炎症等の患者の血液または体液を採取して接触させるか、あるいは患部に直接貼付けてモニターや診断の目的に用いることができる。治療に用いる場合にはこれらの患者の患部に直接貼付けて用いることができる。
【0018】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、本発明はこれらの実施例により限定されるものではない。
【0019】
合成参考例1
式(1):Gly−(D)Phe−Pro−Arg−Gly−Phe(配列番号:1)で示されるペプチドをペプチド自動合成装置を用いて固相合成法により合成した。すなわち、4−ヒドロキシメチル−フェノキシ−メチル基を0.89ミリモル/g(樹脂)の割合で有するスチレン−ジビニルベンゼン共重合体〔スチレンとジビニルベンゼンの構成モル比:99対1〕からなる粒状樹脂〔米国アプライド・バイオシステムズ社製、HMPレジン〕0.25ミリモルを用い、目的とするペプチドのカルボキシル末端からアミノ末端に向かって順次対応するアミノ酸を結合させた。結合反応において、アミノ酸として、米国アプライド・バイオシステムズ社製のNα−9−(フルオレニルメトキシカルボニル)−L−フェニルアラニン〔Fmocフェニルアラニン〕、Nα−9−(フルオレニルメトキシカルボニル)−グリシン〔Fmocグリシン〕、Nα−9−(フルオレニルメトキシカルボニル)−N−4−メトキシ−2,3,6−トリメチルベンゼンスルフォニル−L−アルギニン〔Fmocアルギニン〕、Nα−(フルオレニルメトキシカルボニル)−L−プロリン〔Fmocプロリン〕、およびスイス国バッケムファインケミカ社製のNα−9−(フルオレニルメトキシカルボニル)−D−フェニルアラニン〔Fmoc−D−フェニルアラニン〕をそれぞれ1ミリモル用いた。
【0020】
得られたペプチド樹脂を、5%の水、5%のチオアニソール、7.5%のフェノール、2.5%のエタンジチオールを含むトリフルオロ酢酸10mlで6時間処理した。ジエチルエーテルに、得られた溶液を加えて生じる沈殿をさらに数回ジエチルエーテルで洗浄して、脱保護と固相からの脱離を行った。粗生成物をミリポア・ウォ−タ−ズ社製分取用高速液体クロマトグラフ〔カラム:デルタパックC18 47×300mmプレップパック1000加圧モジュ−ル付〕で精製した。得られた精製ペプチドを島津製作所株式会社製LC6A分析用高速液体クロマトグラフ〔カラム:東ソ−株式会社製TSKgel ODS−80TM CTR、移動相:トリフルオロ酢酸を0.05容量%含有するアセトニトリルと水の混合溶媒(アセトニトリル濃度を30分間で5容量%から50容量%に変化させた)、流速1ml/分〕に付したところ、18.1分に単一のピ−クが示された。FAB法マススペクトルにより求めた精製ペプチドの分子量は680であった(理論値:679.77)。
【0021】
実施例1〜4および比較例1〜4
式(2):Gly−(D)Phe−Pro−Arg−Gly−Phe−Pro−Ala(配列番号:2)で示されるペプチド(実施例)、式(3):Gly−(D)Phe−Pro−Arg−Gly−Phe−Pro−Ala−Gly−Gly(配列番号:3)で示されるペプチド(実施例)、式(4):Gly−(D)Phe−Pro−Arg−Gly−Phe−Gly−Ala(配列番号:4)で示されるペプチド(実施例3)、式(5):Gly−(D)Phe−Pro−Arg−Gly−Phe−Gly−Ala−Gly−Gly(配列番号:5)で示されるペプチド(実施例)、式(6):Gly−Phe−Pro−Arg−Gly−Gly(配列番号:6)で示されるペプチド(比較例1)、式(7):Lys−Gly−Val−Pro−Arg−Gly−Gly−Gly(配列番号:7)で示されるペプチド(比較例2)、式(8):Gly−Tyr−Pro−Arg−Gly−Asn−Gly−Gly(配列番号:8)で示されるペプチド(比較例3)、および式(9):Gly−Phe−Pro−Arg−Gly−Ser−Gly−Gly−Ser−Gly(配列番号:9)で示されるペプチド(比較例4)を合成参考例1と同様の方法で合成した。
【0022】
実施例1〜4では米国アプライド・バイオシステムズ社製のNα−(フルオレニルメトキシカルボニル)−L−アラニン〔Fmocアラニン〕を、比較例2ではNα−(フルオレニルメトキシカルボニル)−Nε−(t−ブトキシカルボニル)−L−リジン〔Fmocリジン〕とNα−(フルオレニルメトキシカルボニル)−L−バリン〔Fmocバリン〕を、比較例3ではNα−(フルオレニルメトキシカルボニル)−O−(t−ブチル)−L−チロシン〔Fmocチロシン〕とNα−(フルオレニルメトキシカルボニル)−L−アスパラギン〔Fmocアスパラギン〕を、比較例4ではNα−(フルオレニルメトキシカルボニル)−O−(t−ブチル)−L−セリン〔Fmocセリン〕を、それぞれ合成参考例1で用いたものに加えて使用した。
【0023】
得られたそれぞれのペプチドについて合成参考例1と同様にして脱保護と固相からの脱離を行い、粗生成物を精製した。それぞれの精製ペプチドについて、合成参考例1と同様の分析用高速液体クロマトグラフにおける溶出時間およびFAB法マススペクトルによる分子量測定結果を表1にまとめて示す。
【0024】
【表1】

Figure 0003828214
【0025】
試験例1
トロンビン切断性試験
合成参考例1、実施例1〜4および比較例1〜4で得られたペプチドの1mg/mlPBS(0.15MのNaClを含む0.01Mリン酸塩緩衝液、pH7.4)溶液200μlとトロンビン(シグマ社製)の10U/mlPBS溶液200μlとを混合し、37℃で静置した。1時間後に上清50μlを採取し、100μlのアセトニトリルを加え、攪拌後遠心分離(12,000rpm、10min)した。上清を合成参考例1と同様の分析用高速液体クロマトグラフに付して、1時間後のペプチドのピーク面積を求めた。0時間のペプチドのピーク面積との比率から切断率を計算し、その結果をまとめて表2に示す。
【0026】
【表2】
Figure 0003828214
【0027】
参考例1
抗菌剤結合型創傷被覆材の作製
(1)含水高分子ゲルの作製
部分ケン化ポリピバリン酸ビニル(ケン化度81%、粘度平均重合度1650)10gをジメチルスルホキシド300gに溶解し、無水コハク酸1.64gおよびピリジン0.64gを加えて70℃で4時間反応させた。その結果得られた溶液約330gを、25cm×25cmの大きさのポリスチレン製トレイに流延し、静かに水中に浸漬することにより、コハク酸が結合した部分ケン化ポリピバリン酸ビニルの含水高分子ゲルを得た。
【0028】
(2)トロンビン切断性ペプチドと薬剤の結合
上記(1)で得られた、含水高分子ゲル10gを、ジメチルホルムアミドで洗浄してゲル中の水分をジメチルホルムアミドに置換した。しかる後に、46mgのN−ヒドロキシコハク酸イミドと80mgの1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)を加え、一晩振盪した。ジメチルホルムアミドと水で数回洗浄した後、実施例で得られたペプチドGly−(D)Phe−Pro−Arg−Gly−Phe−Pro−Ala−Gly−Gly(配列番号:3)50mgとジイソプロピルエチルアミン9μlを加えて、さらに一晩振盪し、含水高分子ゲルにペプチドを結合した。これを、水で数回、さらに0.05Mの炭酸水素ナトリウム水溶液で2回洗浄した後、0.6gのゲンタマイシンと0.2gのEDC・HClを加えて、さらに一晩振盪した。水で十分に洗浄して、抗菌剤結合型創傷被覆材を得た。
【0029】
参考例2
参考例1において、実施例で得られたペプチド[Gly−(D)Phe−Pro−Arg−Gly−Phe−Pro−Ala−Gly−Gly(配列番号:3)]の代わりに、比較例2で得られたペプチド[Lys−Gly−Val−Pro−Arg−Gly−Gly−Gly(配列番号:7)]を用いる以外は参考例1と同様にして抗菌剤結合型創傷被覆材を得た。
【0030】
試験例2
疑似感染創滲出液による薬剤放出試験
参考例1および2で得られた抗菌剤結合型創傷被覆材の0.1gをそれぞれ計り取り、PBS150μl、黄色ブドウ球菌培養上清50μlおよびヒト血漿50μlを加えて、37℃で一晩振盪した。この上清75μlを直径8mmの濾紙に吸収させて、2.5×106個の黄色ブドウ球菌を接種したブレイン-ハート-インフュージョン寒天培地プレート(直径10cm)にのせて、37℃で終夜培養した。濾紙の周囲に生じる細菌生育阻止円の直径を測定し、75μlのゲンタマイシン水溶液(10μg/ml)を吸収させた同じ大きさの濾紙の周囲に生じる阻止円の直径との比から、上清中に放出された抗菌剤の量を計算した。
【0031】
1時間あたりに換算した抗菌剤放出量は、参考例1で得られた抗菌剤結合型創傷被覆材の場合は約0.52μg/gゲルであり、参考例2で得られた抗菌剤結合型創傷被覆材の場合は約0μg/gゲルであった。
【0032】
【発明の効果】
本発明によれば、トロンビン切断性を有するペプチドおよびその塩が提供される。本発明のペプチドおよびその塩は、トロンビンによって選択的に切断されかつ安全性に優れることから、トロンビンの検出システム、トロンビン応答性材料の構成要素として有用であり、該材料から、創傷被覆材、生体組織接着材、癒着防止材、骨補強材、生体信号検出材料、薬剤放出基材等を作製することができる。
【0033】
【配列表】
Figure 0003828214
【0034】
Figure 0003828214
【0035】
Figure 0003828214
【0036】
Figure 0003828214
【0037】
Figure 0003828214
【0038】
Figure 0003828214
【0039】
Figure 0003828214
【0040】
Figure 0003828214
【0041】
Figure 0003828214
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a peptide having thrombin cleavability and a salt thereof. Since the peptides and salts thereof of the present invention are selectively cleaved by thrombin and are excellent in safety, thrombin detection systems and thrombin responsive materials such as coagulation system status, wound healing status, inflammation status monitor, coagulation It is useful as a component of materials used for diagnosis and treatment of system abnormalities, wounds, inflammation, and the like.
[0002]
[Prior art]
Thrombin is an enzyme that represents the coagulation system called blood coagulation factor IIa, and degrades fibrinogen into fibrin. Recently, effects other than the action of thrombin on the coagulation system, that is, the effect of promoting wound healing [for example, R. Morris, et al., Annals Rheumat. Diseases, 53, 72-79 (1994); J. Stiernberg, et al., Thrombosis and Haemostasis, 70, 158-162 (1993); DH Carney, et al., J. Clin. Invest., 89, 1469-1477 (1992)], stimulating monocyte migration protein production [eg G. Grandaliano , et al., J. Exp. Med., 179, 1737-1741 (1994)], matrix fibronectin production stimulating action [for example, MT Armstrong, et al., J. Cell. Phys., 166, 112-120 ( 1996)], vascular endothelial cell activation and permeabilization [for example, JGN Garcia, Blood Coagulation and Fibrinolysis, 6, 609-626 (1995)] have been reported.
[0003]
The thrombin-cleavable peptide includes a fluorescent tripeptide derivative (t-Butyloxycarbonyl-L-Valyl-L-Propyl-L-Arginine 4-Methyl-Coumaryl-7-Amide: Boc-) Val-Pro-Arg-MCA) [e.g., T. Morita, et al., J. Biochem., 82, 1495 (1977)], a 7-16 mer peptide having the same amino acid sequence as the thrombin cleavage site of fibrinogen [HC Marsh, et al., Biochemistry, 21, 6167-6171 (1982)], synthetic substrates consisting of amino acid or peptide esters or amides [C. Izquierdo and FJ Burgurillo, Int, J. Biochem., 21, 579-592 (1989)], 30 polypeptide hormones and derivatives thereof [JY. Chang, Eur. J. Biochem., 151, 217-224 (1985)] and the like have been reported.
Also, as a result of studies using chromogenic peptide substrates, Arg is suitable for the first amino acid (P1) from the amide bond cleaved by thrombin toward the amino terminus, and the second amino acid (P2) is Pro or Pro derivative. It is reported that the third amino acid (P3) is preferably a nonpolar amino acid [R. Lottenberg, et al., Biochim. Biophys. Acta, 742, 539-557 (1983)]. .
[0004]
[Problems to be solved by the invention]
Most studies on conventional thrombin-cleavable peptides have studied the amino acid sequence from the amide bond cleaved by thrombin to the 1st to 4th amino acids, and the detailed amino acid sequence from the enzyme cleavage site to the carboxyl terminal side. There is very little consideration.
Examples of studies on the cleaving ability of a peptide having a peptide chain on the carboxyl terminal side from the enzyme cleavage site include 7 to 16-mer peptides having the same amino acid sequence as the thrombin cleavage site of fibrinogen and 30 polypeptides. There are examples of hormones and their derivatives, but most of these were not cleaved at a practical rate. Some of them are cleaved at a practical speed, but they have strong physiological activity, so that they may cause side effects when used as a component of a thrombin detection system or a thrombin responsive material.
In addition, in the above synthetic substrate in which a chromogenic or fluorescent dye is directly bonded to the enzyme cleavage site by an amide bond or an ester bond, a drug or a physiologically active protein is bound instead of the dye, and this is used as a stimulus for enzyme production or the like. It was difficult to release in response due to steric hindrance and the like.
However, an object of the present invention is to provide a peptide having excellent safety and a salt thereof that is selectively cleaved by thrombin and is useful as a component of a thrombin detection system and a thrombin-responsive material.
[0005]
[Means for Solving the Problems]
According to the present invention, the above object is achieved by the following general formula (I):
H-X- (D) Phe-Pro-Arg-Gly-Phe-Y-OH (I)
[ Wherein , X represents Gly , Y represents Pro - Ala , Gly - Ala , Pro - Ala - Gly - Gly or Gly - Ala - Gly - Gly . ]
This is achieved by providing a peptide represented by the formula:
[0006]
In this specification, various amino acid residues are described by the following abbreviations.
Ala: L-alanine residue
Arg: L-arginine residue
Asn: L-asparagine residue
Asp: L-aspartic acid residue
Cys: L-cysteine residue
Gln: L-glutamine residue
Glu: L-glutamic acid residue
Gly: Glycine residue
His: L-histidine residue
Ile: L-isoleucine residue
Leu: L-leucine residue
Lys: L-lysine residue
Phe: L-phenylalanine residue
(D) Phe: D-phenylalanine residue
Pro: L-proline residue
Ser: L-serine residue
Thr: L-threonine residue
Trp: L-tryptophan residue
Tyr: L-tyrosine residue
Val: L-valine residue
Nle: L-norleucine residue In the present specification, the amino acid sequence of a peptide is positioned on the left side and the amino acid residue on the carboxyl terminal side is positioned on the right side according to a conventional method. Describe as follows.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The peptide of the present invention needs to contain a sequence represented by the formula:-(D) Phe-Pro-Arg-Gly-Phe-. In this sequence, when (D) Phe is Phe, Tyr, (D) Tyr, when Pro is a proline analog such as pipecolic acid, Arg can be cleaved by thrombin even when it is a basic amino acid residue such as Lys. However, in these cases, the cutting speed is slow and the thrombin selectivity is low. Further, when Pro is a proline-related compound such as pipecolic acid, it is difficult to obtain a compound with high optical purity.
[0008]
X in the above general formula (I) is Gly. When X is other than Gly , the cutting speed is slow and the thrombin selectivity may be lowered .
[0009]
Y in the above general formula (I), ease is the cleavage by thrombin and a point or et of the cutting speed, Pro -Ala, Gly-Ala, Pro-Ala-Gly-Gly or Gly-Ala-Gly- Gly .
[0010]
As completely as examples of the peptides of the invention, Ru include those represented by the following formulas.
(2) : Gly- (D) Phe-Pro-Arg-Gly-Phe-Pro-Ala (SEQ ID NO: 2)
(3): Gly- (D) Phe-Pro-Arg-Gly-Phe-Pro-Ala-Gly-Gly (SEQ ID NO: 3)
(4): Gly- (D) Phe-Pro-Arg-Gly-Phe-Gly-Ala (SEQ ID NO: 4)
(5): Gly- (D) Phe-Pro-Arg-Gly-Phe-Gly-Ala-Gly-Gly (SEQ ID NO: 5)
[0011]
The peptide of the present invention is prepared by a method usually used in peptide synthesis, for example, a solid phase synthesis method or a liquid phase synthesis method, but the solid phase synthesis method is simple in operation [for example, “Continued in Japan Biochemical Society” Biochemistry Experiment Course 2 Protein Chemistry (bottom) "(see May 20, 1987, published by Tokyo Chemical Co., Ltd.), pages 641-694].
[0012]
Preparation of the peptide of the present invention by a solid phase synthesis method is possible, for example, by using an α-carboxyl having an amino acid corresponding to the carboxyl terminus of the target peptide in a resin such as a styrene-divinylbenzene copolymer that is insoluble in the reaction solvent. An amino group other than the α-carboxyl group other than the α-carboxyl group of the amino acid or peptide fragment, and the like, in the direction of the amino terminus of the peptide of interest. By sequentially repeating the operation of condensing and binding the functional group after protecting the functional group, and the operation of removing the protective group of the amino group that forms a peptide bond such as an α-amino group in the bound amino acid or peptide fragment Extend the peptide chain to form a peptide chain corresponding to the target peptide, and then The peptide chain is desorbed from the resin to obtain the peptide of interest and from the functional groups which are protected by removal of the protecting group, and then carried out by purification. Here, the elimination of the peptide chain from the resin and the removal of the protecting group are preferably performed simultaneously using trifluoroacetic acid from the viewpoint of suppressing side reactions. Moreover, it is effective to purify the obtained peptide by reverse phase liquid chromatography.
[0013]
The salt of the peptide of the present invention is a physiologically acceptable salt. Examples of the salt include hydrochloric acid, sulfuric acid, phosphoric acid, lactic acid, tartaric acid, maleic acid, fumaric acid, oxalic acid, malic acid, citric acid, and olein. Salts with acids such as acids and palmitic acid; salts with hydroxides or carbonates of alkali metals or alkaline earth metals such as sodium, potassium, calcium and aluminum; triethylamine, benzylamine, ethanolamine, t-butylamine , Salts with dicyclohexylamine, arginine and the like. These are prepared by utilizing a normal salt formation reaction.
[0014]
It has been confirmed that the peptides of the present invention and salts thereof (hereinafter sometimes abbreviated as peptides) have thrombin cleavability and low toxicity in toxicity tests.
Therefore, the peptides of the present invention can be used to monitor clotting conditions such as coagulation enhancement and reduction, wound healing conditions such as granulation and epithelialization, inflammatory conditions such as vascular permeability and monocyte migration activation, It can be used as a component of materials used for diagnosis and treatment of abnormalities, wounds, inflammations and the like.
[0015]
The material comprising the peptides of the present invention as a constituent element is produced, for example, by binding a drug to a water-swellable polymer gel through a suitable spacer and the peptides of the present invention (Japanese Patent Laid-Open No. 8-24325). Issue). Since the manufactured material can release the drug according to the amount of thrombin, the therapeutically effective amount of drug is released only in the lesion where thrombin is produced, and the drug is not released at the site where thrombin is not produced. Drug resistance and side effects can be reduced. Therefore, the material comprising the peptides of the present invention as a constituent element is useful as a wound dressing, a biological tissue adhesive, an adhesion preventive, a bone reinforcing material, a biosignal detection material, and a drug release substrate.
[0016]
The material comprising the peptides of the present invention as a constituent element can also be produced by crosslinking a water-soluble polymer compound such as polysaccharides, polyethylene glycol, and polyvinyl alcohol with a crosslinking agent containing the peptides of the present invention. it can. Since the material is cross-linked according to the thrombin concentration in the contact environment, the encapsulated drug or the bound drug can be released in response to the stimulus.
[0017]
The material of which the peptides of the present invention are constituents is used for the purpose of monitoring and diagnosis by collecting and contacting blood or body fluid of a patient such as a disease, wound, inflammation, etc. involving a coagulation system abnormality, or by directly attaching to the affected part. Can be used. When used for treatment, it can be directly attached to the affected area of these patients.
[0018]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention is not limited by these Examples.
[0019]
Synthesis reference example 1
A peptide represented by the formula (1): Gly- (D) Phe-Pro-Arg-Gly-Phe (SEQ ID NO: 1) was synthesized by a solid phase synthesis method using an automatic peptide synthesizer. That is, a granular resin comprising a styrene-divinylbenzene copolymer having a 4-hydroxymethyl-phenoxy-methyl group at a ratio of 0.89 mmol / g (resin) [constitutive molar ratio of styrene and divinylbenzene: 99 to 1]. [Applied Biosystems, USA, HMP resin] 0.25 mmol was used, and the corresponding amino acids were sequentially bound from the carboxyl terminus to the amino terminus of the target peptide. In the coupling reaction, Nα-9- (fluorenylmethoxycarbonyl) -L-phenylalanine [Fmoc phenylalanine], Nα-9- (fluorenylmethoxycarbonyl) -glycine [Fmoc, manufactured by Applied Biosystems, USA, was used as an amino acid. Glycine], Nα-9- (fluorenylmethoxycarbonyl) -N g -4-methoxy-2,3,6-trimethylbenzenesulfonyl-L-arginine [Fmoc arginine], Nα- (fluorenylmethoxycarbonyl)- 1 mmol each of L-proline [Fmoc proline] and Nα-9- (fluorenylmethoxycarbonyl) -D-phenylalanine [Fmoc-D-phenylalanine] manufactured by Bacchem Finechemica, Switzerland were used.
[0020]
The obtained peptide resin was treated with 10 ml of trifluoroacetic acid containing 5% water, 5% thioanisole, 7.5% phenol, 2.5% ethanedithiol for 6 hours. The resulting solution was added to diethyl ether and the resulting precipitate was further washed several times with diethyl ether for deprotection and desorption from the solid phase. The crude product was purified by a preparative high performance liquid chromatograph manufactured by Millipore Waters [column: Deltapack C1847 x 300 mm prep pack 1000 with pressure module]. LC6A analytical high performance liquid chromatograph manufactured by Shimadzu Corporation [column: TSKgel ODS-80TM CTR manufactured by Tosoh Corporation, mobile phase: acetonitrile and water containing 0.05% by volume of trifluoroacetic acid] (A acetonitrile concentration was changed from 5% by volume to 50% by volume over 30 minutes) and a flow rate of 1 ml / min.] Showed a single peak at 18.1 minutes. The molecular weight of the purified peptide determined by FAB mass spectrum was 680 (theoretical value: 679.77).
[0021]
Examples 1-4 and Comparative Examples 1-4
Formula (2): Gly- (D) Phe-Pro-Arg-Gly-Phe-Pro-Ala (SEQ ID NO: 2) peptide (Example 1 ), Formula (3): Gly- (D) Phe -Pro-Arg-Gly-Phe-Pro-Ala-Gly-Gly (SEQ ID NO: 3) peptide (Example 2 ), formula (4): Gly- (D) Phe-Pro-Arg-Gly- Phe-Gly-Ala (SEQ ID NO: 4) peptide (Example 3) , Formula (5): Gly- (D) Phe-Pro-Arg-Gly-Phe-Gly-Ala-Gly-Gly (sequence) Peptide No. 5) (Example 4 ), Formula (6): Gly-Phe-Pro-Arg-Gly-Gly (SEQ ID NO: 6) Peptide (Comparative Example 1), Formula (7) : Lys-Gly-Val-Pro-Arg-Gly-Gly-Gly (SEQ ID NO: 7) peptide (Comparative Example 2), Formula (8): Gly-Tyr-Pro-Arg-Gly-Asn-Gly -Gly (SEQ ID NO: 8) peptide (Comparative Example 3) and Formula (9): Gly-Phe-Pro-Arg- A peptide (Comparative Example 4) represented by Gly-Ser-Gly-Gly-Ser-Gly (SEQ ID NO: 9) was synthesized in the same manner as in Synthesis Reference Example 1.
[0022]
In Examples 1 to 4 , Nα- (fluorenylmethoxycarbonyl) -L-alanine [Fmocalanine] manufactured by Applied Biosystems of the United States was used, and in Comparative Example 2, Nα- (fluorenylmethoxycarbonyl) -Nε- ( t-butoxycarbonyl) -L-lysine [Fmoc lysine] and Nα- (fluorenylmethoxycarbonyl) -L-valine [Fmoc valine]. In Comparative Example 3, Nα- (fluorenylmethoxycarbonyl) -O— ( t-butyl) -L-tyrosine [Fmoc tyrosine] and Nα- (fluorenylmethoxycarbonyl) -L-asparagine [Fmoc asparagine]. - butyl) -L- serine [Fmoc serine], used in addition to those used in each reference example 1 .
[0023]
Each of the obtained peptides was deprotected and desorbed from the solid phase in the same manner as in Synthesis Reference Example 1, and the crude product was purified. For each purified peptide, Table 1 summarizes the elution time and molecular weight measurement result by FAB method mass spectrum in the same analytical high performance liquid chromatograph as in Synthesis Reference Example 1.
[0024]
[Table 1]
Figure 0003828214
[0025]
Test example 1
Thrombin cleavability test
200 μl of 1 mg / ml PBS (0.01 M phosphate buffer containing 0.15 M NaCl, pH 7.4) solution of the peptides obtained in Synthesis Reference Example 1, Examples 1 to 4 and Comparative Examples 1 to 4 and thrombin 200 μl of 10 U / ml PBS solution (manufactured by Sigma) was mixed and allowed to stand at 37 ° C. One hour later, 50 μl of the supernatant was collected, 100 μl of acetonitrile was added, and the mixture was stirred and centrifuged (12,000 rpm, 10 min). The supernatant was subjected to the same analytical high performance liquid chromatograph as in Synthesis Reference Example 1, and the peak area of the peptide after 1 hour was determined. The cleavage rate was calculated from the ratio to the peak area of the peptide at 0 hour, and the results are summarized in Table 2.
[0026]
[Table 2]
Figure 0003828214
[0027]
Reference example 1
Preparation of antibacterial-binding wound dressing (1) Preparation of hydrous polymer gel 10 g of partially saponified polypivalate (saponification degree 81%, viscosity average polymerization degree 1650) was dissolved in 300 g of dimethyl sulfoxide, and succinic anhydride 1 .64 g and 0.64 g of pyridine were added and reacted at 70 ° C. for 4 hours. About 330 g of the resulting solution was cast on a polystyrene tray with a size of 25 cm × 25 cm, and immersed in water gently, so that the hydrous polymer gel of partially saponified polypivalate vinyl with succinic acid bonded thereto. Got.
[0028]
(2) Binding of thrombin-cleavable peptide and drug 10 g of the water-containing polymer gel obtained in (1) above was washed with dimethylformamide to replace the water in the gel with dimethylformamide. Thereafter, 46 mg of N-hydroxysuccinimide and 80 mg of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl) were added and shaken overnight. After washing several times with dimethylformamide and water, 50 mg of the peptide Gly- (D) Phe-Pro-Arg-Gly-Phe-Pro-Ala-Gly-Gly (SEQ ID NO: 3) obtained in Example 2 and diisopropyl 9 μl of ethylamine was added, and the mixture was further shaken overnight to bind the peptide to the water-containing polymer gel. This was washed several times with water and twice with 0.05 M aqueous sodium hydrogen carbonate solution, and then 0.6 g of gentamicin and 0.2 g of EDC · HCl were added and further shaken overnight. After thoroughly washing with water, an antibacterial-binding wound dressing was obtained.
[0029]
Reference example 2
Reference Example 1, the peptide obtained in Example 2 [Gly- (D) Phe- Pro-Arg-Gly-Phe-Pro-Ala-Gly-Gly ( SEQ ID NO: 3)] in place of Comparative Example 2 An antibacterial agent-bound wound dressing was obtained in the same manner as in Reference Example 1 except that the peptide [Lys-Gly-Val-Pro-Arg-Gly-Gly-Gly (SEQ ID NO: 7)] obtained in (1) was used.
[0030]
Test example 2
Drug Release Test Using Mock Infection Wound Exudate 0.1 g of the antibacterial agent-bound wound dressing obtained in Reference Examples 1 and 2 was weighed, and PBS 150 μl, S. aureus culture supernatant 50 μl and human plasma 50 μl were added. And shaken overnight at 37 ° C. 75 μl of this supernatant was absorbed on a filter paper with a diameter of 8 mm and placed on a brain-heart-infusion agar plate (diameter 10 cm) inoculated with 2.5 × 10 6 S. aureus and cultured at 37 ° C. overnight. did. The diameter of the bacterial growth inhibition circle generated around the filter paper was measured, and from the ratio to the diameter of the inhibition circle produced around the same size filter paper that had absorbed 75 μl of gentamicin aqueous solution (10 μg / ml), The amount of antimicrobial released was calculated.
[0031]
The amount of antibacterial agent released per hour was about 0.52 μg / g gel in the case of the antibacterial agent-bound wound dressing obtained in Reference Example 1, and the antibacterial agent-bound type obtained in Reference Example 2 In the case of the wound dressing, it was about 0 μg / g gel.
[0032]
【The invention's effect】
According to the present invention, peptides having thrombin cleavability and salts thereof are provided. Since the peptide of the present invention and its salt are selectively cleaved by thrombin and are excellent in safety, it is useful as a component of a thrombin detection system and a thrombin-responsive material. A tissue adhesive, an adhesion prevention material, a bone reinforcing material, a biosignal detection material, a drug release substrate, and the like can be produced.
[0033]
[Sequence Listing]
Figure 0003828214
[0034]
Figure 0003828214
[0035]
Figure 0003828214
[0036]
Figure 0003828214
[0037]
Figure 0003828214
[0038]
Figure 0003828214
[0039]
Figure 0003828214
[0040]
Figure 0003828214
[0041]
Figure 0003828214

Claims (1)

下記の一般式(I):
H−X−(D)Phe−Pro−Arg−Gly−Phe−Y−OH (I)
[式中、XはGly 、Yは Pro Ala Gly Ala Pro Ala Gly Gly または Gly Ala Gly Glyを表す。]
で示されるペプチドまたはその塩。
The following general formula (I):
H-X- (D) Phe-Pro-Arg-Gly-Phe-Y-OH (I)
[ Wherein , X represents Gly , Y represents Pro - Ala , Gly - Ala , Pro - Ala - Gly - Gly or Gly - Ala - Gly - Gly . ]
Or a salt thereof.
JP29681696A 1996-11-08 1996-11-08 Peptides and their salts Expired - Fee Related JP3828214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29681696A JP3828214B2 (en) 1996-11-08 1996-11-08 Peptides and their salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29681696A JP3828214B2 (en) 1996-11-08 1996-11-08 Peptides and their salts

Publications (2)

Publication Number Publication Date
JPH10139797A JPH10139797A (en) 1998-05-26
JP3828214B2 true JP3828214B2 (en) 2006-10-04

Family

ID=17838527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29681696A Expired - Fee Related JP3828214B2 (en) 1996-11-08 1996-11-08 Peptides and their salts

Country Status (1)

Country Link
JP (1) JP3828214B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1871785B1 (en) * 2005-04-20 2010-05-05 Viromed Co., Ltd Compositions and methods for fusion protein separation
WO2017145142A1 (en) 2016-02-25 2017-08-31 Nobio Ltd. Micro and nanoparticulate compositions comprising anti-microbially active groups
CN111093595B (en) 2017-08-30 2023-06-06 诺比奥有限公司 Compositions and medical devices comprising antimicrobial particles

Also Published As

Publication number Publication date
JPH10139797A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
US5607858A (en) Peptide amides, processes for the preparation thereof and agents containing these as fibrin/thrombin clotting inhibitors
CA1336080C (en) Peptide derivatives, a process for the preparation thereof, and the use thereof
CA1230069A (en) Modified protease inhibitors, process for their preparation, and pharmaceutical compositions prepared therefrom
JP3828214B2 (en) Peptides and their salts
Roubini et al. Pseudopeptide analogs of substance P and leucine enkephalinamide containing the. psi.(methyleneoxy) modification: synthesis and biological activity
JP3274225B2 (en) Amino acid derivatives and their uses
US5624900A (en) Peptide or its salts
EP0426857A1 (en) Peptide and adsorbent comprising same immobilized on carrier
JP3862361B2 (en) Medical dressings and novel peptides used therefor
JP2967956B2 (en) Peptide or its salt
JPH0625288A (en) Peptide or its salt
MXPA04007170A (en) Synthetic peptides and uses thereof for the prevention and therapy of cancer invasion and metastasis.
JPH0952900A (en) Novel peptide derivative usable as zinc endopeptidase 24-15 inhibitor
JPS6121239B2 (en)
US4389342A (en) Synthetic hormone-like peptides and method for their synthesis
JPH05306296A (en) Fish-derived peptide and its production
JPH04221394A (en) Peptide lipid
JP4421041B2 (en) Peptide and adsorbent on which the peptide is immobilized
JP3376592B2 (en) Physiologically active peptides
JP2795747B2 (en) Peptide and adsorbent immobilized on a carrier
JP2649871B2 (en) Hydrophobic monomer, copolymer of said hydrophobic monomer and propenamide derivative monomer and use thereof
NL8620072A (en) N-Formyl peptide prodn. - from N-formyl cpd. and protected amino acid in presence of protease enzyme
JPH0720991B2 (en) Novel peptides and their uses
WO1990010704A1 (en) A process for producing pentapeptides and intermediates for use in the synthesis
JPH05500962A (en) Hexapeptide with sulfate ester group

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees