JP3826425B2 - Method for producing optically active 2-nitro-1,3-diol derivative - Google Patents

Method for producing optically active 2-nitro-1,3-diol derivative Download PDF

Info

Publication number
JP3826425B2
JP3826425B2 JP9026996A JP9026996A JP3826425B2 JP 3826425 B2 JP3826425 B2 JP 3826425B2 JP 9026996 A JP9026996 A JP 9026996A JP 9026996 A JP9026996 A JP 9026996A JP 3826425 B2 JP3826425 B2 JP 3826425B2
Authority
JP
Japan
Prior art keywords
nitro
formula
optically active
group
diol derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9026996A
Other languages
Japanese (ja)
Other versions
JPH09255632A (en
Inventor
正勝 柴崎
宏明 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP9026996A priority Critical patent/JP3826425B2/en
Publication of JPH09255632A publication Critical patent/JPH09255632A/en
Application granted granted Critical
Publication of JP3826425B2 publication Critical patent/JP3826425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/13Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
    • C07C205/14Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms
    • C07C205/15Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms of a saturated carbon skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2−ニトロ−1,3−ジオール誘導体および該誘導体の製造法に関する。さらに詳しくは、医薬品としてプロテインキナーゼCの阻害剤等に有用なジヒドロスフィンゴシンに代表される光学活性アミノジオールを効率良く得るのに適した中間体である2−ニトロ−1,3−ジオール誘導体および該誘導体の製造法に関する。
【0002】
【背景技術】
光学活性アミノジオールは、通常アルドール反応によって得ることができるが、生成物としてラセミ体が合成されてしまうため、生成物から目的物をラセミ分割しなければならず、非常に手間がかかり、収率も低いという欠点を有している。この方法の例としては、J.CHEM.SOC.PERKIN TRANS.I(1986)1687−1986に、ニトロエタノールとアルデヒドとをニトロアルドール反応させると、ラセミ体であるジアステレオ混合物が得られてしまうので、該混合物をアセトナイドした後、ラセミ分割して目的の光学活性化合物を得るという方法が開示されている。
【0003】
また、光学活性な原料をもとにして、光学活性アミノジオールを合成する方法がある。この方法の例として、Agric.Biol.Chem.,51(7),(1987),1973−1982に、2−エン−1−オール化合物をシャープレス酸化して得た光学活性エポキシを光学活性な原料として用い、該エポキシに対し、アミンを反応させるという方法が開示されている。しかし、この方法では、目的の光学活性アミノジオールとはアミノ基が異なる位置にある化合物も製造されるため、分割操作を行わなければならず、収率も低いものとなる。
【0004】
【発明が解決しようとする課題】
本発明者らは、上記問題点を解決するべく鋭意検討を行った結果、2−ニトロ−1,3−ジオール誘導体を中間体として用いると、目的とする光学活性2−アミノ−1,3−ジオール誘導体が効率的に製造できることを見い出し、本発明を完成した。
本発明は、2−ニトロ−1,3−ジオール誘導体を提供することであり、不斉源を持たないアルデヒドおよびニトロエタノールから、1工程で目的の光学活性2−ニトロ−1,3−ジオール誘導体を得るための製造法を提供することである。
【0005】
【課題を解決する為の手段】
本発明は下記の(1)ないし(4)の構成を有している
【0006】
(1) 式[5]で表されるアルデヒドとニトロエタノールとを、式[6]もしくは式[7]で表される光学活性1,1’−ビ−ナフトール類、希土類金属およびアルカリ金属から調製された塩基性触媒存在下で反応させることを特徴とする式[1]で表される光学活性2−ニトロ−1,3−ジオール誘導体の製造方法
【0007】

