JP3827228B2 - Polluted water treatment method - Google Patents

Polluted water treatment method Download PDF

Info

Publication number
JP3827228B2
JP3827228B2 JP2002378421A JP2002378421A JP3827228B2 JP 3827228 B2 JP3827228 B2 JP 3827228B2 JP 2002378421 A JP2002378421 A JP 2002378421A JP 2002378421 A JP2002378421 A JP 2002378421A JP 3827228 B2 JP3827228 B2 JP 3827228B2
Authority
JP
Japan
Prior art keywords
solid
water
treated
water tank
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002378421A
Other languages
Japanese (ja)
Other versions
JP2004209306A (en
Inventor
昭 中林
浩三 冨永
崇 越智
真由美 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2002378421A priority Critical patent/JP3827228B2/en
Publication of JP2004209306A publication Critical patent/JP2004209306A/en
Application granted granted Critical
Publication of JP3827228B2 publication Critical patent/JP3827228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Cyclones (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚濁水中の汚濁物質を分離除去する汚濁水の処理方法に関し、特に、降雨時に合流式下水道から処理設備に大量に流入する汚濁水の処理方法に関する。
【0002】
【従来の技術】
下水道には、雨水と汚水とを別の管渠で処理設備へ排水するように構成されている分流式下水道と、同一の管渠で処理設備へ送水する合流式下水道とがある。合流式下水道は管渠が一系統で済み、施工が容易で安価であることから、下水道設備の急速な普及が進んだ明治後期から昭和前期に大都市を中心に自治体に多く採用されており、現在広く普及している。この合流式下水道は雨天時に処理設備に汚水と雨水とが混合した多量の汚濁水が流れ込むことがあり、処理設備ではこのような降雨時には通常の処理経路の他に通常の処理経路の許容量を超えた分の汚濁水を、前記通常の処理経路とは別経路に引き込み未処理もしくは目の粗いスクリーンや沈殿処理等の簡易処理で放流する別の処理経路を用意している。(以下、通常の処理経路の許容量を超えたことにより、他の処理経路に引き込まれる分の汚濁水を越流水という。)
【0003】
上記のように越流水の処理が簡易処理のみで行われている理由の一つには、越流水は土砂等の大小の固形分を多く含むため濁度の高く、一度に大量に流れ込むため、目を細かいスクリーンでは目詰まりが生じ、また、貯留時間の長い処理では量的に処理しきれなくなるからである。しかし、簡易処理では、細かなプラスチック片や樹枝片等の微細固形物は当然除去できず、これらはそのまま放流される。また、生活下水等に起因する有害物もそのまま放流される。しかしながら、このような微細固形物あるいは有害物などの汚濁物質は、近隣あるいは下流の河川、湖沼、海域等の環境を考慮すれば、除去すべきであり、現実に除去処理が求められている。
【0004】
そこで近年、越流水等の汚濁水の処理に、円筒型水槽内に被処理水を引き込み、水槽内で渦流を発生させて固形分を水槽の中央下方方向に集めることで固液分離を図る渦流式固液分離装置(スワールともいう)を、利用することが試みられている。また、渦流式固液分離装置に越流水を流入させる前に凝集剤を添加して汚濁物質を凝集させることも行われている。このような渦流式固液分離装置を用いる処理方法は、渦流の利用により固液分離するため、被処理水の流れを妨げずに処理でき、原理的には大量に流入する越流水中の固形物を短時間で除去可能である。
【特許文献】
特表平10−504227
特開2002−18210
【0005】
【発明が解決しようとする課題】
しかしながら、上述のような渦流式固液分離装置を利用した従来処理方法には、越流水の汚濁度が降雨量や生活廃水の流入具合などにより刻々と変化するにもかかわらず、このような汚濁度や流量の変化に対応する技術がなかった。従って、次記のような弊害が生じている。すなわち、凝集剤を添加しても、ある時点では凝集剤が過度に添加されて添加剤が残存したまま放流されたり、またある時点では十分に汚濁物質の凝集がなされず固形物や有害物質の除去がなされないまま放流されたりするという事態が生じている。また、渦流式固液分離装置は、集めた固形分を水槽外へと除去する必要があるが適当な時間に水槽外へ除去しない場合には、凝集剤の添加により形成されたフロックが渦流により崩壊して微細固形物や有害物質が除去されずに放流されることがある。
【0006】
そこで、本発明の主たる課題は、先に述べた汚濁度の変化に対応して処理する技術を確立し、越流水のように汚濁度が高い汚濁水から短時間でかつ効果的に汚濁物質の分離除去ができる汚濁水の処理方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決した本発明およびその作用効果は次記のとおりである。
<請求項1記載の発明>
汚濁水を、夾雑物を除去する第1の固液分離手段、第1の固液分離手段で処理された被処理水に凝集剤を添加して被処理水中の汚濁物質を凝集させる凝集剤添加手段、前記凝集剤添加手段で処理された被処理水を清澄分と固形分とに分離する第2の固液分離手段の順に通して、前記汚濁水中の汚濁物質を除去する汚濁水の処理方法であって、
少なくとも前記第2の固液分離手段が、円筒型水槽内に被処理水を前記水槽の接線方向に沿って送入し、前記水槽内で渦流を発生させて固形分を前記水槽の中央下部に集め、この集めた固形分を水槽外に引抜いて固液分離する渦流式固液分離装置であり、かつ、
前記第1の固液分離手段で処理された被処理水の汚濁度および流量を測定し、この測定値に応じて前記凝集剤添加手段における凝集剤の添加量を決定し、
さらに、前記円筒型水槽から固形分を間欠的に引抜き、その一回の引抜き量および引抜き頻度を、前記第1の固液分離手段で処理され前記凝集剤添加手段に流入する被処理水の汚濁度および流量の測定値に応じて決定する汚濁水の処理方法。
【0008】
<請求項2記載の発明>
前記渦流式固液分離装置が、円筒型水槽の内部に円筒型スクリーンが縦向きに配置され、この円筒型スクリーン内に被処理水を前記スクリーンの接線方向に沿って送入し、前記スクリーン内で渦流を発生させて清澄分を前記スクリーンを通して槽外に送り出しつつ前記固形分を水槽の中央下部に集め、この集めた固形分を水槽外に引抜くものである請求項1記載の汚濁水の処理方法。
【0010】
(作用効果)
第1の固液分離手段で夾雑物の除去を行うことにより、後段の凝集剤添加手段において夾雑物の凝集に必要となる凝集剤や凝集時間が不必要になり、凝集剤の添加量が削減されるとともに汚濁物の凝集効果が高まる。また、夾雑物が除去されることにより、第2の固液分離手段において、夾雑物除去の負担が軽減され、凝集された汚濁物に適した固液分離手段の設計が可能となる。
【0011】
一方、前記第1の固液分離手段で処理された被処理水の汚濁度および流量を測定し、この測定値に応じて前記凝集剤添加手段における凝集剤の添加量を決定することにより、過度の凝集剤の添加によって生ずるコストが削減され、また、未反応凝集剤が放流されることが防止される。さらに、凝集剤の添加量が少ないために、汚濁物質が除去されないということもなくなる。
【0012】
他方、少なくとも前記第2の固液分離手段を渦流式固液分離装置とするので、バースクリーンのスクリーン装置では捕捉が困難であった、凝集剤により凝集されてフロックとなった有害物質を好適に除去できる。
【0013】
ここで、固液分離手段に用いる固液分離装置を、円筒型水槽の内部に円筒型スクリーンが縦向きに配置されているものとして、前記スクリーン内で渦流を発生させると、清澄分がスクリーンを通して槽外に送り出され構成となるため、より短時間で清澄分と固形分の分離がなされる。特に、第2の固液手段に円筒型スクリーンが配置された渦流式固液分装置を用いた場合には、凝集剤の添加により形成されたフロックが崩壊しずらくなり、有害物質等の除去効率が高まる。
【0014】
他方、渦流式固液分離装置では、ある程度までは時間に応じて固形分が濃縮される。固形分を水槽から間欠的に引抜くこととすると、濃縮された固形分を取り出すことが可能となる。そして、本発明では、その一回の引抜き量および引抜き頻度を、前記第1の固液分離手段で処理され前記凝集剤添加手段に流入する被処理水の汚濁度および流量の測定値に応じて決定することとするので、最も濃縮された時点あるいはそれに近い時点で固形分の引抜きを行うことができる。
【0015】
してみると、汚濁水の汚濁度や流量が変化しても、その変化に対応した処理が確実になされることとなり、越流水等の汚濁水中の有害物質等を確実に低減することが可能となる。
【0016】
【発明の実施の形態】
次いで、本発明の実施の形態として越流水の処理方法を例に以下に詳述する。
本実施に形態では、図1に示されるように、越流水を、第1の固液分離手段1、凝集剤添加手段2、第2の固液分離手段3の順に通して処理する。そして、少なくとも前記第2の固液分離手段2は、円筒型水槽内に被処理水を前記水槽の接線方向に沿って送入し、前記水槽内で渦流を発生させて固形分を前記水槽の中央下部に集めることで清澄分と固形分と分離し、清澄分を水槽外に送りだすとともに、集めた固形分を水槽下部に設けられた引抜き弁の開閉およびポンプ手段により水槽外に引抜いて固液分離する渦流式固液分離装置(スワールとも言われる)とする。もちろん、第1の固液分離手段として渦流式固液分離装置を用いてもよい。
【0017】
以下、第1の固液分離手段、凝集剤添加手段、第2の固液分離手段に分けてさらに詳述する。
(第1の固液分離手段について)
前記第1の固液分離手段1では、越流水に含まれる夾雑物、例えばプラスチック片や樹枝片等、砂利等の粗い固形物の分離除去を行う。越流水を第1の固液分離手段1に導く方法は特に限定されない。従来既知のポンプ手段を用い導いてもよいし、処理設備の配管や管渠に傾斜を設けるなどして自然流下により導くこともできる。
【0018】
第1の固液分離手段1としては、夾雑物の除去が可能な固液分離装置であれば、特に限定されないが、越流水は年間60回程度の発生回数であり、しかも、天候という不定期に発生するものであることから、メンテナンスコスト等の維持費用の少ない固液分離装置が好適である。かかる好適な分離装置の例としては、渦流式固液分離装置やバースクリーン等が挙げられる。渦流式固液分離装置は、バースクリーンよりも、小さい夾雑物、例えば砂利や土砂等もある程度まで除去することができるのでより望ましい。
【0019】
第1の固液分離手段1に渦流式固液分離装置を用いる場合には、集めた固形分を円筒型水槽外へ効率よく引抜くのがよい。渦流式固液分離装置では、固形分の引抜きは、水槽下部に設けられている引抜き弁の開閉やこれに接続する吸引ポンプの運転により行われる。また、渦流式固液分離装置ではある程度の時間、被処理水を円筒型水槽内で旋回時間に応じて中央下部に固形分が集まってくる。固形分の集まり具合は、濁度が高ければ、早く固形分が集まるし、流量が多くても固形分は早く集まる。このため、固液分離手段に流入する越流水の濁度および流量から把握できる。従って、第1の固液分離手段1に越流水を導く管渠や配管の途中に従来既知の濁度計および流量計を設け、濁度および流量を測定し、この測定値に応じて、引抜きの頻度(単位時間あたりの開閉弁の開き回数)や1回の引抜き量(1回あたりの開閉弁の開き時間および吸引ポンプの吸引能力により定まる固形分の引抜き量)を制御すれば、効率よく固形分を引抜くことができる。具体的には、図3に示されるように、濁度の測定値と流量の測定値との乗算値を算出して判断値とし、この判断値に応じて開閉弁および吸引ポンプの運転を制御する。制御は、例えば、一回の引抜き弁の開き時間をX秒に設定して、上記判断値が8000以上であれば、引抜き弁を30分に3回開くとともに吸引ポンプを作動させ、6000〜8000であれば、引抜き弁を40分に3回開くとともに吸引ポンプを作動させ、4000〜6000であれば、引抜き弁を54分に3回開くとともに吸引ポンプを作動させ、2000〜4000であれば、引抜き弁を60分に2回開くとともに吸引ポンプを作動させ、2000未満であれば、引抜き弁を180分に2回開くとともに吸引ポンプを作動させるように行う。もちろん、上記数値は、あくまでも例であり、実際の具体的な判断値とそれに対応する引抜き頻度は、用いる吸引ポンプの吸引能力、渦流式固液分離装置の処理量等により適宜変更する。このように乗算値(判断値)に応じた段階的な引抜き頻度の制御を行えば、第1の固液分離手段に流入する越流水の固形物量や流量が変化しても、その変化に応じた最適な夾雑物の除去がなされる。
【0020】
(凝集剤添加手段について)
上記のように第1の固液分離手段1において、越流水中の夾雑物を除去処理したならば、次いで、凝集剤添加手段2に導き凝集剤を添加して越流水中の汚濁物質や第1の固液分離手段1で除去できなかった微細な固形物等を凝集させてフロックを形成する。凝集剤添加手段2へ被処理水を導く方法は特に限定されない。従来既知のポンプ手段等を用いて導けばよい。
【0021】
凝集剤添加手段2としては、薬注ポンプ20および凝集槽21で構成される凝集剤添加設備等を用いることができる。その他、凝集槽に代えて急速混和水槽を用いた凝集剤添加設備や凝集槽に加えてフロック形成槽を設けた凝集剤添加設備やスタティックミキサー等の従来既知の凝集剤添加設備あるいは添加装置を用いることができる。
【0022】
凝集剤の種類は、無機凝集剤、高分子凝集剤等の従来既知の凝集剤のなかから適宜選択することができる。具体例としては、PAC、硫酸バンド、ポリ鉄、硫酸第一鉄、塩化第2鉄、カチオン系ポリマー、両性ポリマー、アニオン系ポリマーなどが挙げられる。これらは単体であるいは複数組み合わせて使用してもよい。第2の固液分離手段2が渦流式固液分離装置であることを考慮すると、PAC、カチオン系ポリマー、が特に好適である。
【0023】
凝集剤の添加量は、前記第1の固液分離手段で処理された被処理水の濁度、COD、BOD,TOC、TOD等の汚濁度および凝集剤添加手段に流入する被処理水の流量から決定する。流量および汚濁度の測定は、図1に示すように凝集剤添加手段2に被処理水を導く管渠や配管の途中に従来既知の流量計4と、濁度計、COD計、BOD計、TOC計、TOD計等の汚濁度計5とを設けて測定すればよい。なお、汚濁度は、ここに掲げたすべての測定項目について測定しなければならないわけではなく、上記に掲げる測定項目のなかから少なくとも一つ以上測定すればよい。また、測定技術や測定装置は従来既知の技術によることができる。
【0024】
凝集剤の添加量制御は、例えば、薬注ポンプを用いて凝集剤を凝集槽に添加するように構成されている凝集剤添加手段であれば、薬注ポンプの吐出量を変化させる制御したり、薬注ポンプから凝集槽へ凝集剤を送る送り管の途中に弁を設け、この弁の開き具合を制御することにより行うことができる。制御は、例えば、第1の固液分離手段で夾雑物除去がなされた処理水を凝集槽に導く管渠の途中に測定装置を設けて、流れ込む流量と汚濁度との乗算値を演算する。演算値は、流量の測定値と濁度の測定値との演算値、流量の測定値とCOD値との演算値、流量の測定値と濁度の測定値とCOD値との測定値など、適宜選択することができる。そしてかかる演算値に応じて薬注ポンプの吐出量等を連続的あるいは段階的に変化させる制御をする。実際の具体的な判断値とそれに対応する薬注ポンプの吐出量との関係は、用いる凝集槽の容量等により適宜変更する。このように乗算値(判断値)に応じた添加剤の添加量制御を行えば、越流水の固形物量や流量が変化しても、その変化に応じた最適な凝集剤添加量とすることができ、過度の凝集剤添加がされる、あるいは、凝集剤の添加量が少ないために汚濁物質が凝集されないという事態がなくなる。
【0025】
(第2の固液分離手段について)
凝集剤添加手段2で凝集剤を添加し、汚濁物質等を凝集させてフロック形成したならば、次いで、かかる第2の固液分離手段3に導き、凝集剤添加手段2において凝集させた凝集物および被処理水中に残存する固形物の分離除去を行う。本発明においては、この第2の固液分離手段2は渦流式固液分離装置を用いる。渦流式固液分離装置は、上述の円筒型水槽内に被処理水を前記水槽の接線方向に沿って送入し、前記水槽内で渦流を発生させて固形分を前記水槽の中央下部に集め、この集めた固形分を水槽外に引抜いて固液分離するものが使用できる。より好適には、渦流式固液分離装置は、図3および図4に示されるように、円筒型水槽30の内部に円筒型スクリーン31が縦向きに配置され、この円筒型スクリーン31内に被処理水を前記スクリーン31の接線方向に沿って送入するタイプのものとする。この図3および図4に示される渦流式固液分離装置は、前記スクリーン31内で渦流を発生させて清澄分を前記スクリーン31を通して槽外に送り出しつつ前記固形分を水槽の中央下部30Dに集め、この集めた固形分を水槽外に引抜く。従って、凝集剤の添加によって形成されたフロックが崩壊しずらく、固形分が集まるまでの時間が早いという利点がある。このような円筒型スクリーン31を配置した渦流式固液分離装置を用いるならば、円筒型スクリーンを図5に示すように、スクリーン31の目が、スクリーン31の内外方向で所定の角度を有するように設けられ、その目の円筒内側開口部Miがスクリーン31の内側Siの渦流Fiの流れ方向に逆らわない方向に向いており、円筒外側開口部Moはスクリーン31の内側Siの渦流Fiの流れ方向と反対の流れを生じさせるように向いているスクリーン31とするのが望ましい。さらには、図示例のように、スクリーン31の渦流Fiに逆らうように向かっている面Aが円弧面に形成されているのが望ましい。かかるスクリーン31は、スクリーン31の外側Soに、内側Siに生ずる渦流Fiと、流れ方向が反対の流れFoが生じ、清澄水を効果的に槽外に送り出すことができるとともに、特に繊維状固形物がスクリーンに付着しずらく、さらにフロックの崩壊防止性にも優れる。
【0026】
固形分の引抜き抜きについて、水槽下部に設けられている引抜き弁の開閉やこれに接続する吸引ポンプの運転により間欠的に行うのが望ましいことは、先の(第1の固液手段について)の欄で述べたのとおりであり、第2の固液分離手段においてもこのようにするのが望ましい。第2の固液分離手段における固形分の引抜きについて特徴的なところは、第2の固液分離手段では、引抜き頻度等は、固液分離手段に流入する越流水の濁度および流量の測定値に応じて決定するのではなく、その前段の凝集剤添加手段に流入する汚濁度および流量により決定するのが望ましいということである。これは、凝集剤添加手段を経た後であると、清澄分とフロックとの混合液となっているため正確な濁度の測定が難しいことや、凝集されていない有害物質等は渦流式固液分離装置では分離除去できないため測定してもこの測定値に応じた処理を行うことができない等が理由である。反対に、凝集剤添加手段に流入する被処理水の流量および汚濁度等に応じても凝集剤の添加量との兼ね合いで概ね固形分化されるフロック量が把握できるため、これに基づいて引抜き量を決定することがようにしたほうが効果的な引抜きができる。また、測定装置等を凝集剤の添加量の決定に用いているものを用いれば、第2の固液分離手段における引抜き頻度等を決定するために別途、測定計を設ける必要がなくコスト削減にもなる。また、かかるフロック化の把握が可能であることから、濁度のみならずTOCやCODに基づく制御も行えるようになる。
【0027】
制御の具体例を、前記凝集剤手段の薬注ポンプの制御と合わせて図6に示す。まず、凝集剤添加手段でも述べたように流量と汚濁度との乗算値を演算する。そして、この乗算値を判断値とし、この判断値に応じて、薬注ポンプの吐出量と引抜き弁の開閉を制御する。制御は、例えば、一回の引抜き弁の開き時間をX秒に設定して、上記判断値が8000以上であれば、薬注ポンプの吐出量を100%にするとともに、引抜き弁を30分に3回開くとともに吸引ポンプを作動させ、上記判断値が6000〜8000であれば、薬注ポンプの吐出量を80%にするとともに、引抜き弁を40分に3回開くとともに吸引ポンプを作動させ、上記判断値が4000〜6000であれば、薬注ポンプの吐出量を60%にするとともに、引抜き弁を54分に3回開くとともに吸引ポンプを作動させ、上記判断値が2000〜4000であれば、薬注ポンプの吐出量を40%にするとともに、引抜き弁を60分に2回開くとともに吸引ポンプを作動させ、上記判断値が2000未満であれば、薬注ポンプの吐出量を20%にするとともに、引抜き弁を180分に2回開くとともに吸引ポンプを作動させる。数値は例であり、実際の具体的な判断値とそれに対応する引抜き回数は、用いる吸引ポンプの吸引能力、渦流式固液分離装置の処理量等により適宜変更する。このように乗算値(判断値)に応じて薬注ポンプの吐出量と引抜き弁の制御を行えば、越流水中の汚濁物質の変化、さらには第1の固液分離手段後の夾雑物除去率等の変化があっても、第2の固液分離手段においては、その影響を受けずに被処理水の汚濁物質の分離除去が好適に行われる。
【0028】
(その他)
以上の各処理を経て、分離された清澄水は、従来と同様の処理系外に放流するか、あるいは、必要に応じて放流せずにその他の処理設備に送り、他の処理を施し、その後に放流する。一方、回収した固形分については、汚泥として脱水等の処理を行うなど従来技術に従って処理する。
【0029】
なお、上記実施の形態は、降雨時における合流式下水道からの越流水の処理を例に述べたが、本発明の処理方法に処理対象は、越流水のみに限定されるわけではなく、分流式下水道から下水処理設備に送られる下水、雨水、あるいは河川水や産業廃水等、汚濁物質を含み時間や状況とともにその汚濁度が変化する汚濁水全般を対象とする。
【0030】
【発明の効果】
以上詳述のとおり、本発明によれば、越流水のように、その流量や汚濁度が刻々と変化するような汚濁水を、短時間でかつ効果的に処理できる処理方法が提供される。
【図面の簡単な説明】
【図1】本実施の形態にかかる越流水の処理方法の概略を示すフロー図である。
【図2】第1の渦流式固液分離装置における、越流水の濁度および流量と引抜き頻度との関係の例を示す図である。
【図3】渦流式固液分離装置の概略を示す斜視図である。
【図4】その渦流式固液分離装置の概略を示す断面図である。
【図5】そのスクリーンの一部拡大断面図である。
【図6】第2の渦流式固液分離装置における、越流水の濁度および流量と引抜き頻度との関係の例を示す図である。
【符号の説明】
1…第1の固液分離手段、2…凝集剤添加手段、3…第2の固液分離手段、4…流量計、5…汚濁度計、20…凝集剤添加装置、21…凝集槽、30…円筒型水槽、31…円筒型スクリーン、Fi…円筒型スクリーン内側の渦流、Fo…円筒型スクリーン外側の渦流、Si…円筒型スクリーンの内側、So…円筒型スクリーンの外側、Mo…円筒外側開口部、Mi…円筒内側開口部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating polluted water that separates and removes pollutants in polluted water, and more particularly, to a method for treating polluted water that flows into a treatment facility in a large amount from a combined sewer during rainfall.
[0002]
[Prior art]
There are two types of sewerage: a sewer sewer that is configured to drain rainwater and sewage to the treatment facility using separate pipes, and a combined sewer that supplies water to the treatment equipment using the same pipe. The combined sewer system has been adopted by local governments mainly in large cities from the late Meiji period to the early Showa era, as the sewerage system has only one system, is easy to construct, and is inexpensive. Currently widely used. In this combined sewer, a large amount of contaminated water mixed with sewage and rainwater may flow into the treatment facility during rainy weather, and the treatment facility will allow the normal treatment route capacity in addition to the normal treatment route during such rain. A separate treatment path is provided in which the excess amount of contaminated water is drawn into a separate path from the normal treatment path and discharged by a simple process such as an untreated or coarse screen or a sedimentation process. (Hereinafter, the polluted water that is drawn into another processing path when it exceeds the allowable capacity of the normal processing path is called overflow water.)
[0003]
One of the reasons why the overflow water is treated only by simple treatment as described above is because the overflow water contains a large amount of solids such as earth and sand, so it is highly turbid and flows in a large amount at once. This is because clogging occurs with a fine screen, and processing with a long storage time cannot be performed quantitatively. However, with simple processing, fine solids such as fine plastic pieces and dendritic pieces cannot be removed, and these are discharged as they are. In addition, harmful substances caused by domestic sewage and the like are also released. However, such pollutants such as fine solids or harmful substances should be removed in consideration of the environment such as rivers, lakes, and marine areas in the vicinity or downstream, and a removal process is actually required.
[0004]
Therefore, in recent years, eddy currents that separate solids and liquids by collecting the water to be treated into cylindrical water tanks and generating eddy currents in the water tanks to collect solids in the lower direction of the center of the water tank. An attempt has been made to use a solid-liquid separator (also referred to as a swirl). In addition, a flocculant is added to agglomerate the pollutant before the overflow water flows into the vortex solid-liquid separator. Since the treatment method using such a vortex type solid-liquid separation device separates the solid and liquid by using the vortex flow, it can be processed without hindering the flow of the water to be treated. Things can be removed in a short time.
[Patent Literature]
Special table flat 10-504227
JP2002-18210
[0005]
[Problems to be solved by the invention]
However, in the conventional treatment method using the vortex type solid-liquid separation apparatus as described above, such pollution is caused even though the pollution degree of overflow water changes every moment depending on the amount of rainfall and the inflow of domestic wastewater. There was no technology to cope with changes in temperature and flow rate. Therefore, the following bad effects have occurred. That is, even when a flocculant is added, the flocculant is excessively added at a certain point and discharged while the additive remains. There has been a situation where it is released without being removed. In addition, the vortex type solid-liquid separation device needs to remove the collected solids out of the water tank, but if it is not removed outside the water tank at an appropriate time, the floc formed by the addition of the flocculant is caused by the eddy current. It may collapse and be released without removing fine solids and harmful substances.
[0006]
Therefore, the main problem of the present invention is to establish a technique for processing in response to the change in the pollution level described above, and to effectively and effectively remove pollutants from a polluted water having a high pollution level such as overflow water in a short time. The object is to provide a method for treating polluted water that can be separated and removed.
[0007]
[Means for Solving the Problems]
The present invention that has solved the above-described problems and the effects thereof are as follows.
<Invention of Claim 1>
The first solid-liquid separation means for removing contaminants from the contaminated water, the addition of a flocculant to agglomerate the pollutants in the treated water by adding a flocculant to the water to be treated treated by the first solid-liquid separation means Means for removing polluted water in the polluted water through the second solid-liquid separation means for separating the treated water treated by the flocculant adding means into a clarified portion and a solid content in this order Because
At least the second solid-liquid separation means feeds the water to be treated into the cylindrical water tank along the tangential direction of the water tank, generates a vortex in the water tank, and causes the solid content to enter the lower center of the water tank. A vortex-type solid-liquid separator that collects and collects the collected solids outside the water tank and separates them into solid and liquid, and
Measure the turbidity and flow rate of the treated water treated by the first solid-liquid separation means, and determine the addition amount of the flocculant in the flocculant addition means according to this measured value,
Further, the solid content is intermittently withdrawn from the cylindrical water tank, and the amount of withdrawal and the frequency of withdrawal are determined by the first solid-liquid separation means and the water to be treated flowing into the flocculant addition means. A method for treating polluted water that is determined according to the measured value of the degree and flow rate.
[0008]
<Invention of Claim 2>
In the vortex-type solid-liquid separator, a cylindrical screen is disposed vertically in a cylindrical water tank, and water to be treated is fed into the cylindrical screen along the tangential direction of the screen. 2. The polluted water according to claim 1, wherein the solid content is collected at the center lower part of the water tank while generating a vortex flow through the screen and sending out the clarified content to the outside of the water tank, and the collected solid content is drawn out of the water tank. Processing method.
[0010]
(Function and effect)
By removing the contaminants by the first solid-liquid separation means, the flocculant and the aggregation time necessary for the aggregation of the contaminants are unnecessary in the subsequent flocculant addition means, and the amount of the flocculant added is reduced. As a result, the coagulation effect of the pollutants is increased. Further, by removing impurities, the burden of removing impurities in the second solid-liquid separation means is reduced, and it is possible to design a solid-liquid separation means suitable for the aggregated contaminants.
[0011]
On the other hand, by measuring the turbidity and flow rate of the water to be treated treated by the first solid-liquid separation means, and determining the addition amount of the flocculant in the flocculant addition means according to this measured value, The cost caused by the addition of the flocculant is reduced, and the unreacted flocculant is prevented from being discharged. Furthermore, since the amount of the flocculant added is small, the contaminants are not removed.
[0012]
On the other hand, since at least the second solid-liquid separation means is a vortex-type solid-liquid separation device, it is preferable to remove harmful substances that have been aggregated by a flocculant and become a flock, which is difficult to capture with a screen device of a bar screen. Can be removed.
[0013]
Here, the solid-liquid separation device used for the solid-liquid separation means assumes that the cylindrical screen is arranged vertically in the cylindrical water tank, and when the vortex is generated in the screen, the clarified portion passes through the screen. Since it is sent out of the tank and becomes a configuration, the clarified component and the solid component are separated in a shorter time. In particular, when a vortex type solid-liquid fractionation device in which a cylindrical screen is arranged in the second solid-liquid means, flocs formed by adding a flocculant are difficult to collapse, and removal of harmful substances, etc. Increases efficiency.
[0014]
On the other hand, in the vortex type solid-liquid separator, the solid content is concentrated according to time to some extent. If the solid content is intermittently extracted from the water tank, the concentrated solid content can be taken out. In the present invention, the amount of withdrawal and the frequency of withdrawal are determined according to the measured values of the turbidity and flow rate of the water to be treated which is treated by the first solid-liquid separation means and flows into the flocculant addition means. Since it is determined, the solid content can be extracted at the time of the most concentrated time or at a time close thereto.
[0015]
As a result, even if the pollution level and flow rate of the polluted water changes, the treatment corresponding to the change is surely performed, and it is possible to reliably reduce harmful substances in the polluted water such as overflow water. It becomes.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, the method for treating overflow water will be described in detail below as an embodiment of the present invention.
In the present embodiment, as shown in FIG. 1, the overflow water is processed through the first solid-liquid separation means 1, the flocculant addition means 2, and the second solid-liquid separation means 3 in this order. Then, at least the second solid-liquid separation means 2 feeds the water to be treated into the cylindrical water tank along the tangential direction of the water tank, generates a vortex in the water tank, and removes the solid content of the water tank. The liquid is separated from the clarified portion and the solid content by collecting at the center lower part, and the clarified portion is sent out of the water tank, and the collected solid content is drawn out of the water tank by opening and closing the extraction valve provided at the lower part of the water tank and pump means. A vortex-type solid-liquid separator (also called swirl) is used. Of course, a vortex solid-liquid separation device may be used as the first solid-liquid separation means.
[0017]
Hereinafter, the first solid-liquid separation means, the flocculant addition means, and the second solid-liquid separation means will be described in detail.
(First solid-liquid separation means)
The first solid-liquid separation means 1 separates and removes impurities such as gravel such as plastic pieces and tree branch pieces contained in the overflow water. A method for guiding the overflow water to the first solid-liquid separation means 1 is not particularly limited. It may be guided using a conventionally known pump means, or may be guided by natural flow, for example, by providing an inclination in piping or pipes of processing equipment.
[0018]
The first solid-liquid separation means 1 is not particularly limited as long as it is a solid-liquid separation apparatus capable of removing impurities, but overflow water is generated about 60 times a year, and the weather is irregular. Therefore, a solid-liquid separation device with a low maintenance cost such as a maintenance cost is preferable. Examples of such a suitable separation device include a vortex solid-liquid separation device and a bar screen. The vortex type solid-liquid separator is more desirable than the bar screen because it can remove small impurities such as gravel and earth and sand to some extent.
[0019]
When a vortex type solid-liquid separator is used as the first solid-liquid separator 1, it is preferable to efficiently extract the collected solid content outside the cylindrical water tank. In the vortex type solid-liquid separator, the extraction of the solid content is performed by opening and closing the extraction valve provided in the lower part of the water tank or by operating a suction pump connected thereto. Further, in the vortex type solid-liquid separator, the solid matter is collected at the lower center of the water to be treated in the cylindrical water tank for a certain period of time according to the swirling time. As for the solid content, if the turbidity is high, the solid content is collected quickly, and even if the flow rate is large, the solid content is collected quickly. For this reason, it can grasp | ascertain from the turbidity and flow volume of the overflow water which flows into a solid-liquid separation means. Therefore, a conventionally known turbidity meter and flow meter are provided in the middle of the pipe culvert and pipe for guiding the overflow water to the first solid-liquid separation means 1, and the turbidity and flow rate are measured. If the frequency (the number of times of opening / closing of the on-off valve per unit time) and the amount of drawing once (the amount of opening of the on-off valve per time and the amount of solid content determined by the suction capacity of the suction pump) are controlled, it will be efficient Solids can be extracted. Specifically, as shown in FIG. 3, a multiplication value of the measured value of turbidity and the measured value of flow rate is calculated as a judgment value, and the operation of the on-off valve and the suction pump is controlled according to this judgment value. To do. For example, when the opening time of one extraction valve is set to X seconds and the determination value is 8000 or more, the control opens the extraction valve three times in 30 minutes and operates the suction pump. If so, open the extraction valve three times in 40 minutes and operate the suction pump. If it is 4000-6000, open the extraction valve three times in 54 minutes and operate the suction pump. If it is 2000-4000, If the drawing valve is opened twice in 60 minutes and the suction pump is operated, and less than 2000, the drawing valve is opened twice in 180 minutes and the suction pump is operated. Of course, the above numerical values are merely examples, and actual specific judgment values and the corresponding drawing frequency are appropriately changed according to the suction capacity of the suction pump used, the throughput of the vortex solid-liquid separator, and the like. In this way, if the control of the step-by-step drawing frequency according to the multiplication value (judgment value) is performed, even if the amount of solids and the flow rate of the overflow water flowing into the first solid-liquid separation means change, the change depends on the change. Optimum removal of impurities is made.
[0020]
(About coagulant addition means)
As described above, in the first solid-liquid separation means 1, if the contaminants in the overflow water are removed, then the flocculant addition means 2 leads to the addition of the flocculant and the pollutants in the overflow water and the second Flocks are formed by agglomerating fine solids that could not be removed by the solid-liquid separation means 1. The method for introducing the water to be treated to the flocculant adding means 2 is not particularly limited. What is necessary is just to guide | lead using a conventionally well-known pump means.
[0021]
As the flocculant addition means 2, a flocculant addition facility composed of a medicine pump 20 and a flocculent tank 21 can be used. Other conventional coagulant addition equipment or addition equipment such as a flocculant addition equipment using a rapid mixing water tank instead of the coagulation tank, a flocculant addition equipment provided with a flock formation tank in addition to a coagulation tank, or a static mixer are used. be able to.
[0022]
The type of the flocculant can be appropriately selected from conventionally known flocculants such as inorganic flocculants and polymer flocculants. Specific examples include PAC, sulfate band, polyiron, ferrous sulfate, ferric chloride, cationic polymer, amphoteric polymer, and anionic polymer. These may be used alone or in combination. Considering that the second solid-liquid separation means 2 is an eddy current solid-liquid separation device, PAC and cationic polymer are particularly suitable.
[0023]
The amount of flocculant added is the turbidity of the treated water treated by the first solid-liquid separation means, the turbidity of COD, BOD, TOC, TOD, etc., and the flow rate of the treated water flowing into the flocculant adding means. Determine from. As shown in FIG. 1, the flow rate and the turbidity are measured in the middle of pipes and pipes for introducing the water to be treated to the coagulant adding means 2, a conventionally known flow meter 4, a turbidimeter, a COD meter, a BOD meter, What is necessary is just to provide and measure the turbidity meter 5 such as a TOC meter, a TOD meter or the like. The degree of contamination does not have to be measured for all measurement items listed here, but may be measured from at least one of the measurement items listed above. Moreover, a measurement technique and a measurement apparatus can be based on a conventionally known technique.
[0024]
The addition amount control of the flocculant is, for example, a control to change the discharge amount of the drug injection pump if the flocculant addition means is configured to add the flocculant to the aggregation tank using the drug injection pump. This can be done by providing a valve in the middle of the feed pipe for sending the coagulant from the chemical injection pump to the coagulation tank and controlling the degree of opening of the valve. In the control, for example, a measuring device is provided in the middle of the pipe rod that guides the treated water from which the contaminants have been removed by the first solid-liquid separation means to the coagulation tank, and the multiplication value of the flow rate flowing in and the pollution degree is calculated. The calculated value is a calculated value of the measured value of the flow rate and the measured value of the turbidity, a calculated value of the measured value of the flow rate and the COD value, a measured value of the flow rate, the measured value of the turbidity and the measured value of the COD value, etc. It can be selected appropriately. And the control which changes the discharge amount of a chemical injection pump etc. continuously or in steps according to this calculated value is performed. The relationship between the actual specific judgment value and the discharge amount of the chemical injection pump corresponding thereto is appropriately changed according to the capacity of the coagulation tank used. If the additive amount control according to the multiplication value (judgment value) is performed in this way, even if the solids amount or flow rate of the overflow water changes, the optimum flocculant addition amount corresponding to the change can be obtained. This eliminates the situation where an excessive flocculant is added, or because the amount of flocculant added is small, the pollutant is not agglomerated.
[0025]
(About the second solid-liquid separation means)
If the flocculant is added by the flocculant adding means 2 to aggregate the pollutants and flocs are formed, then the flocculant aggregated in the flocculant adding means 2 is led to the second solid-liquid separation means 3. The solid matter remaining in the water to be treated is separated and removed. In the present invention, the second solid-liquid separation means 2 uses a vortex solid-liquid separation device. The vortex type solid-liquid separation device feeds water to be treated into the cylindrical water tank along the tangential direction of the water tank, generates a vortex flow in the water tank, and collects solids at the lower center of the water tank. The collected solid content can be extracted out of the water tank and separated into solid and liquid. More preferably, in the vortex type solid-liquid separator, as shown in FIGS. 3 and 4, a cylindrical screen 31 is disposed vertically in a cylindrical water tank 30, and the cylindrical screen 31 is covered with the cylindrical screen 31. The treated water is of a type that feeds along the tangential direction of the screen 31. The vortex type solid-liquid separation device shown in FIGS. 3 and 4 generates a vortex in the screen 31 and sends the clarified portion out of the tank through the screen 31 while collecting the solid content in the central lower part 30D of the water tank. The collected solid content is drawn out of the water tank. Therefore, there is an advantage that the floc formed by the addition of the flocculant is difficult to disintegrate and the time until the solid content is collected is fast. If such a vortex type solid-liquid separation device having the cylindrical screen 31 is used, the screen of the cylindrical screen has a predetermined angle in the inner and outer directions of the screen 31 as shown in FIG. The cylindrical inner opening Mi of the eye is directed in a direction that does not oppose the flow direction of the inner Si vortex Fi of the screen 31, and the cylindrical outer opening Mo is the flow direction of the inner Si vortex Fi of the screen 31. It is desirable that the screen 31 is oriented so as to generate a flow opposite to the above. Furthermore, as shown in the drawing, it is desirable that the surface A facing the vortex flow Fi of the screen 31 is formed as an arc surface. The screen 31 has a vortex flow Fi generated in the inner Si and a flow Fo opposite in the flow direction on the outer side So of the screen 31, and can effectively send clear water to the outside of the tank. Is difficult to adhere to the screen, and is also excellent in preventing flocs from collapsing.
[0026]
Regarding the extraction of the solid content, it is desirable to perform intermittently by opening and closing the extraction valve provided in the lower part of the water tank or by operating the suction pump connected thereto. As described in the column, it is desirable to do this also in the second solid-liquid separation means. What is characteristic about the extraction of the solid content in the second solid-liquid separation means is that, in the second solid-liquid separation means, the extraction frequency and the like are measured values of turbidity and flow rate of the overflow water flowing into the solid-liquid separation means. It is preferable to determine not by the flow rate but by the pollution level and flow rate flowing into the coagulant adding means in the preceding stage. This is because, after passing through the flocculant addition means, it is difficult to accurately measure turbidity because it is a mixture of clarified and floc. This is because the separation device cannot separate and remove, and even if it is measured, the process according to the measured value cannot be performed. On the other hand, the amount of flocs that are generally solidified in proportion to the amount of flocculant added can be grasped in accordance with the flow rate and pollution level of the water to be treated flowing into the flocculant addition means, and the drawing amount based on this It is possible to pull out more effectively if it is determined. In addition, if a measuring device or the like that is used to determine the amount of flocculant added is used, there is no need to provide a separate measuring instrument to determine the drawing frequency in the second solid-liquid separation means, thereby reducing costs. Also become. Further, since it is possible to grasp such flocking, control based on TOC and COD as well as turbidity can be performed.
[0027]
A specific example of the control is shown in FIG. 6 together with the control of the chemical injection pump of the flocculant means. First, as described in the flocculant addition means, a multiplication value of the flow rate and the turbidity is calculated. Then, the multiplication value is used as a judgment value, and the discharge amount of the chemical injection pump and the opening / closing of the extraction valve are controlled according to the judgment value. For example, when the opening time of one extraction valve is set to X seconds and the determination value is 8000 or more, the discharge amount of the chemical injection pump is set to 100% and the extraction valve is set to 30 minutes. Open the suction pump three times and operate the suction pump. If the above judgment value is 6000 to 8000, the discharge amount of the medicinal pump is set to 80% and the extraction valve is opened three times in 40 minutes and the suction pump is operated. If the judgment value is 4000 to 6000, the discharge amount of the chemical injection pump is set to 60%, the extraction valve is opened three times in 54 minutes and the suction pump is operated. If the judgment value is 2000 to 4000, When the discharge amount of the medicinal pump is 40%, the extraction valve is opened twice in 60 minutes and the suction pump is operated. If the above judgment value is less than 2000, the discharge amount of the medicinal pump is 20%. As well as, to operate the suction pump is opened twice pull valve 180 minutes. The numerical value is an example, and the actual specific judgment value and the number of extractions corresponding thereto are appropriately changed according to the suction capacity of the suction pump used, the throughput of the vortex-type solid-liquid separator, and the like. Thus, if the discharge amount of the chemical injection pump and the control of the extraction valve are controlled according to the multiplication value (judgment value), the change of the pollutant in the overflow water, and further the removal of contaminants after the first solid-liquid separation means Even if there is a change in the rate or the like, the second solid-liquid separation means suitably separates and removes the contaminants of the water to be treated without being affected by the influence.
[0028]
(Other)
The clarified water separated through each of the above treatments is discharged to the outside of the conventional treatment system, or sent to other treatment facilities without being discharged as necessary, and then subjected to other treatments. To be released. On the other hand, the collected solid content is treated according to conventional techniques such as dewatering as sludge.
[0029]
In addition, although the said embodiment described the example of the treatment of the overflow water from the combined sewer at the time of raining, the treatment object in the treatment method of the present invention is not limited to the overflow water alone, the diversion type Covers all polluted water that contains pollutants, such as sewage, rainwater, river water, industrial wastewater, etc., sent from the sewer to the sewage treatment facility and whose pollution level changes with time and conditions.
[0030]
【The invention's effect】
As described above in detail, according to the present invention, there is provided a treatment method capable of treating, in a short time and effectively, polluted water whose flow rate and pollution degree change every moment, such as overflow water.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an outline of a method for treating overflow water according to the present embodiment.
FIG. 2 is a diagram showing an example of the relationship between the turbidity and flow rate of overflow water and the extraction frequency in the first vortex type solid-liquid separator.
FIG. 3 is a perspective view showing an outline of a vortex solid-liquid separator.
FIG. 4 is a cross-sectional view showing an outline of the vortex type solid-liquid separator.
FIG. 5 is a partially enlarged sectional view of the screen.
FIG. 6 is a diagram showing an example of the relationship between the turbidity and flow rate of overflow water and the extraction frequency in the second vortex solid-liquid separator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 1st solid-liquid separation means, 2 ... Coagulant addition means, 3 ... 2nd solid-liquid separation means, 4 ... Flowmeter, 5 ... Pollution meter, 20 ... Coagulant addition apparatus, 21 ... Coagulation tank, 30 ... Cylindrical water tank, 31 ... Cylindrical screen, Fi ... Eddy current inside cylindrical screen, Fo ... Eddy current outside cylindrical screen, Si ... Inside cylindrical screen, So ... Outside cylindrical screen, Mo ... Outside cylindrical Opening, Mi ... Cylindrical inner opening.

Claims (2)

汚濁水を、夾雑物を除去する第1の固液分離手段、第1の固液分離手段で処理された被処理水に凝集剤を添加して被処理水中の汚濁物質を凝集させる凝集剤添加手段、前記凝集剤添加手段で処理された被処理水を清澄分と固形分とに分離する第2の固液分離手段の順に通して、前記汚濁水中の汚濁物質を除去する汚濁水の処理方法であって、
少なくとも前記第2の固液分離手段が、円筒型水槽内に被処理水を前記水槽の接線方向に沿って送入し、前記水槽内で渦流を発生させて固形分を前記水槽の中央下部に集め、この集めた固形分を水槽外に引抜いて固液分離する渦流式固液分離装置であり、かつ、
前記第1の固液分離手段で処理された被処理水の汚濁度および流量を測定し、この測定値に応じて前記凝集剤添加手段における凝集剤の添加量を決定し、
さらに、前記円筒型水槽から固形分を間欠的に引抜き、その一回の引抜き量および引抜き頻度を、前記第1の固液分離手段で処理され前記凝集剤添加手段に流入する被処理水の汚濁度および流量の測定値に応じて決定する汚濁水の処理方法。
The first solid-liquid separation means for removing contaminants from the contaminated water, and the addition of a flocculant for aggregating the pollutants in the treated water by adding a flocculant to the water to be treated treated by the first solid-liquid separation means Means for removing polluted water in the polluted water through the second solid-liquid separating means for separating the treated water treated by the flocculant adding means into a clarified portion and a solid content in this order. Because
At least the second solid-liquid separation means feeds the water to be treated into a cylindrical water tank along the tangential direction of the water tank, generates a vortex in the water tank, and causes a solid content to enter the lower center of the water tank. A vortex-type solid-liquid separator that collects and collects the collected solids outside the water tank and separates them into solid and liquid, and
Measure the turbidity and flow rate of the water to be treated treated by the first solid-liquid separation means, and determine the addition amount of the flocculant in the flocculant addition means according to this measured value,
Further, the solid content is intermittently withdrawn from the cylindrical water tank, and the amount of withdrawal and the frequency of withdrawal are determined by the first solid-liquid separation means and the water to be treated flowing into the coagulant adding means. A method for treating polluted water that is determined according to the measured value of the degree and flow rate.
前記渦流式固液分離装置が、円筒型水槽の内部に円筒型スクリーンが縦向きに配置され、この円筒型スクリーン内に被処理水を前記スクリーンの接線方向に沿って送入し、前記スクリーン内で渦流を発生させて清澄分を前記スクリーンを通して槽外に送り出しつつ前記固形分を水槽の中央下部に集め、この集めた固形分を水槽外に引抜くものである請求項1記載の汚濁水の処理方法。In the vortex-type solid-liquid separator, a cylindrical screen is disposed vertically in a cylindrical water tank, and water to be treated is fed into the cylindrical screen along the tangential direction of the screen. 2. The polluted water according to claim 1, wherein the solid content is collected at the center lower part of the water tank while generating a vortex flow through the screen and sending out the clear content to the outside of the water tank, and the collected solid content is drawn out of the water tank. Processing method.
JP2002378421A 2002-12-26 2002-12-26 Polluted water treatment method Expired - Fee Related JP3827228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002378421A JP3827228B2 (en) 2002-12-26 2002-12-26 Polluted water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378421A JP3827228B2 (en) 2002-12-26 2002-12-26 Polluted water treatment method

Publications (2)

Publication Number Publication Date
JP2004209306A JP2004209306A (en) 2004-07-29
JP3827228B2 true JP3827228B2 (en) 2006-09-27

Family

ID=32815278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378421A Expired - Fee Related JP3827228B2 (en) 2002-12-26 2002-12-26 Polluted water treatment method

Country Status (1)

Country Link
JP (1) JP3827228B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118166891A (en) * 2024-04-23 2024-06-11 北京市市政工程设计研究总院有限公司 Flooding prevention system and method

Also Published As

Publication number Publication date
JP2004209306A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US5904855A (en) Closed chemically enhanced treatment system
AU722025B2 (en) Water and wastewater treatment system with internal recirculation
TWI300006B (en) Coagulating and separating apparatus
Valade et al. Particle removal by flotation and filtration: pretreatment effects
Pizzi Water Treatment Plant Residuals Pocket Field Guide
US5433853A (en) Method of clarifying wastestreams
CN105923830B (en) A kind of preprocess method of coal chemical industrial waste water two-stage enhanced coagulation oil removing
Menezes et al. Removal of particles using coagulation and flocculation in a dynamic separator
JPH0685918B2 (en) Magnetic solid-liquid separation method for wastewater
JP3827228B2 (en) Polluted water treatment method
JP2007283274A (en) Sewage treatment plant and its control equipment
KR100635485B1 (en) Apparatus and method for all-weather treatment of sewage and wastewater by efficient combination of treatment functions
KR101661736B1 (en) Device for measuring flow of open channel
Weiss Innovative use of lamella clarifiers for central stormwater treatment in separate sewer systems
Jolis et al. Evaluation of High‐Rate Clarification for Wet‐Weather‐Only Treatment Facilities
JP3973967B2 (en) Coagulation separation device
JP2854543B2 (en) Dredging wastewater treatment method and device
KR101044978B1 (en) Purification system for combined sewer overflows
Reardon Clarification concepts for treating peak wet weather wastewater flows
Field et al. Vortex separation technology
KR100864327B1 (en) Disposal unit of cleaning water in water distribution system
JP3933991B2 (en) Coagulation separation device
CA2526524A1 (en) Coagulation-sedimentation apparatus
CN211734046U (en) Materialization treatment device for pickled undaria pinnatifida processing wastewater
KR200370542Y1 (en) Apparatus for all-weather treatment of sewage and wastewater by efficient combination of treatment functions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees