JP3826504B2 - Lightwave ranging device - Google Patents

Lightwave ranging device Download PDF

Info

Publication number
JP3826504B2
JP3826504B2 JP19821197A JP19821197A JP3826504B2 JP 3826504 B2 JP3826504 B2 JP 3826504B2 JP 19821197 A JP19821197 A JP 19821197A JP 19821197 A JP19821197 A JP 19821197A JP 3826504 B2 JP3826504 B2 JP 3826504B2
Authority
JP
Japan
Prior art keywords
light
optical path
amount
distance measuring
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19821197A
Other languages
Japanese (ja)
Other versions
JPH1138138A (en
Inventor
勝 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP19821197A priority Critical patent/JP3826504B2/en
Publication of JPH1138138A publication Critical patent/JPH1138138A/en
Application granted granted Critical
Publication of JP3826504B2 publication Critical patent/JP3826504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を目標物に向けて投光し、その反射光を受光して目標物までの距離を測定する光波測距装置に関する。
【0002】
【従来の技術】
光波測距装置は、目標物に向けて投光する光が連続波であるか、パルス波であるかにより2つの形式がある。連続波による光波測距装置は、光を連続的に強度変調した波として目標物に向けて投光する。そして、目標物からの反射光を受光し、受光した連続波の位相と投光した連続波の位相とを比較することで、光波測距装置から目標物までの距離を求める。
【0003】
また、パルス波による光波測距装置では、狭いパルス幅のパルス光を目標物に向けて投光し、目標物からの反射パルス光を受光して、投光から受光までのパルス光の走行時間から目標物までの距離を求める。
【0004】
これらの光波測距装置では、発光素子からの光を目標物に向けて投光し、目標物で反射した光を受光素子で受光するまでの外部光路と、発光素子から装置内部の経路を通った光を受光素子で受光するまでの内部光路とを有する。
【0005】
そして、外部光路による測定距離を光波測距装置の所定の基準点(測量の基準点の鉛直線上に位置するように光波測距装置を設置する機械中心点)からの距離に補正する為に、内部光路から受光した光の位相と投光した光の位相を比較して内部光路の距離を求める。
【0006】
ところで、外部光路を通り目標物で反射した光の受光光量は、目標物までの距離及び目標物の反射率により変化する。更に、外部光路からの受光光量と内部光路からの受光光量は大きく異なる。光波測距装置では、外部光路からと内部光路からとの受光量の差や受光光量の変動により測定誤差が生じることを防ぐために、外部光路からの受光光量と内部光路からの受光光量とを同等にする光量平衡を行った後に、距離測定を行っている。
【0007】
【発明が解決しようとする課題】
このように、光波測距装置は、距離測定を行う前に外部光路の受光光量と内部光路の受光光量を同等にする光量平衡を行う必要がある。従来の光波測距装置ではこの光量平衡動作を、電源スイッチがオンされている間は常時行っていた。
【0008】
光量平衡動作は、以下の一連の動作を伴うものである。即ち、光路を内部光路とし発光素子を発光させ、受光素子で内部光を受光して内部光の光量を記憶する。次に、光路を外部光路に切替え、発光素子を発光させ目標物に向けて投光する。受光素子は、目標物で反射した反射光を受光しその光量を記憶する。そして、内部光路を通った光と外部光路を通った光の光量を比較し、その光量レベルが同等になるように、外部光路を通る光の光量を調整する。
【0009】
このように、光量平衡動作は、発光素子の発光、光路切替え駆動モータ及び光量平衡用アッテネータの駆動といった多くの電力を消費する動作を伴う。従来の光波測距装置では、電源スイッチがオンされると、目標物の移動中のようにまだ測距動作が必要でない時でも光量平衡動作を繰り返し、常に最新の状態における光量平衡を完了させ、その後の測距動作をただちに開始できる様になっている。そのため、必要以上に多くの電力を消費する。
【0010】
そこで、距離測定をしていない時は、作業者がこまめに電源スイッチを切り、光波測距装置のバッテリーの消耗を防ぐことはできる。しかし、電源スイッチを切ると、その後に電源スイッチをオンした時に、装置が定常状態に安定し測定準備が完了するまでに時間がかかってしまう。特に、測定の基準となる発振器は、温度特性を有しており、出力信号が安定するまでにかなりの時間が必要である。従って、基準発振器が安定状態に移行するまでの時間待っていたのでは、全体の測距時間が長くなってしまう。そこで光波測距装置は、常に電源オン状態で使用されることが多く、バッテリーの消耗を早めていた。しかも、従来の光波測距装置では、前述の光量平衡動作に消費する電力は、装置全体の消費電力の約50%を占めていた。
【0011】
従って、本発明の目的は、この電力消費量を抑え、バッテリーの消耗を減らす光波測距装置を提供することにある。
【0012】
また、本発明の目的は、電力消費量を減らすと共に、測定にあたっては迅速に測距動作を開始でき、測距時間を短縮できる光波測距装置を提供することにある。
【0013】
【課題を解決するための手段】
上記の目的は、本発明によれば、発光素子からの光を外部光路又は内部光路に切り替える光路切替え器と、前記外部光路からの光量を調整するアッテネータと、該アッテネータによる光量の調整を制御する制御器とを有し、前記アッテネータを調整して前記外部光路からの光量と前記内部光路からの光量とを同等にする光量平衡処理を行った後に、測定対象物までの距離を測定する測距処理を行う光波測距装置において、前記制御器は、最初に前記光量平衡処理を行った後、前記光量平衡処理を一定時間行わない待機モードを有することを特徴とする光波測距装置を提供することにより達成される。
【0014】
即ち、本発明によれば、電源スイッチがオンされた状態のままでも、大きな電力を消費する光量平衡処理を一定時間行わない待機モードを有するので、測距作業を行っている間の電力消費を低減することができる。
【0015】
また、本発明の光波測距装置の前記制御器は、前記外部光路からの光量と前記内部光路からの光量との差が所定範囲内である場合に、前記待機モードに移行することを特徴とする。
【0016】
即ち、本発明によれば、大きな電力を消費する光量平衡処理を何度も繰り返すことがなく、バッテリーの消費電力を削減すると共に、光量平衡が維持されている場合に待機モードに移行するので、実質的光量平衡が維持され、迅速に精度の高い測定を行うことができる。
【0017】
また、本発明の光波測距装置の前記制御器は、前記光量平衡処理終了後であって前記測距処理が行われない場合に、前記待機モードに移行することを特徴とする。
【0018】
即ち、例えばターゲットを目標地点に設置し測定準備が完了するまでの間では、光量平衡を繰返し行う必要はなく、一定時間の待機モードを設けることで電力消費を削減できる。
【0019】
また、本発明の光波測距装置の前記制御器は、前記光量平衡処理終了後であって前記測距処理が行われない場合に前記待機モードに移行し、前記一定時間経過後光量平衡状態が維持される場合には、更に前記待機モードに移行することを特徴とする。
【0020】
従って、一定時間毎に外部光路の光量と内部光路の光量とが等しいか否かを検出しているので、大幅に光量平衡がずれることがなく、電力消費を低減できると共に、測定開始に際して再度光量平衡処理を行う時にも、光量平衡が完了するまでの時間を短縮でき、測距作業を迅速に開始することができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態の例について図面に従って説明する。しかしながら、かかる実施の形態例が本発明の技術的範囲を限定するものではない。
【0022】
本発明は、連続波の位相差による光波測距装置と、パルス波の時間差による光波測距装置の両者に適用できるが、以下、本発明を連続波の位相差による光波測距装置に適用した場合について説明する。
【0023】
図1は、本発明の実施の形態による光波測距装置の構成ブロックを示す。温度補償付き基準発振器1は、位相差による距離測定の基準となる周波数f1の安定した正弦波信号30を発生する。温度補償付き基準発振器1によって発生した信号30は、発光素子駆動回路2で、発光素子3を駆動するために必要な大きさに増幅される。発光素子3は、発光素子駆動回路2からの電気信号31を光信号に変換し、正弦波の光信号4として光路切替え器5に向けて発光する。また、発光素子駆動回路2からの電気信号31は後述する演算部13に入力され、目標物までの距離を算出するのに使用される。
【0024】
光路切替え器5は、発光素子3で発光した光4を、外部光路又は内部光路のどちらか一方に導くため、所定時間毎にどちらか一方の光路のみを開放する。尚、外部光路とは、発光素子3で発光した光4が光路切替え器5で外部光6として光波測距装置の外部に向けて投光され、距離測定地点に設置されたターゲット7で反射した外部反射光9を受光素子10で受光されるまでの光路をいう。一方、内部光路とは、光路切替え器5から投光された内部光8が、光波測距装置の内部の経路を通って受光素子10で受光されるまでの光路をいう。
【0025】
このように光波測距装置は、装置内部に受光光量の基準となる内部光路を保有し、光路切替え器5により外部光路又は内部光路を選択する。そして、外部光路及び内部光路を通った光の受光レベルを同等にした後に、投光した光(発光素子3を発光させる電気信号31)と、外部光路及び内部光路から受光した夫々の光との位相差から目標物までの距離を算出する。
【0026】
その際、外部光路による測定結果と内部光路による測定結果とから、温度変化又は経年変化などによる測定距離の誤差を除去している。例えば、反射光を電気信号に変換する電気回路内で検出される位相が温度に依存して変動しても、外部光路から得られる位相差φaによる測定距離Laと、内部光路から得られる位相差φbによる測定距離Lbの差を求めることで、測定誤差を除去し測定精度を向上させている。即ち、温度等に依存する位相変動は、外部光路又は内部光路による測定距離の両者に共通するので、両者の測定距離の差La−Lbをとることにより、温度変動等による測定誤差は相殺される。
【0027】
光路切替え器5で外部に向けて投光され、ターゲット7で反射された外部反射光9は、光量平衡用アッテネータ19を通過し、所定の光量に調整されて受光素子10で受光される。尚、光量平衡用アッテネータ19は、モータ22によって光の透過率が変化するように駆動され、外部反射光9と内部光8との光量レベルが同等レベルになる位置に位置決めされる。
【0028】
内部光8も、光量平衡用アッテネータ19の外部反射光9が通過する部分とは異なる位置を通過する。光量平衡用アッテネータ19の内部光通過部分は、光量平衡用アッテネータ19が外部反射光9を最大に透過させても受光素子10の受光光量が所定の値以下である場合、前記モータ22の駆動によって内部光8の光量を外部反射光9の光量と同じになるように光の透過率が変化している。
【0029】
即ち、外部光路を通った外部反射光9の受信光量は、ターゲットの反射率や距離によって大きく変わるので、光量平衡用アッテネータ19により、予め所定の基準値に調整されている内部光路を通った光8の受信光量と同じになるように光量調整される。
【0030】
このように、両者の光量レベルを同等にする光量平衡を行うのは、受光された光の光量の違いによって生じる、測定回路での信号レベルの違いが測定誤差の原因となるためである。
【0031】
一方、温度補償付き基準発振器1で発生した周波数f1の基準信号30は、PLL14にも入力される。PLL14は、入力された基準信号30に位相同期した周波数f2の参照信号32を生成する。PLL14で生成された周波数f2の参照信号32は、受光素子10から出力される周波数f1の信号33とミックスされ、f1−f2の低周波数の信号34に変換される。
【0032】
低周波数に変換された信号34はAMP11で増幅され、更に、AGC12で受光光量の変動を補償して制御器25に適した信号レベルにされる。そして、制御器25内の演算部13において位相差による距離演算が行われる。このようにAMP11以降は、低周波数に変換された信号34等により処理が行われるので、簡単な回路で測定の分解能を高めることができる。
【0033】
制御器25内の演算部13は、測距ボタン24が押されると、外部反射光9の位相差と内部光8の位相差とからターゲット7までの距離を算出する。即ち、外部光路における発光から受光までの位相差φa及び内部光路における発光から受光までの位相差φbを求め、これらから測定対象物までの距離Lが、
L=c(φa−φb)/4πf
(cは大気中の光速、fは発光信号の変調周波数)
として求められる。尚、変調周波数は複数の周波数を使用し、各変調周波数から得られた距離を基に、ターゲット7までの距離Lを算出する。
【0034】
光波測距装置は、屋外で使用されることが多いので、バッテリー21が搭載されており、電源スイッチ23がオンされると、バッテリー21の電圧は、電源手段20で各回路が必要とする電圧に変換されて各回路に供給される。但し、発光素子3と光路切替え器5へは、スイッチ16又はスイッチ15を通して供給される。そして、スイッチ16とスイッチ15は、制御器25からの信号38および信号37により、オンオフが制御される。また、光量平衡用アッテネータ19を駆動するモータ22には、その駆動を制御する信号39が制御器25より入力される。
【0035】
本実施の形態では、電源スイッチ23がオンされていても、測距動作をしない場合に一定時間の待機モードを有する点が従来例と異なる。そして、待機モードでは、発光素子3の発光やモータ22等の駆動のような大きな電力を消費する光量平衡動作を行わないので、バッテリー21の使用時間を大幅に伸ばすことができる。
【0036】
即ち、待機モードでは、制御器25からの信号38及び信号37により、発光素子3に駆動電圧を供給するスイッチ16、及び光路切替え器5に駆動電圧を供給するスイッチ15がオフされる。更に、制御器25は、光量平衡用アッテネータ19を駆動するモータ22に、駆動信号39の出力を行わない。従って、多くの電力を消費する発光素子3、光路切替え器5の駆動モータ、及び光量平衡用アッテネータ19の駆動モータ22が動作しなくなるので、待機モードで消費する電力は大幅に減少する。
【0037】
また、制御器25内の演算部13を構成するCPUがスリープモードを有する場合に、前記待機モードと連動させてCPUもスリープモードとすれば、光波測距装置全体の消費電力は更に減少する。
【0038】
但し、待機モードにおいても、温度補償付き基準発振器1、PLL14及びAGC12等には、電源が供給されており安定に動作している。従って、測距動作が再開された場合でも、距離測定の基準となる位相信号は安定に発振、増幅されるので、迅速に測距動作に移行できる。
【0039】
図2は、本発明の実施の形態による光波測距装置の処理フローチャート図を示す。光波測距装置の測定スタートは、電源スイッチ23をオンすることにより開始される(ステップ50)。まず、光量平衡が完了しているか否かを示す光量平衡フラグがオフに初期設定される(ステップ51)。また、電源スイッチ23のオンオフは、演算部のCPU13により監視され(ステップ52)、電源スイッチ23がオフされるとCPU13は終了処理を行った後終了する(ステップ53)。電源スイッチ23がオンされていれば、光量平衡フラグの確認に進む(ステップ55)。
【0040】
ステップ55では、既に光量平衡処理が行われたか否かを光量平衡フラグのオンオフにより確認し、光量平衡フラグがオフの場合は光量平衡処理を行う(ステップ56)。光量平衡処理では、スイッチ16をオンして発光素子3を発光させ、スイッチ15をオンして光路切替え器5を駆動させて、発光素子3で発光した光4を外部光路と内部光路に切り替える。そして、光量平衡用アッテネータ19をモータ22により駆動して、外部光路からの受光光量を内部光路からの受光光量と等しくする。
【0041】
以上の光量平衡処理が完了すると、CPU13内の光量平衡フラグをオンとし(ステップ57)、待機モードに移行する(ステップ54)。待機モードは、ステップ52からステップ55、58、59、54のループを繰返し、その間演算部内のタイマーにより一定時間の経過が計測される。この待機モードでは、スイッチ16及びスイッチ15がオフされ、アッテネータ駆動用モータ22の駆動信号39が禁止され、光量平衡処理は行われない。従って、装置の消費電力が大幅に低下し、バッテリー21の消耗を防ぐことができる。
【0042】
また、演算部内のCPU13は、待機モードにおいて、光波測距装置の測距処理を開始させる測距ボタン24のオンオフを監視しており(ステップ58)、測距ボタン24がオンされると、測距処理(ステップ63からステップ66)が開始される。
【0043】
ステップ58で、測距ボタン24がオンされなければ、CPU13は、測距ボタン24がオンされない状態で一定時間の経過を監視する(ステップ59)。そして、まだ一定時間が経過していない場合は、CPU13は、待機モード(ステップ54)を継続する。一方、測距ボタン24がオンされない状態で一定時間が経過すると、外部光量取得処理(ステップ60)に移行する。
【0044】
外部光量取得処理で新たに外部光路の光量値を取得し、前回の光量平衡時に得られた光量値と比較(ステップ61)を行い、一定量以上の差があって光量平衡状態が維持されない場合は、CPU13内の光量平衡フラグをオフにし(ステップ62)、スタート状態へ移行する。そして、その後光量平衡処理(ステップ56)が実行される。一方、光量値の差が一定量以内であって光量平衡状態が維持される場合は、再度待機モード(ステップ54)に移行する。従って、光量平衡状態が維持される場合は、単に発光素子3を駆動させるだけであり、光路切替え器5やアッテネータ19を駆動させる必要がないので、そこでの電力消費はわずかである。
【0045】
このように測距ボタン24がオフの状態では、光量平衡処理は、一定時間の経過毎であって且つ光量平衡状態でなくなった場合に行われるのみである。従って、光波測距装置で多くの電力を消費する発光素子3、光路切替え器5の駆動モータ及び光量平衡用アッテネータ19の駆動モータ22が、間欠的に動作するのみであり、装置全体の消費電力が低減しバッテリーの消耗を防ぐことができる。
【0046】
一方、一定時間経過毎に外部光量値を取得し、一定量以上の変化が生じた場合は、光量平衡処理を行うので、常に光量平衡状態又はそれに近い状態に維持することができ、測距動作を行う前に再度光量平衡を行う場合でも、アッテネータ19の駆動距離が少なく光量平衡処理にかかる時間を短縮でき、迅速に測距作業に移ることができる。
【0047】
ステップ58で測距ボタン24がオンされた場合は、測距処理が開始される。測距処理では、まず、外部光量取得処理(ステップ63)が行われる。既に、光量平衡処理(ステップ56)により外部光路の光量と内部光路の光量とは同等レベルに調整されているが、測距に先立ち、再度外部光路の光量を取得して、光量平衡を確認する。
【0048】
再度取得した外部光量と、既に取得してある内部光量の光量を比較し(ステップ64)、それぞれの光量値が同じであれば、直ちに測距動作(ステップ66)に移行する。もし、外部光路の光量と内部光路の光量とが異なっていれば、再度光量平衡処理(ステップ65)を行い、その後測距動作(ステップ66)に移行する。測距終了後は、スタート状態に戻り、電源スイッチ23がオフされなければ、待機モード(ステップ54)となり、電力消費を低減する。
【0049】
尚、ステップ61及び64の光量値比較は、新たに取得した外部光路の光量が、光量平衡状態を維持できる範囲内に入っているか否かを確認するものである。従って、新たに取得した外部光路の光量を、既に取得してある内部光路の光量と比較してもよいし、又は、前回取得した外部光路の光量と比較してもよい。
【0050】
【発明の効果】
以上説明した通り、本発明による光波測距装置を使用することにより、バッテリー使用時間が延長され、測量作業の効率化を図ることができる。
【0051】
また、待機モードでは、光波測距装置内で多くの電力を消費する部分が停止状態となるため、バッテリー使用時間を増大させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による光波測距装置のブロック図である。
【図2】本発明の実施の形態による光波測距装置の処理フローチャート図である。
【符号の説明】
1 温度補償付き基準発振器
2 発光素子駆動回路
3 発光素子
5 光路切替え器
10 受光素子
11 AMP
12 AGC
13 演算部
14 PLL
19 光量平衡用アッテネータ
20 電源手段
21 バッテリー
22 光量平衡用アッテネータ駆動用モータ
25 制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light wave distance measuring device that projects light toward a target, receives the reflected light, and measures the distance to the target.
[0002]
[Prior art]
There are two types of optical wave distance measuring devices depending on whether the light projected toward the target is a continuous wave or a pulse wave. A light wave distance measuring device using a continuous wave projects light toward a target as a wave whose intensity is continuously modulated. Then, the reflected light from the target is received and the phase of the received continuous wave is compared with the phase of the projected continuous wave to determine the distance from the light wave distance measuring device to the target.
[0003]
In addition, in a light wave distance measuring device using a pulse wave, a pulse light with a narrow pulse width is projected toward a target, a reflected pulse light from the target is received, and the travel time of the pulse light from light projection to light reception Find the distance from the target to the target.
[0004]
In these lightwave distance measuring devices, light from the light emitting element is projected toward the target, the light reflected by the target is received by the light receiving element, and the light from the light emitting element passes through the path inside the apparatus. And an internal optical path until the light is received by the light receiving element.
[0005]
And, in order to correct the measurement distance by the external optical path to the distance from a predetermined reference point of the light wave distance measuring device (machine center point where the light wave distance measuring device is installed so as to be located on the vertical line of the reference point of surveying) The distance of the internal optical path is obtained by comparing the phase of the light received from the internal optical path with the phase of the projected light.
[0006]
By the way, the amount of light received through the external optical path and reflected by the target varies depending on the distance to the target and the reflectance of the target. Furthermore, the amount of light received from the external optical path and the amount of light received from the internal optical path are greatly different. In order to prevent measurement errors from occurring due to differences in the amount of light received from the external optical path and from the internal optical path and fluctuations in the amount of received light, the optical distance measuring device equalizes the amount of light received from the external optical path and the amount of light received from the internal optical path. The distance measurement is performed after performing the light quantity balance.
[0007]
[Problems to be solved by the invention]
As described above, the light wave distance measuring device needs to perform light amount balance that makes the received light amount of the external optical path equal to the received light amount of the internal optical path before the distance measurement. In the conventional optical distance measuring apparatus, this light quantity balancing operation is always performed while the power switch is on.
[0008]
The light quantity balance operation involves the following series of operations. That is, the light path is set as the internal optical path, the light emitting element emits light, the internal light is received by the light receiving element, and the amount of the internal light is stored. Next, the optical path is switched to the external optical path, and the light emitting element emits light and projects toward the target. The light receiving element receives the reflected light reflected by the target and stores the amount of light. Then, the amount of light passing through the internal optical path is compared with the amount of light passing through the external optical path, and the amount of light passing through the external optical path is adjusted so that the level of the amount of light is equal.
[0009]
Thus, the light quantity balancing operation involves an operation that consumes a lot of power, such as light emission of the light emitting element, driving of the optical path switching drive motor and the light quantity balancing attenuator. In the conventional optical wave distance measuring device, when the power switch is turned on, the light amount balancing operation is repeated even when the distance measuring operation is not yet required, such as when the target is moving, and the light amount balance in the latest state is always completed, The subsequent ranging operation can be started immediately. Therefore, more power is consumed than necessary.
[0010]
Therefore, when distance measurement is not being performed, an operator can frequently turn off the power switch to prevent the battery of the optical distance measuring device from being consumed. However, if the power switch is turned off, when the power switch is turned on after that, it takes time for the apparatus to stabilize in a steady state and to complete measurement preparation. In particular, an oscillator serving as a measurement reference has a temperature characteristic, and requires a considerable time until the output signal is stabilized. Accordingly, if the time until the reference oscillator shifts to the stable state is waited, the entire distance measurement time becomes long. Therefore, the optical distance measuring device is often used in a power-on state, and battery consumption is accelerated. In addition, in the conventional optical wave distance measuring device, the power consumed for the light quantity balancing operation described above occupies about 50% of the power consumption of the entire device.
[0011]
Accordingly, an object of the present invention is to provide an optical distance measuring device that suppresses the power consumption and reduces battery consumption.
[0012]
It is another object of the present invention to provide an optical distance measuring device that can reduce power consumption, can start a distance measuring operation quickly in measurement, and can shorten a distance measuring time.
[0013]
[Means for Solving the Problems]
According to the present invention, the above object is to control an optical path switcher that switches light from a light emitting element to an external optical path or an internal optical path, an attenuator that adjusts the amount of light from the external optical path, and adjustment of the amount of light by the attenuator. A distance measuring device that measures the distance to the measurement object after performing a light amount balancing process that adjusts the attenuator to equalize the light amount from the external optical path and the light amount from the internal optical path. In the light wave distance measuring apparatus that performs processing, the controller provides a light wave distance measuring apparatus characterized by having a standby mode in which the light amount balance process is not performed for a predetermined time after the light amount balance process is first performed. Is achieved.
[0014]
That is, according to the present invention, even when the power switch is turned on, a standby mode in which the light intensity balancing process that consumes a large amount of power is not performed for a certain period of time is provided. Can be reduced.
[0015]
Further, the controller of the light wave distance measuring device according to the present invention is characterized in that when the difference between the light amount from the external optical path and the light amount from the internal optical path is within a predetermined range, the controller shifts to the standby mode. To do.
[0016]
That is, according to the present invention, the light quantity balancing process that consumes a large amount of power is not repeated many times, the battery power consumption is reduced, and the standby mode is entered when the light quantity balance is maintained. Substantial light quantity balance is maintained, and measurement with high accuracy can be performed quickly.
[0017]
Further, the controller of the light wave distance measuring device according to the present invention is characterized in that it shifts to the standby mode when the distance measurement process is not performed after the light amount balancing process is completed.
[0018]
That is, for example, it is not necessary to repeat the light quantity balance until the target is set at the target point and measurement preparation is completed, and power consumption can be reduced by providing a standby mode for a certain period of time.
[0019]
Further, the controller of the light wave distance measuring device according to the present invention shifts to the standby mode after the light amount balancing process is completed and when the distance measuring process is not performed, and the light amount balanced state after the predetermined time has elapsed. If it is maintained, it further shifts to the standby mode.
[0020]
Therefore, since it is detected whether the light quantity in the external optical path is equal to the light quantity in the internal optical path at regular intervals, the light quantity balance is not significantly shifted, and power consumption can be reduced, and the light quantity can be reduced again at the start of measurement. Even when the balancing process is performed, it is possible to shorten the time until the balancing of the light amount is completed, and to start the distance measurement work quickly.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. However, such an embodiment does not limit the technical scope of the present invention.
[0022]
The present invention can be applied to both a light wave distance measuring device using a continuous wave phase difference and a light wave distance measuring device using a pulse wave time difference. Hereinafter, the present invention is applied to a light wave distance measuring device using a continuous wave phase difference. The case will be described.
[0023]
FIG. 1 shows a configuration block of a lightwave distance measuring device according to an embodiment of the present invention. The reference oscillator 1 with temperature compensation generates a stable sine wave signal 30 having a frequency f1, which is a reference for distance measurement based on a phase difference. A signal 30 generated by the reference oscillator 1 with temperature compensation is amplified by the light emitting element driving circuit 2 to a size necessary for driving the light emitting element 3. The light emitting element 3 converts the electric signal 31 from the light emitting element driving circuit 2 into an optical signal, and emits light toward the optical path switch 5 as a sine wave optical signal 4. In addition, the electric signal 31 from the light emitting element driving circuit 2 is input to the calculation unit 13 described later, and is used to calculate the distance to the target.
[0024]
The optical path switch 5 opens only one of the optical paths every predetermined time in order to guide the light 4 emitted from the light emitting element 3 to either the external optical path or the internal optical path. The external optical path means that the light 4 emitted from the light emitting element 3 is projected as external light 6 by the optical path switch 5 toward the outside of the optical distance measuring device and reflected by the target 7 installed at the distance measuring point. An optical path until the external reflected light 9 is received by the light receiving element 10. On the other hand, the internal optical path refers to an optical path until the internal light 8 projected from the optical path switch 5 is received by the light receiving element 10 through the internal path of the light wave distance measuring device.
[0025]
In this way, the optical distance measuring device has an internal optical path that serves as a reference for the amount of received light inside the apparatus, and selects an external optical path or an internal optical path by the optical path switch 5. Then, after equalizing the light receiving level of the light passing through the external optical path and the internal optical path, the light that has been projected (electrical signal 31 for causing the light emitting element 3 to emit light) and the respective light received from the external optical path and the internal optical path The distance to the target is calculated from the phase difference.
[0026]
At that time, the measurement distance error due to temperature change or secular change is removed from the measurement result by the external optical path and the measurement result by the internal optical path. For example, even if the phase detected in an electric circuit that converts reflected light into an electric signal varies depending on temperature, the measurement distance La by the phase difference φa obtained from the external optical path and the phase difference obtained from the internal optical path By obtaining the difference in the measurement distance Lb due to φb, the measurement error is removed and the measurement accuracy is improved. That is, the phase variation depending on the temperature or the like is common to both of the measurement distances of the external optical path or the internal optical path, so that the measurement error due to the temperature fluctuation or the like is canceled by taking the difference La−Lb between the two measurement distances. .
[0027]
The externally reflected light 9 projected toward the outside by the optical path switch 5 and reflected by the target 7 passes through the light amount balancing attenuator 19, is adjusted to a predetermined light amount, and is received by the light receiving element 10. The light quantity balancing attenuator 19 is driven by the motor 22 so that the light transmittance changes, and is positioned at a position where the light quantity levels of the external reflected light 9 and the internal light 8 are equal.
[0028]
The internal light 8 also passes through a position different from the portion through which the external reflected light 9 of the light quantity balancing attenuator 19 passes. The internal light passage portion of the light amount balancing attenuator 19 is driven by the motor 22 when the light receiving amount of the light receiving element 10 is not more than a predetermined value even when the light amount balancing attenuator 19 transmits the external reflected light 9 to the maximum. The light transmittance is changed so that the light amount of the internal light 8 is the same as the light amount of the external reflected light 9.
[0029]
That is, the amount of light received by the external reflected light 9 that has passed through the external optical path varies greatly depending on the reflectivity and distance of the target. The amount of light is adjusted to be the same as the amount of received light 8.
[0030]
The reason why the light quantity balance is made to equalize the light quantity levels is that the difference in signal level in the measurement circuit caused by the difference in the quantity of received light causes measurement errors.
[0031]
On the other hand, the reference signal 30 having the frequency f1 generated by the reference oscillator 1 with temperature compensation is also input to the PLL 14. The PLL 14 generates a reference signal 32 having a frequency f 2 that is phase-synchronized with the input reference signal 30. The reference signal 32 of the frequency f2 generated by the PLL 14 is mixed with the signal 33 of the frequency f1 output from the light receiving element 10, and is converted into a low frequency signal 34 of f1-f2.
[0032]
The signal 34 converted to the low frequency is amplified by the AMP 11 and further compensated for fluctuations in the amount of received light by the AGC 12 to obtain a signal level suitable for the controller 25. Then, a distance calculation based on a phase difference is performed in the calculation unit 13 in the controller 25. As described above, since processing is performed by the signal 34 or the like converted to a low frequency after the AMP 11, the measurement resolution can be increased with a simple circuit.
[0033]
When the distance measuring button 24 is pressed, the calculation unit 13 in the controller 25 calculates the distance to the target 7 from the phase difference of the external reflected light 9 and the phase difference of the internal light 8. That is, the phase difference φa from light emission to light reception in the external optical path and the phase difference φb from light emission to light reception in the internal optical path are obtained, and the distance L from these to the measurement object is
L = c (φa−φb) / 4πf
(C is the speed of light in the atmosphere, f is the modulation frequency of the light emission signal)
As required. The modulation frequency uses a plurality of frequencies, and the distance L to the target 7 is calculated based on the distance obtained from each modulation frequency.
[0034]
Since the optical distance measuring device is often used outdoors, when the battery 21 is mounted and the power switch 23 is turned on, the voltage of the battery 21 is the voltage required for each circuit in the power supply means 20. Is converted into and supplied to each circuit. However, the light-emitting element 3 and the optical path switch 5 are supplied through the switch 16 or the switch 15. The switches 16 and 15 are controlled to be turned on / off by a signal 38 and a signal 37 from the controller 25. Further, a signal 39 for controlling the driving of the motor 22 for driving the light quantity balancing attenuator 19 is input from the controller 25.
[0035]
The present embodiment is different from the conventional example in that a standby mode for a predetermined time is provided when a distance measuring operation is not performed even when the power switch 23 is turned on. And in standby mode, since the light quantity balance operation which consumes big electric power like light emission of the light emitting element 3 or drive of the motor 22 etc. is not performed, the use time of the battery 21 can be extended significantly.
[0036]
That is, in the standby mode, the switch 16 for supplying the drive voltage to the light emitting element 3 and the switch 15 for supplying the drive voltage to the optical path switch 5 are turned off by the signal 38 and the signal 37 from the controller 25. Further, the controller 25 does not output the drive signal 39 to the motor 22 that drives the light quantity balancing attenuator 19. Accordingly, the light emitting element 3 that consumes a large amount of power, the drive motor of the optical path switching unit 5, and the drive motor 22 of the light amount balancing attenuator 19 are not operated, so that the power consumed in the standby mode is greatly reduced.
[0037]
Further, when the CPU constituting the calculation unit 13 in the controller 25 has a sleep mode, if the CPU is also set to the sleep mode in conjunction with the standby mode, the power consumption of the entire optical distance measuring device is further reduced.
[0038]
However, even in the standby mode, the reference oscillator 1 with temperature compensation, the PLL 14 and the AGC 12 are supplied with power and operate stably. Therefore, even when the distance measurement operation is resumed, the phase signal serving as the reference for distance measurement is stably oscillated and amplified, so that the distance measurement operation can be quickly performed.
[0039]
FIG. 2 is a process flowchart of the light wave distance measuring device according to the embodiment of the present invention. The measurement start of the optical distance measuring device is started by turning on the power switch 23 (step 50). First, a light amount balance flag indicating whether or not light amount balance has been completed is initially set to OFF (step 51). On / off of the power switch 23 is monitored by the CPU 13 of the calculation unit (step 52), and when the power switch 23 is turned off, the CPU 13 ends the processing after performing termination processing (step 53). If the power switch 23 is turned on, the process proceeds to the confirmation of the light quantity balance flag (step 55).
[0040]
In step 55, it is confirmed whether or not the light quantity balancing process has already been performed by turning on and off the light quantity balancing flag. If the light quantity balancing flag is off, the light quantity balancing process is performed (step 56). In the light quantity balancing process, the switch 16 is turned on to cause the light emitting element 3 to emit light, the switch 15 is turned on to drive the optical path switch 5, and the light 4 emitted from the light emitting element 3 is switched between the external optical path and the internal optical path. Then, the light quantity balancing attenuator 19 is driven by the motor 22 so that the received light quantity from the external optical path is equal to the received light quantity from the internal optical path.
[0041]
When the above light quantity balance processing is completed, the light quantity balance flag in the CPU 13 is turned on (step 57), and a transition is made to the standby mode (step 54). In the standby mode, the loop from step 52 to steps 55, 58, 59, 54 is repeated, and during that time, the passage of a fixed time is measured by the timer in the calculation unit. In this standby mode, the switch 16 and the switch 15 are turned off, the drive signal 39 of the attenuator drive motor 22 is prohibited, and the light quantity balancing process is not performed. Therefore, the power consumption of the apparatus is greatly reduced, and the battery 21 can be prevented from being consumed.
[0042]
Further, in the standby mode, the CPU 13 in the calculation unit monitors the on / off of the distance measuring button 24 for starting the distance measuring process of the light wave distance measuring device (step 58), and when the distance measuring button 24 is turned on, the measurement is performed. Distance processing (from step 63 to step 66) is started.
[0043]
If the distance measuring button 24 is not turned on at step 58, the CPU 13 monitors the elapse of a fixed time without the distance measuring button 24 being turned on (step 59). If the predetermined time has not yet elapsed, the CPU 13 continues the standby mode (step 54). On the other hand, when a predetermined time has passed without the distance measuring button 24 being turned on, the process proceeds to external light quantity acquisition processing (step 60).
[0044]
When the external light quantity acquisition process newly obtains the light quantity value of the external light path and compares it with the light quantity value obtained during the previous light quantity balance (step 61). Turns off the light quantity balance flag in the CPU 13 (step 62), and shifts to the start state. Thereafter, the light quantity balance process (step 56) is executed. On the other hand, when the difference between the light quantity values is within a certain amount and the light quantity balanced state is maintained, the process again shifts to the standby mode (step 54). Therefore, when the light quantity balanced state is maintained, the light emitting element 3 is merely driven, and it is not necessary to drive the optical path switch 5 and the attenuator 19, so that the power consumption is small.
[0045]
In this way, in the state where the distance measuring button 24 is OFF, the light amount balancing process is performed only when the fixed amount of time elapses and the light amount balanced state is not reached. Accordingly, the light emitting element 3 that consumes a large amount of power in the optical distance measuring device, the drive motor of the optical path switch 5 and the drive motor 22 of the light amount balancing attenuator 19 only operate intermittently. This can reduce battery consumption.
[0046]
On the other hand, the external light intensity value is acquired every time a certain amount of time elapses, and if a change of a certain amount or more occurs, the light intensity balancing process is performed, so that the light intensity balancing state can be always maintained or close to it. Even when the light amount balance is performed again before performing the step, the driving distance of the attenuator 19 is small, the time required for the light amount balance process can be shortened, and the distance measurement operation can be quickly performed.
[0047]
If the distance measuring button 24 is turned on in step 58, the distance measuring process is started. In the distance measurement process, first, an external light quantity acquisition process (step 63) is performed. The light quantity in the external optical path and the light quantity in the internal optical path have already been adjusted to the same level by the light quantity balancing process (step 56). Prior to the distance measurement, the light quantity in the external optical path is acquired again to check the light quantity balance. .
[0048]
The external light quantity acquired again is compared with the light quantity of the already acquired internal light quantity (step 64). If the respective light quantity values are the same, the process immediately proceeds to the distance measuring operation (step 66). If the amount of light in the external optical path is different from the amount of light in the internal optical path, the light amount balancing process is performed again (step 65), and then the process proceeds to the distance measuring operation (step 66). After the distance measurement is completed, the process returns to the start state, and if the power switch 23 is not turned off, the standby mode (step 54) is set and power consumption is reduced.
[0049]
The light quantity value comparison in steps 61 and 64 is to confirm whether or not the newly obtained light quantity of the external optical path is within a range where the light quantity balanced state can be maintained. Accordingly, the newly acquired light amount of the external optical path may be compared with the already acquired light amount of the internal optical path, or may be compared with the previously acquired light amount of the external optical path.
[0050]
【The invention's effect】
As described above, by using the light wave distance measuring device according to the present invention, the battery usage time can be extended and the efficiency of surveying work can be improved.
[0051]
Further, in the standby mode, the portion that consumes a large amount of power in the optical distance measuring device is stopped, so that the battery usage time can be increased.
[Brief description of the drawings]
FIG. 1 is a block diagram of a lightwave distance measuring device according to an embodiment of the present invention.
FIG. 2 is a processing flowchart of the light wave distance measuring device according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reference oscillator with temperature compensation 2 Light emitting element drive circuit 3 Light emitting element 5 Optical path switch 10 Light receiving element 11 AMP
12 AGC
13 Calculation unit 14 PLL
19 Attenuator 20 for balancing light quantity 20 Power supply means 21 Battery 22 Attenuator driving motor 25 for balancing light quantity 25 Controller

Claims (2)

発光素子からの光を外部光路又は内部光路に切り替える光路切替え器と、
前記外部光路から投光され測定対象物で反射した反射光と、前記内部光路に投光された光を受光する受光素子と、
前記反射光の光量を調整するアッテネータと、
該アッテネータによる光量の調整を制御前記外部光路からの光量と前記内部光路からの光量とを同等にする光量平衡処理を行う制御器と
前記受光素子からの出力に基づいて、前記測定対象物までの距離を算出する演算部とを有し、
前記制御器は、前記演算部で前記算出が行われない間は、前記光量平衡処理を一定時間行わない待機モードになることを特徴とする光波測距装置。
An optical path switcher that switches light from the light emitting element to an external optical path or an internal optical path;
Reflected light that is projected from the external optical path and reflected by the measurement object, and a light receiving element that receives the light projected to the internal optical path;
An attenuator for adjusting the amount of the reflected light ;
Controlling the light amount adjustment by the attenuator, the row intends controller the amount balancing process to equalize the amount of light from the light quantity and the internal optical path from the external light path,
A calculation unit that calculates a distance to the measurement object based on an output from the light receiving element;
The controller is in a standby mode in which the light quantity balancing process is not performed for a certain period of time while the calculation is not performed by the calculation unit.
請求項1に記載の光波測距装置において、
前記制御器は、前記受光素子で受光される、前記反射光と前記内部光路に投光された光との光量の差が所定範囲内である場合に、前記待機モードを維持することを特徴とする光波測距装置。
In the light wave ranging apparatus according to claim 1,
The controller maintains the standby mode when a difference in light amount between the reflected light received by the light receiving element and light projected on the internal optical path is within a predetermined range. Lightwave distance measuring device.
JP19821197A 1997-07-24 1997-07-24 Lightwave ranging device Expired - Lifetime JP3826504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19821197A JP3826504B2 (en) 1997-07-24 1997-07-24 Lightwave ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19821197A JP3826504B2 (en) 1997-07-24 1997-07-24 Lightwave ranging device

Publications (2)

Publication Number Publication Date
JPH1138138A JPH1138138A (en) 1999-02-12
JP3826504B2 true JP3826504B2 (en) 2006-09-27

Family

ID=16387346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19821197A Expired - Lifetime JP3826504B2 (en) 1997-07-24 1997-07-24 Lightwave ranging device

Country Status (1)

Country Link
JP (1) JP3826504B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036166A1 (en) * 2006-03-20 2007-10-04 Micro-Epsilon Optronic Gmbh Apparatus and method for measuring the distance of an object
KR20090034436A (en) 2007-10-04 2009-04-08 광주과학기술원 Security system using laser range finder and method for detecting intruder
JP5616025B2 (en) * 2009-01-22 2014-10-29 株式会社トプコン Lightwave distance measuring method and lightwave distance measuring apparatus

Also Published As

Publication number Publication date
JPH1138138A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
US6584127B2 (en) Light emitting device
JP4520582B2 (en) Laser processing equipment
JP4107532B2 (en) Laser equipment
JP5618526B2 (en) Optical distance measuring device
US6967978B2 (en) Light-emitting element driving device
EP0919790B1 (en) Optical sensor apparatus and signal processing circuit used therein
JP3541407B2 (en) LD drive circuit for optical fiber module
CN104167661A (en) Semiconductor laser drive apparatus and image forming apparatus
JP3826504B2 (en) Lightwave ranging device
US6965357B2 (en) Light-emitting element drive circuit
JPS6341091A (en) Laser oscillator
CN110873812B (en) Color wheel rotating speed detection device, light source system and projection equipment
US7863834B2 (en) Ultraviolet lamp system and method for controlling emitted UV light
US7529285B2 (en) Frequency stabilised gas laser
JP2005340278A (en) Light emitting element driving circuit
EP2434844A2 (en) Lighting device, illumination fixture, and illumination system
JPH01135085A (en) Semiconductor laser driving circuit
EP0895324B1 (en) Microwave excited gas laser apparatus
JPH10221450A (en) Distance measuring instrument
JP3658423B2 (en) Semiconductor laser drive device
JPH07176818A (en) Light source for laser length measuring machine
JPH1117251A (en) Yag laser oscillator and laser marking device
JPH08195521A (en) Laser oscillator
JPH01303775A (en) Semiconductor laser driving device
JPH0886873A (en) Optical rangefinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180714

Year of fee payment: 12

EXPY Cancellation because of completion of term