Figure 0003826425
【0008】
Figure 0003826425
【0009】
Figure 0003826425
【0010】
Figure 0003826425
【0011】
式中、Rは炭素数12〜18のアルキル基もしくはアルケニル基を表す。
R’は、水素、アルキル基、フェニル基、ハロゲン原子、トリアルキルシリルエチニル基、シアノ基を表し、お互いに同一でも異なっていてもかまわない。
【0012】
(2) 式[2]で表される(2S,3S)−2−ニトロ−1,3−ジオール誘導体であることを特徴とする前記第(1)項記載の光学活性2−ニトロ−1,3−ジオール誘導体の製造方法
【0013】
Figure 0003826425
【0014】
式中、Rは炭素数12〜18のアルキル基もしくはアルケニル基を表す。
【0015】
(3) 式[3]で表される(2R,3R)−2−ニトロ−1,3−ジオール誘導体であることを特徴とする前記第(1)項記載の光学活性2−ニトロ−1,3−ジオール誘導体の製造方法
【0016】
Figure 0003826425
【0017】
式中、Rは炭素数12〜18のアルキル基もしくはアルケニル基を表す。
【0018】
(4) 式[4]で表されるスレオ(2S,3S)−2−ニトロ−1,3−オクタデカンジオールであることを特徴とする前記第(1)項もしくは前記第(2)項記載の光学活性2−ニトロ−1,3−ジオール誘導体の製造方法
【0019】
Figure 0003826425
【0020】
本発明の2−ニトロ−1,3−ジオール誘導体の製造方法は、次の反応である
【0021】
Figure 0003826425
【0022】
上記の反応式は、塩基性触媒の存在下で、アルデヒドとニトロエタノールを立体選択的に付加反応させ、2位および3位の立体配置を制御しながら光学活性な2−ニトロ−1,3−ジオール誘導体を生成する反応である第1工程と、さらに得られた該誘導体の立体配置を維持したままニトロ基をアミノ基へと還元し、2−アミノ−1,3−ジオール誘導体を生成する反応である第2工程を示したものである。
発明の2−ニトロ−1,3−ジオール誘導体の製造法は、第1工程の製法である。
【0023】
第1工程において用いられる塩基性触媒は、式[8]
M(OR”)3
(式中、Mは、ランタン、プラセオジウム、ネオジウム、ユーロピウム、ガドリウム、ジスプロシウム、エルビウム、イッテルビウム、イットリウム等の希土類金属を表し、R”は炭素数1〜8の置換アルキル基を表す。)
によって表される化合物と式[6]
【0024】
Figure 0003826425
【0025】
もしくは式[7]
【0026】
Figure 0003826425
【0027】
によって表される光学活性1,1’−ビ−2−ナフトール(以下、ビナフトールと言う。
)とアルカリ金属化合物によって調製することができる。
また、ビナフトールは、ビナフトールの5,6,7,8位および5’,6’,7’,8’位に、水素原子、(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基等)のアルキル基、フェニル基、(クロロ、ブロモ等)のハロゲン原子、(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基等のアルキル基を有する)トリアルキルシリルエチニル基、トリフェニルシリルエチニル基、シアノ基等の置換基が付加したものを挙げることができ、該置換基および該置換基の付加位置は5,6,7,8位および5’,6’,7’,8’位であれば特に限定はないが、6,6’位に前記置換基(二つの置換基は同一でも異なっていてもかまわない。)を有するビナフトールが好ましい。
【0028】
アルカリ金属化合物としては、(メチルリチウム、t−ブチルリチウム等の)アルキルアルカリ金属類、(水酸化リチウム、水酸化ナトリウムおよび水酸化カリウム等の)水酸化アルカリを挙げることができるが、n−ブチルリチウムや水酸化リチウムが好ましい。
【0029】
第1工程において用いられる塩基性触媒は、原料としてのアルデヒドに対し、0.005〜0.1モル当量程度で充分反応を完結させることができるが、穏和な条件で短時間に反応を完結させるために、0.1モル当量を越える量使用しても差し支えない。
【0030】
第1工程において用いられるアルデヒドは、式[5]
【0031】
Figure 0003826425
【0032】
(式中、Rは炭素数12〜18のアルキル基もしくはアルケニル基を表す。)
で表されるものであるが、ジヒドロスフィンゴシンの製造原料となるCH3(CH214CHOが好ましい。
【0033】
第1工程において用いられるニトロエタノールは、アルデヒドに対して、1〜10モル当量使用することにより、収率の高い反応が進行するが、10モル当量を越えるニトロエタノールを使用しても副反応等の悪影響は少ない。
【0034】
第1工程において用いられる反応溶媒としては、反応条件下において原料であるアルデヒドやニトロエタノールと反応しないものであれば特に限定はない。
具体的には、水、(メタノール、エタノール、イソプロパノールおよびエチレングリコール等の)アルコール系溶媒、(ジエチルエーテル、テトラヒドロフラン(以下、THFという。)、1,4−ジオキサン等の)エーテル系溶媒、(塩化メチレン、クロロホルム、1,1,1−トリクロロエタンおよびモノクロロベンゼン等の)ハロゲン系溶媒、(ベンゼン、トルエン、n−ヘキサン及びn−ヘプタン等の)炭化水素系溶媒、(酢酸エチル、酢酸メチル等の)脂肪酸エステルやジメチルスルホキシド、N,N−ジメチルホルムアミド等の極性溶媒を挙げることができる。これらの溶媒は、単独もしくは2種類以上混合物として使用して差し支えない。
また、本発明の製造法である第1工程は、−100℃〜室温の間で反応を行うと良い。
【0035】
本発明の2−アミノ−13−ジオール誘導体の製造方法である第2工程は、本発明の2−ニトロ−1,3−ジオール誘導体を中間体として、最終製品である2−アミノ−13−ジオール誘導体を得るための工程であり、Pt−CやPd−C等の一般的な水添触媒を用いた接触水添反応やリチウムボロハイドライドなどを用いた還元反応である。これらの反応により、容易にニトロ基をアミノ基に変換することができる。その時、温度を室温以下に保つと、立体配置をかえることなく目的の化合物に還元することができる。
【0036】
【実施例】
以下、本発明2−ニトロ−1,3−ジオール誘導体の製造法を参考例および実施例を用いて詳細に説明する。なお、本実施例は本発明をなんら限定するものではない。
【0037】
(参考例1)塩基性触媒の調製法
(R)−6,6’−ビス(トリエチルシリルエチニル)−1,1’−ビ−2−ナフトール58.0mg(0.103mmol)を50℃で2時間真空乾燥させた後、アルゴン気流下で、該ビナフトールをTHF880マイクロリットルに溶解した。次に、該溶解液を0℃に保ちながら、該溶解液にLa(O−i−Pr)310.9mg(0.0344mmol)の0.2NのTHF溶液を172マイクロリットル滴下した。その後、該溶解液を室温にまで昇温させ、室温において30分間の撹拌を行った後、再び0℃にまで冷やし、0℃においてn−BuLi(0.103mmol)の1.72Nのヘキサン溶液を60マイクロリットル滴下する。その後、室温に戻し1晩撹拌を行った後、水分(0.035mmol)を含むTHF溶液を35マイクロリットル加えることにより、0.03Nの塩基性触媒のTHF溶液(触媒1)を調製した。
【0038】
(実施例1)
(2S,3S)−2−ニトロ−1,3−オクタデカンジオールの合成
参考例1で調整した400マイクロリットル(0.0012mmol)の触媒1と70マイクロリットルのTHFを、−40℃で30分間攪拌した後、同温度でニトロエタノールを26マイクロリットル(0.36mmol)加えて1時間攪拌し、さらにヘキサデカナール28.9mg(0.12mmol)を含む300マイクロリットルのTHF溶液を添加し、163時間反応させ、1Nの塩酸を加えて反応を終了させた後、クロロホルム30ミリリットルで抽出操作を行った。得られた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した後、フラッシュクロマトグラフィ(SiO2、アセトン/ヘキサン=1/5)で精製し、白色結晶の(2S,3S)−2−ニトロ−1,3−オクタデカンジオール(化合物A)を得た。化合物Aの収率は78モル%であった。ジアステレオ選択性は1HNMRで確認した。
白色結晶、融点89.5-90.5℃(98%ee、エーテル−ヘキサン)、IR(KBr)3356,1561,1396cm-1
1HNMR(CDCl3)δ0.89(t,J=6.8Hz,3H),1.23-1.62(m,28H),2.26(br-dd,J=6.0,6.5Hz,1H)、2.34(d,J=7.4Hz,1H),4.03-4.25(m,3H),4.59(ddd,J=3.8,5.1,6.4Hz,1H)、13CNMR(CDCl3)δ14.11,22.70,25.29,29.27,29.36,29.44,29.53,29.60,29.65,31.92,33.62,61.91,70.42,92.06、FABMS(glycearol)m/z 332(M+1),285,41(base peak)元素分析C1837NO4 理論値C,65.22、H,11.25、N,4.23、実測値C,65.20、H,11.37、N,4.03、[α]D 26 -4.62゜(c0.93,CHCl3)(98%ee)
光学過剰量はHPLC(ダイセル化学工業製CHIRALPAK AD,i-PrOH/hEXANE=5/95)で決定した。
【0039】
(2S,3S)−2−アミノ−1,3オクタデカンジオール(化合物B)の合成
水素気流下で10%のPd−C(10mg)をエタノール0.4ミリリットルに分散させた後、該分散液に29mg(0.087mmol,96%ee)の化合物Aを含有するエタノール溶液を1.1ミリリットル添加し、室温で25時間反応させた。反応終了後、反応溶液をセライトろ過し、ろ液を減圧操作により濃縮した。濃縮物をフラッシュクロマトグラフィ(SiO2、CHCl3/6.6%NH3MeOH=100/17)で精製して、18.7mgの化合物Bを得た。化合物Bの収率は71モル%であった。
次に、化合物Bを酢酸エチルで再結晶し、旋光度を測定した。[α]D 23−11.05゜(c0.29,CHCl/MeOH=10/1、97%ee)lit.[α]D 28−12.0゜(Stoffel,W. Bister,K. Hoppe-Seyler's Z. Physiol.Chem.1973,354,169-181)
絶対配置を確認するために、13.7mg(0.0454mmol)の化合物Bと4−メチルアミノピリジンとピリジンを含有した塩化メチレン1ミリリットル溶液を攪拌しながら、ベンゾイルクロライド52マイクロリットル(0.454mmol)を添加した。室温で18時間攪拌して反応させ、メタノールを加えて反応を終了させた後、ジエチルエーテルで抽出作業を行なって得た有機層を1N塩酸と飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。その溶媒を減圧留去後、フラッシュクロマトグラフィ(SiO2、酢酸エチル/ヘキサン=1/10)で精製して2−アミノ−1,3−オクタデカンジオール N,O,O−トリベンゾエートを26mg(収率94モル%)得た。この物の1HNMRと市販のDL−スレオ−2−アミノ−1,3−オクタデカンジオール N,O,O−トリベンゾエート(Sigma社製)を比較した。
透明粘性オイル、IR(neat)3354,3063,2924,2853,1722,1644,1109,1070,1027cm-11HNMR(CDCl3)δ0.88(t,J=6.2Hz,3H),1.17-1.52(m,26H),1.78-1.96(m,2H),4.49(dd,J=5.0,11.4Hz,1H),4.57(dd,J=6.0,11.4Hz,1H),4.89(dddd,J=5.0,5.0,6.0,9.4Hz,1H), 5.55(dt,J=5.0,7.1Hz,1H),6.65(br-d,J=9.4Hz,1H),7.34-7.61(m,9H),7.70-7.77(m,2H),7.95-8.06(m,4H)、13CNMR(CDCl3)δ14.09,22.66,25.21,29.27,29.33,29.49,29.49,29.56,29.63,31.56,31.90,51.38,64.40,73.57,126.88,128.39,128.50,128.64,129.65,131.64,133.15,133.30,134.12,166.41,166.50,167.44、MS m/z 613(M+),146(base peak),
105
【0040】
【発明の効果】
医薬品の中間体として有用な2−アミノ−1,3−ジオール誘導体を合成するのに、大変有用な2−ニトロ−1,3−ジオール誘導体と該誘導体を容易にかつ収率良く得ることのできる製造法を開発することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a 2-nitro-1,3-diol derivative and a method for producing the derivative. More specifically, a 2-nitro-1,3-diol derivative which is an intermediate suitable for efficiently obtaining an optically active aminodiol typified by dihydrosphingosine useful as an inhibitor of protein kinase C as a pharmaceutical, and the like The present invention relates to a method for producing a derivative.
[0002]
[Background]
Optically active amino diol can usually be obtained by aldol reaction, but since a racemate is synthesized as a product, the target product must be racemically resolved from the product, which is very laborious and yields. Has the disadvantage of being low. Examples of this method include J. CHEM. SOC. PERKIN TRANS. When I (1986) 1687-1986 is reacted with nitroethanol and an aldehyde with a nitroaldol reaction, a racemic diastereomeric mixture is obtained. After the mixture is acetonated, the desired optical activity is obtained by racemic resolution. A method of obtaining a compound is disclosed.
[0003]
There is also a method for synthesizing an optically active aminodiol based on an optically active raw material. As an example of this method, Agric. Biol. Chem. 51 (7), (1987), 1973-1982, an optically active epoxy obtained by sharp pressing oxidation of a 2-en-1-ol compound is used as an optically active raw material, and an amine is reacted with the epoxy. A method of making it happen is disclosed. However, in this method, a compound having an amino group at a position different from that of the target optically active aminodiol is also produced, so that a division operation must be performed and the yield is low.
[0004]
[Problems to be solved by the invention]
As a result of intensive studies to solve the above problems, the present inventors have found that when a 2-nitro-1,3-diol derivative is used as an intermediate, the objective optically active 2-amino-1,3- The present inventors have found that a diol derivative can be produced efficiently and completed the present invention.
The present invention provides a 2-nitro-1,3-diol derivative, which is a target optically active 2-nitro-1,3-diol derivative in one step from aldehyde and nitroethanol having no asymmetric source. It is to provide a manufacturing method for obtaining the above.
[0005]
[Means for solving the problems]
The present invention has the following configurations (1) to (4) .
[0006]
(1) An aldehyde represented by formula [5] and nitroethanol are prepared from optically active 1,1′-binaphthols represented by formula [6] or formula [7], rare earth metals and alkali metals. A method for producing an optically active 2-nitro-1,3-diol derivative represented by the formula [1] , wherein the reaction is carried out in the presence of a prepared basic catalyst .
[0007]
Figure 0003826425
[0008]
Figure 0003826425
[0009]
Figure 0003826425
[0010]
Figure 0003826425
[0011]
In the formula, R represents an alkyl group or alkenyl group having 12 to 18 carbon atoms.
R ′ represents hydrogen, an alkyl group, a phenyl group, a halogen atom, a trialkylsilylethynyl group, or a cyano group, and may be the same or different from each other.
[0012]
(2) The optically active 2-nitro-1, as described in (1) above, which is a (2S, 3S) -2-nitro-1,3-diol derivative represented by the formula [2] A method for producing a 3-diol derivative.
[0013]
Figure 0003826425
[0014]
In the formula, R represents an alkyl group or alkenyl group having 12 to 18 carbon atoms.
[0015]
(3) The optically active 2-nitro-1, as described in (1) above, which is a (2R, 3R) -2-nitro-1,3-diol derivative represented by the formula [3] A method for producing a 3-diol derivative.
[0016]
Figure 0003826425
[0017]
In the formula, R represents an alkyl group or alkenyl group having 12 to 18 carbon atoms.
[0018]
(4) The threo (2S, 3S) -2-nitro-1,3-octadecanediol represented by the formula [4] , the item (1) or the item (2) A method for producing an optically active 2-nitro-1,3-diol derivative.
[0019]
Figure 0003826425
[0020]
Method for producing a 2-nitro-1,3-diol derivatives of the present invention is the following reaction.
[0021]
Figure 0003826425
[0022]
In the above reaction formula, aldehyde and nitroethanol are stereoselectively added in the presence of a basic catalyst, and the optically active 2-nitro-1,3-3- is controlled while controlling the configuration at the 2- and 3-positions. The first step, which is a reaction for producing a diol derivative, and a reaction for producing a 2-amino-1,3-diol derivative by reducing the nitro group to an amino group while maintaining the configuration of the obtained derivative. The 2nd process which is is shown.
The production method of the 2-nitro-1,3-diol derivative of the present invention is the production method of the first step.
[0023]
The basic catalyst used in the first step is represented by the formula [8].
M (OR ") 3
(In the formula, M represents a rare earth metal such as lanthanum, praseodymium, neodymium, europium, gadolinium, dysprosium, erbium, ytterbium, yttrium, and R ″ represents a substituted alkyl group having 1 to 8 carbon atoms.)
And a compound represented by the formula [6]
[0024]
Figure 0003826425
[0025]
Or the formula [7]
[0026]
Figure 0003826425
[0027]
The optically active 1,1′-bi-2-naphthol represented by (hereinafter referred to as binaphthol).
) And an alkali metal compound.
Binaphthol has hydrogen atoms (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s) at the 5, 6, 7, 8 position and 5 ′, 6 ′, 7 ′, 8 ′ position of binaphthol. -Butyl group, t-butyl group, etc.) alkyl group, phenyl group, (chloro, bromo etc.) halogen atom, (methyl group, ethyl group, propyl group, isopropyl group, butyl group, s-butyl group, t- And those having a substituent such as a trialkylsilylethynyl group, a triphenylsilylethynyl group, or a cyano group (having an alkyl group such as a butyl group) added. There is no particular limitation as long as it is in the 6,7,8 position and 5 ′, 6 ′, 7 ′, 8 ′ position, but the substituents in the 6,6 ′ position (the two substituents may be the same or different). Is not preferred.) .
[0028]
Examples of the alkali metal compound include alkyl alkali metals (such as methyl lithium and t-butyl lithium) and alkali hydroxides (such as lithium hydroxide, sodium hydroxide and potassium hydroxide), but n-butyl. Lithium and lithium hydroxide are preferred.
[0029]
The basic catalyst used in the first step can sufficiently complete the reaction at about 0.005 to 0.1 molar equivalent to the aldehyde as a raw material, but completes the reaction in a short time under mild conditions. Therefore, an amount exceeding 0.1 molar equivalent may be used.
[0030]
The aldehyde used in the first step is represented by the formula [5].
[0031]
Figure 0003826425
[0032]
(In the formula, R represents an alkyl or alkenyl group having 12 to 18 carbon atoms.)
However, CH 3 (CH 2 ) 14 CHO, which is a raw material for producing dihydrosphingosine, is preferable.
[0033]
The nitroethanol used in the first step proceeds at a high yield by using 1 to 10 molar equivalents relative to the aldehyde, but side reactions and the like even if nitroethanol exceeding 10 molar equivalents is used. There are few adverse effects.
[0034]
The reaction solvent used in the first step is not particularly limited as long as it does not react with the raw material aldehyde or nitroethanol under the reaction conditions.
Specifically, water, alcohol solvents (such as methanol, ethanol, isopropanol and ethylene glycol), ether solvents (such as diethyl ether, tetrahydrofuran (hereinafter referred to as THF), 1,4-dioxane), Halogenated solvents (such as methylene, chloroform, 1,1,1-trichloroethane and monochlorobenzene), hydrocarbon solvents (such as benzene, toluene, n-hexane and n-heptane), (such as ethyl acetate, methyl acetate) Examples include polar solvents such as fatty acid esters, dimethyl sulfoxide, and N, N-dimethylformamide. These solvents may be used alone or as a mixture of two or more.
Moreover, the 1st process which is a manufacturing method of this invention is good to react between -100 degreeC-room temperature.
[0035]
2-amino-1 of the present invention, the second step is a method for producing 3-diol derivative, the 2-nitro-1,3-diol derivatives of the present invention as an intermediate, is the final product 2-amino-1 , 3-diol derivatives, a catalytic hydrogenation reaction using a general hydrogenation catalyst such as Pt—C or Pd—C, or a reduction reaction using lithium borohydride. By these reactions, a nitro group can be easily converted into an amino group. At that time, if the temperature is kept at room temperature or lower, the compound can be reduced to the target compound without changing the configuration.
[0036]
【Example】
Hereafter, the manufacturing method of the 2-nitro- 1, 3-diol derivative of this invention is demonstrated in detail using a reference example and an Example. In addition, a present Example does not limit this invention at all.
[0037]
Reference Example 1 Preparation Method of Basic Catalyst 2R of 58.0 mg (0.103 mmol) of (R) -6,6′-bis (triethylsilylethynyl) -1,1′-bi-2-naphthol at 50 ° C. After being vacuum-dried for an hour, the binaphthol was dissolved in 880 microliters of THF under an argon stream. Next, 172 microliters of a solution of La (Oi-Pr) 310.9 mg (0.0344 mmol) in 0.2N THF was added dropwise to the solution while keeping the solution at 0 ° C. Thereafter, the solution was heated to room temperature, stirred for 30 minutes at room temperature, then cooled to 0 ° C. again, and a 1.72N hexane solution of n-BuLi (0.103 mmol) was added at 0 ° C. Add 60 microliters dropwise. After returning to room temperature and stirring overnight, 35 microliters of a THF solution containing water (0.035 mmol) was added to prepare a THF solution (catalyst 1) of 0.03N basic catalyst.
[0038]
Example 1
Synthesis of (2S, 3S) -2-nitro-1,3-octadecanediol 400 microliters (0.0012 mmol) of catalyst 1 prepared in Reference Example 1 and 70 microliters of THF were stirred at −40 ° C. for 30 minutes. Then, 26 microliters (0.36 mmol) of nitroethanol was added at the same temperature and stirred for 1 hour, and 300 microliters of THF solution containing 28.9 mg (0.12 mmol) of hexadecanal was further added, and 163 hours. After the reaction, 1N hydrochloric acid was added to terminate the reaction, extraction was performed with 30 ml of chloroform. The obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure, and the residue was purified by flash chromatography (SiO 2, acetone / hexane = 1/5) to give white crystalline ( 2S, 3S) -2-nitro-1,3-octadecanediol (Compound A) was obtained. The yield of Compound A was 78 mol%. Diastereoselectivity was confirmed by 1 HNMR.
White crystals, melting point 89.5-90.5 ° C (98% ee, ether-hexane), IR (KBr) 3356,1561,1396cm -1
1 HNMR (CDCl 3) δ 0.89 (t, J = 6.8 Hz, 3H), 1.23-1.62 (m, 28H), 2.26 (br-dd, J = 6.0, 6.5 Hz, 1H), 2.34 (d, J = 7.4 Hz, 1H), 4.03-4.25 (m, 3H), 4.59 (ddd, J = 3.8, 5.1, 6.4 Hz, 1H), 13 C NMR (CDCl3) δ 14.11, 22.70, 25.29, 29.27, 29.36, 29.44, 29.53, 29.60, 29.65, 31.92, 33.62, 61.91, 70.42, 92.06, FABMS (glycearol) m / z 332 (M + 1), 285, 41 (base peak) elemental analysis C 18 H 37 NO 4 Theoretical value C, 65.22 , H, 11.25, N, 4.23, measured C, 65.20, H, 11.37, N, 4.03, [α] D 26 -4.62 ° (c0.93, CHCl3) (98% ee)
The optical excess amount was determined by HPLC (CHIRALPAK AD, i-PrOH / hEXANE = 5/95 manufactured by Daicel Chemical Industries).
[0039]
Synthesis of (2S, 3S) -2-amino-1,3 octadecanediol (Compound B) 10% Pd—C (10 mg) was dispersed in 0.4 ml of ethanol under a hydrogen stream, 1.1 ml of an ethanol solution containing 29 mg (0.087 mmol, 96% ee) of Compound A was added and reacted at room temperature for 25 hours. After completion of the reaction, the reaction solution was filtered through celite, and the filtrate was concentrated under reduced pressure. The concentrate was purified by flash chromatography (SiO2, CHCl3 / 6.6% NH3MeOH = 100/17) to give 18.7 mg of compound B. The yield of compound B was 71 mol%.
Next, Compound B was recrystallized with ethyl acetate, and the optical rotation was measured. [Α] D 23 -11.05 ° (c0.29, CHCl 3 /MeOH=10/1,97%ee)lit.[α] D 28 -12.0 ° (Stoffel, W. Bister, K . Hoppe -Seyler's Z. Physiol.Chem. 1973, 354, 169-181)
To confirm the absolute configuration, 52 microliters (0.454 mmol) of benzoyl chloride was stirred while stirring a 1 ml solution of methylene chloride containing 13.7 mg (0.0454 mmol) of Compound B, 4-methylaminopyridine and pyridine. Was added. The reaction was stirred for 18 hours at room temperature, and the reaction was completed by adding methanol, followed by extraction with diethyl ether. The organic layer obtained was washed with 1N hydrochloric acid and saturated brine, and then dried over anhydrous sodium sulfate. I let you. The solvent was distilled off under reduced pressure and purified by flash chromatography (SiO 2 , ethyl acetate / hexane = 1/10) to obtain 26 mg of 2-amino-1,3-octadecanediol N, O, O-tribenzoate (yield) 94 mol%). 1 HNMR of this product was compared with commercially available DL-threo-2-amino-1,3-octadecanediol N, O, O-tribenzoate (manufactured by Sigma).
Transparent viscous oil, IR (neat) 3354,3063,2924,2853,1722,1644,1109,1070,1027 cm −1 , 1 HNMR (CDCl 3 ) δ0.88 (t, J = 6.2Hz, 3H), 1.17- 1.52 (m, 26H), 1.78-1.96 (m, 2H), 4.49 (dd, J = 5.0,11.4Hz, 1H), 4.57 (dd, J = 6.0,11.4Hz, 1H), 4.89 (dddd, J = 5.0,5.0,6.0,9.4Hz, 1H), 5.55 (dt, J = 5.0,7.1Hz, 1H), 6.65 (br-d, J = 9.4Hz, 1H), 7.34-7.61 (m, 9H), 7.70 -7.77 (m, 2H), 7.95-8.06 (m, 4H), 13 C NMR (CDCl3) δ 14.09, 22.66, 25.21, 29.27, 29.33, 29.49, 29.49, 29.56, 29.63, 31.56, 31.90, 51.38, 64.40, 73.57,126.88,128.39,128.50,128.64,129.65,131.64,133.15,133.30,134.12,166.41,166.50,167.44, MS m / z 613 (M + ), 146 (base peak),
105
[0040]
【The invention's effect】
A very useful 2-nitro-1,3-diol derivative and the derivative can be easily obtained in a high yield for synthesizing a 2-amino-1,3-diol derivative useful as an intermediate of a pharmaceutical product. A manufacturing method could be developed.

Claims (4)

式[5]で表されるアルデヒドとニトロエタノールとを、式[6]もしくは式[7]で表される光学活性1,1’−ビ−ナフトール類、希土類金属およびアルカリ金属から調製された塩基性触媒存在下で反応させることを特徴とする式[1]で表される光学活性2−ニトロ−1,3−ジオール誘導体の製造方法
Figure 0003826425
Figure 0003826425
Figure 0003826425
Figure 0003826425
式中、Rは炭素数12〜18のアルキル基もしくはアルケニル基を表す。
R’は、水素、アルキル基、フェニル基、ハロゲン原子、トリアルキルシリルエチニル基、シアノ基を表し、お互いに同一でも異なっていてもかまわない。
A base prepared from an aldehyde represented by the formula [5] and nitroethanol from an optically active 1,1′-binaphthol represented by the formula [6] or the formula [7], a rare earth metal and an alkali metal A method for producing an optically active 2-nitro-1,3-diol derivative represented by the formula [1], wherein the reaction is carried out in the presence of a neutral catalyst .
Figure 0003826425
Figure 0003826425
Figure 0003826425
Figure 0003826425
In the formula, R represents an alkyl group or alkenyl group having 12 to 18 carbon atoms.
R ′ represents hydrogen, an alkyl group, a phenyl group, a halogen atom, a trialkylsilylethynyl group, or a cyano group, and may be the same or different from each other.
式[2]で表される(2S,3S)−2−ニトロ−1,3−ジオール誘導体であることを特徴とする請求項1記載の光学活性2−ニトロ−1,3−ジオール誘導体の製造方法
Figure 0003826425
式中、Rは炭素数12〜18のアルキル基もしくはアルケニル基を表す。
Represented by the formula [2] (2S, 3S) -2-nitro-1,3-diol derivative optically active 2-nitro-1,3-diol derivative according to claim 1, wherein it is Way .
Figure 0003826425
In the formula, R represents an alkyl group or alkenyl group having 12 to 18 carbon atoms.
式[3]で表される(2R,3R)−2−ニトロ−1,3−ジオール誘導体であることを特徴とする請求項1記載の光学活性2−ニトロ−1,3−ジオール誘導体の製造方法
Figure 0003826425
式中、Rは炭素数12〜18のアルキル基もしくはアルケニル基を表す。
Represented by the formula [3] (2R, 3R) -2-nitro-1,3-diol derivative optically active 2-nitro-1,3-diol derivative according to claim 1, wherein it is Way .
Figure 0003826425
In the formula, R represents an alkyl group or alkenyl group having 12 to 18 carbon atoms.
式[4]で表されるスレオ(2S,3S)−2−ニトロ−1,3−オクタデカンジオールであることを特徴とする請求項1もしくは請求項2記載の光学活性2−ニトロ−1,3−ジオール誘導体の製造方法
Figure 0003826425
The optically active 2-nitro-1,3 according to claim 1 or 2, which is threo (2S, 3S) -2-nitro-1,3-octadecanediol represented by the formula [4]. -Method for producing a diol derivative.
Figure 0003826425
JP9026996A 1996-03-19 1996-03-19 Method for producing optically active 2-nitro-1,3-diol derivative Expired - Fee Related JP3826425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9026996A JP3826425B2 (en) 1996-03-19 1996-03-19 Method for producing optically active 2-nitro-1,3-diol derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9026996A JP3826425B2 (en) 1996-03-19 1996-03-19 Method for producing optically active 2-nitro-1,3-diol derivative

Publications (2)

Publication Number Publication Date
JPH09255632A JPH09255632A (en) 1997-09-30
JP3826425B2 true JP3826425B2 (en) 2006-09-27

Family

ID=13993798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9026996A Expired - Fee Related JP3826425B2 (en) 1996-03-19 1996-03-19 Method for producing optically active 2-nitro-1,3-diol derivative

Country Status (1)

Country Link
JP (1) JP3826425B2 (en)

Also Published As

Publication number Publication date
JPH09255632A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
KR20020062669A (en) Process of preparing tolterodine and analogues thereof as well as intermediates prepared in the process
RU2470018C2 (en) New pyrocatechol derivatives
JP3826425B2 (en) Method for producing optically active 2-nitro-1,3-diol derivative
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
US6403804B1 (en) Process for preparing optically active oxazolidinone derivative
WO2012085474A1 (en) Process for preparing chiral amino acids
HU191824B (en) Process for producing new pyridine and pyrimidine derivatives utilizable as intermediares producing antiflogistic and immunkregulating compounds
JPH0428268B2 (en)
WO2021002407A1 (en) Fluoroalkyl group-containing compound and production method therefor
JP2003313153A (en) Method for producing optically active 2-acylated 1,2-diol compound derivative
KR101165891B1 (en) Method of preparing ß-sustituted chiral g-lactol,g-lactone and 3-substituted chiral tetrahydrofurane and chiral g-lactol, g-lactone and chiral tetrahydrofurane prepared by thereof
JP2012184229A (en) Process for enantioselective synthesis of landiolol
JP2004300070A (en) Acetal adduct of muscone, method for preparing the adduct, and method for optical resolution of (±)-muscone
JP7128629B2 (en) Method for producing lubiprostone
KR101506297B1 (en) Method for the stereoselective preparation of 2-substituted morpholine derivatives
JP4213435B2 (en) Method for producing optically active amine derivative
KR100215549B1 (en) Optically pure c2-symmetric tetrahydro 4,4'-bioxazolines and their preparation
KR101237531B1 (en) A catalyst for preparation of all-carbon quaternary stereocenter compound and a method for preparation thereof
JP2002255933A (en) Method for producing optically active 7-amino-5- azaspiro[2.4]heptane
JPS60500133A (en) Method for producing cycloaddition compounds
JP5082091B2 (en) Preparation of oxazoline compounds
JP2005008530A (en) Method for producing hexahydrofurofuranol derivative and intermediate therefor and method for producing the same
KR20130106908A (en) SYNTHESIS OF 4-SUBSTITUTED CHIRAL CHROMANOLS BY USING MALONIC ESTER AND O-HYDROXYAROMATIC α,β-UNSATURATED ALDEHYDES
FR2772027A1 (en) Preparation of S- and R-isomers of 2-mercaptomethyl-3-aryl propanoic acid by asymmetric reduction of an aryl propenoic acid
JPH09255631A (en) Catalyst composition for asymmetric synthesis, production of the same and production of asymmetric nitroalcohol by using the same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 19960418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19970228

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 19991021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees