JP3826204B2 - Electric vehicle tangential force coefficient estimation device - Google Patents

Electric vehicle tangential force coefficient estimation device Download PDF

Info

Publication number
JP3826204B2
JP3826204B2 JP06193898A JP6193898A JP3826204B2 JP 3826204 B2 JP3826204 B2 JP 3826204B2 JP 06193898 A JP06193898 A JP 06193898A JP 6193898 A JP6193898 A JP 6193898A JP 3826204 B2 JP3826204 B2 JP 3826204B2
Authority
JP
Japan
Prior art keywords
information
output
coefficient
tangential force
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06193898A
Other languages
Japanese (ja)
Other versions
JPH11252716A (en
Inventor
潔 大石
建 中野
一郎 宮下
忍 保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP06193898A priority Critical patent/JP3826204B2/en
Publication of JPH11252716A publication Critical patent/JPH11252716A/en
Application granted granted Critical
Publication of JP3826204B2 publication Critical patent/JP3826204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、電気車の粘着力の有効利用を図った再粘着制御方法を実現する上で必要となる電気車の接線力係数推定装置に関するものである。
【0002】
【従来の技術】
電気車は車輪・レール間の接線力(粘着力ともいう)によって加減速を行っているが、この接線力は、一般にすべり速度に対して図4に破線で示すような特性を有している。この接線力を軸重(車軸1軸当たりのレールに加わる垂直荷重)で割ったものを接線力係数、接線力の最大値を軸重で割ったものを粘着係数という。図示の如く、接線力の最大値を超えないトルクを主電動機で発生している場合は、空転・滑走は発生せず、接線力の最大値より左側の微小なすべり速度で電気車は走行する。もし最大値より大きいトルクを発生するとすべり速度は増大し、接線力が低下するのでますますすべり速度が増大する空転・滑走状態になるが、車輪及びレールが乾燥状態では主電動機で発生するトルクは接線力の最大値を超えないように車両の性能が設定されるので、空転・滑走は発生しない。
【0003】
しかし、実線で示す如く、レール面が雨等によって湿潤状態にある場合は、粘着係数が低下して接線力の最大値が車両の設定性能に対応した主電動機の発生トルクより小さくなる。この場合、すべり速度が増大し空転状態になり、そのまま放置するとこれに対応して接線力が低下し、車両の加速に必要な加速力がますます低下してしまうので、迅速に空転・滑走を検出し、主電動機が発生するトルクを低減して再粘着させることが必要になる。このようにトルクの制御を行って再粘着させる場合、小さなすべり速度に抑制しつつ、主電動機の発生トルクが極力接線力の最大値近傍の値になるように制御することが、電気車の加減速性能を高める上で必要である。
【0004】
このような再粘着制御の実現を目的とした装置として、主電動機の回転周波数(回転速度)を検出し、これからその時間変化率、すなわち動軸加速度を求めて空転・滑走を検出するとともに、動軸加速度からそのときの主電動機トルクに対応した粘着係数からの低下分を推定することによって粘着係数を推定し、再粘着後に推定した粘着係数に対応したトルクを主電動機で発生するようにした再粘着制御装置がある。
【0005】
【発明が解決しようとする課題】
しかしこの装置の場合、空転・滑走を誤検知することなく確実に検出するためには、特に軸加速度の各演算時点毎の変動を小さく抑制することが必要で、軸加速度の演算間隔を長くすることが一般に用いられている。そのため軸加速度の演算に大きな遅れが発生し、さらに空転・滑走を確実に検出するための閾値との関係から、空転・滑走検出時には空転・滑走速度が大きくなってしまって、図3に示すようにその時点で粘着係数を推定しても、実際には粘着係数ではなくすべり速度が大きくなったときの接線力係数を推定することになり、粘着係数よりは小さな値になっている。
【0006】
またこのように大きな遅れをともなって軸加速度を演算しても、なお演算時間毎の軸加速度の演算値の変動が大きいため、接線力係数の推定値も大きく変動することになる。この接線力係数を用いて再粘着制御を行うため、接線力係数の最大値近傍でのトルク制御が実現できない。さらに、空転・滑走を検出してからすべり速度を小さくするために、すなわち再粘着させるために、主電動機での発生トルクを低減した後、推定粘着係数相当のトルクに復帰させる制御を行うことによって、乗り心地が悪化することが考えられる。このように、従来の接線力係数の推定方法では、良好な乗り心地を保ちつつ粘着力の有効利用が可能な再粘着制御が実現できない。
【0007】
このように、各演算時点毎の軸加速度の変動を抑制するために、演算時間間隔を大きくして求めた軸加速度を用いて、空転・滑走を検出し、その時の接線力係数を推定する方法では、空転・滑走検出時の接線力しか推定できないことと、一般に空転・滑走検出感度との関係から、空転・滑走が大きくなった、すなわちすべり速度の大きいときの接線力係数の推定にしかならないので、この接線力の推定値を用いて再粘着制御しても、接線力の最大値に対応したトルクを発生することができないので、十分に粘着力の有効利用可能な再粘着制御にはならないことと、空転・滑走を検出してトルクを制御する間欠制御であるため、乗り心地の悪化を招くきらいがある。
本発明は上述した点に鑑みて創案されたもので、その目的とするところは、これらの欠点を解決し、主電動機の回転角速度の各演算時点毎に接線力係数を精度良く推定する方法を提供することであり、本推定方法を用いてトルク制御を行うことによって、良好な乗り心地を保ちつつ粘着力の有効利用が可能な再粘着制御が実現できる電気車の接線力係数推定装置を提供することにある。
【0008】
【課題を解決するための手段】
つまり、その目的を達成するための手段は、
電気車の主電動機軸の回転角速度情報に該電動機回転子軸に換算した回転系の全慣性を乗算する第1の係数器4と、該係数器4の出力情報に積分器6のゲイン定数を乗算する第2の係数器5を具え、該第2係数器出力情報を第1の情報とし、前記主電動機の発生トルクの演算値または計測値である第2の情報を加算する入力加算器3と、該加算器3の出力情報を入力情報とする積分器6と、該積分器出力の符号を反転した情報を前記入力加算器3に帰還して得られる積分器出力を第3の情報とし、該第3情報と前記第1情報の符号を反転した情報とを加算する出力加算器7とから構成される主電動機負荷トルクの推定器1を構成し、該負荷トルク推定情報を第4の情報とし、該第4情報に減速歯車比と動輪半径逆数値と動輪軸換算荷重逆数値とを乗算する第3の係数器2とから前記電気車の接線力係数を推定する。
【0009】
負荷トルクの推定器1はいわゆる最小次元外乱オブザーバと称するもので、電動機の負荷トルクまたは慣性、粘性などの機械的はパラメータがステップ状に変化するとき、これらを負荷外乱として一括推定することができる。
外乱オブザーバはサーボモータの制御系の外乱抑圧方策として知られており、その原理は下記論文により開示されている。
文献名:大石潔、大西公平、宮地邦夫(慶応大学):「オブザーバを用いた他励直流機のトルク制御」、電気学会回転機研究会資料,RM−82−33,1982−2
【0010】
前記の機械的なパラメータがステップ状ではなく複雑な形で変化してもその変化が緩慢であればそれは微少なステップ的変動の積み重ねとして最小次元外乱オブザーバで推定できる。ところで電動機発生トルクのうち車両の加速に寄与する成分は発生トルクから電動機回転子自身及び減速歯車、駆動輪等回転部分を加速するトルク成分を差し引いた残りである。すなわち外乱推定器1の出力が車両を加速する成分にほかならない。加速トルク成分を動輪周接線力で表すには減速歯車比を乗じ動輪半径で割ればよい。接線力係数は、ここで得られた動輪周接線力をさらに動輪軸換算荷重で割ることにより求められる。あるいは外乱オブザーバ出力すなわち前記第4情報に減速歯車比と動輪半径逆数値と動輪軸換算荷重逆数値等をまとめて乗算する第3の係数器2を設置することにより接線力係数を推定することができる。
【0011】
また、前記電気車の接線力係数を推定する際第3の係数器2は軸重を定数としていた。しかし電気車の軸重は乗客数が変わると変動する。そこでつぎのように構成すると、電気車の軸重が変動しても正しい接線力係数を求めることができるすなわち、電気車の主電動機の回転角速度と主電動機の発生トルクの演算値または計測値を入力情報として電気車の接線力係数を推定する方法において、前記主電動機軸の回転角速度情報に該電動機回転子軸に換算した回転系慣性を乗算する第1の係数器4と、該係数器4の出力情報に積分器6のゲイン定数を乗算する第2の係数器5を具え、該第2係数器出力情報を第1の情報とし、前記主電動機の発生トルクの計測値または演算値である第2の情報を加算する入力加算器3と、該加算器3の出力情報を入力情報とする積分器6と、該積分器出力の符号を反転した情報を前記入力加算器3に帰還して得られる積分器出力を第3の情報とし、該第3情報と前記第1情報の符号を反転した情報とを加算する出力加算器7と、該出力加算器出力情報を第4の情報とし、該第4情報に減速歯車比と動輪半径逆数値とを乗算する第4の係数器8とから構成される電気車動輪周接線力の推定器と、該動輪周接線力推定器出力情報を第5の情報とし、該第5情報に動輪軸荷重の逆数を乗算する第5の係数器9とから成る装置を構成することにより、電気車の接線力係数を推定することができる。
【0012】
さらに、接線力係数が最大値に達すると、接線力係数の微分値が零になるので推定した接線力係数の微分手段を設けることにより、これを知ることができる。すなわち、電気車の主電動機軸の回転角速度と主電動機の発生トルクの演算値または計測値を入力情報として電気車の接線力係数を推定する方法において、前記主電動機軸の回転角速度情報に該電動機回転子軸に換算した回転系慣性を乗算する第1の係数器4と、該係数器4の出力情報に積分器6のゲイン定数を乗算する第2の係数器5を具え、該第2係数器出力情報を第1の情報とし、前記主電動機の発生トルクの計測値または演算値である第2の情報を加算する入力加算器3と該加算器3の出力情報を入力情報とする積分器6と、該積分器出力の符号を反転した情報を前記入力加算器3に帰還して得られる積分器出力を第3の情報とし、該第3情報と前記第1情報の符号を反転した情報とを加算する出力加算器7とから構成される主電動機負荷トルクの推定器と、該負荷トルク推定情報を第4の情報とし、該第4情報に減速歯車比と動輪半径逆数値と動輪軸換算荷重逆数値とを乗算する第3の係数器2と、該第3の係数器2の出力を微分する微分器11と該微分器出力の符号及び零判別手段12を備える装置を構成すれば、電気車の接線力係数推定とその接線力係数が最大値に達する時点を推定することができる。以下、本発明の一実施例を図面に基づいて詳述する。
【0013】
【発明の実施の形態】
図1は最小次元外乱オブザーバを用いた接線力係数推定の基本構成を表すブロック線であり、請求項1記載の第一実施例に対応する。図2は図1の原理に基づく接線力係数推定のシミュレーション結果を示す図、図3は従来の空転・滑走検出時の接線力係数の推定値をもとに再粘着制御した場合の接線力の推移を示す図、図4はすべり速度に対する車輪・レール間の接線力特性の例を示す図である。また図5、図6は本発明の請求項2及び3に記載した別の実施例を示すブロック線図である。
図1は主電動機発生トルクTrqmと回転角速度ωmiを入力として最小次元外乱オブザーバ1により車両加速トルクTlを推定し、その結果に第3の係数器2の係数Rg/(W・g・r)を乗じて電気車の接線力係数μeを推定する装置である。図1において、主電動機回転角速度入力ωmiに第1の係数器4の係数Jmと第2の係数器5の係数aを乗算したものを第1の情報としこの第1情報を加算器3に入力する。また主電動機発生トルクの演算値あるいは計測値Trqmの入力を第2の情報とし加算器3に入力するとともに、積分器6の出力の符号を反転した信号を帰還し加算器3に入力する。積分器6の出力を第3の情報とし次の加算器7に入力するとともに、前記第1情報の符号を反転して加算器7に入力する。かくして負荷トルクまたは車両加速トルク成分Tlを得る。この車両加速トルク成分Tlを第4の情報とする。第4の情報に第3の係数器2により係数Rg/(W・g・r)を乗算し接線力係数の推定値μeを得る。
【0014】
図5は軸重Wを車両の積載荷重により変化する点を考慮しこれを第3の入力として接線力係数の推定値μeに反映させるようにする手段を示す。すなわち係数器2の係数を定数項Rg/rと変数1/(W・g)に分け、車両加速トルク成分Tlに定数項Rg/rを乗じて得られる接線力Fμを第5の情報とし、この第5情報FμをW・gで割るか、または逆数1/(W・g)を乗ずることにより積載荷重の変化を考慮した接線力係数の推定値μeを得る。図5は可変軸重の逆数1/(W・g)を乗算する手段の例を示すが、これをW・gの除算手段で実現することも可能である。
図6はトルク外乱オブザーバ1を基本とする手段を示すが、あらかじめ電動機発生トルクTrqm入力及び回転角速度ωmi入力に定数項Rg/rを乗じておけば推定器そのものが動輪周接線力オブザーバとなるが、このような装置は図1のトルク外乱オブザーバ1を用いる方法と同等であることはいうまでもない。
【0015】
次にこの実施例の動作について説明する。
車両全体を1軸モデルで表すと、次に示す(1)〜(7)式の関係式が得られる。
M・dVt/dt=μ(Vs)・W・g−Rv ・・・・・・・・・・(1)
J・dωd/dt=T−μ (Vs)・W・g・r ・・・・(2)
Vs=Vd−Vt ・・・・・・・・・・・・・(3)
Trqm=Jm・dωmi/dt ・・・・・・・・・・・・・(4)
Tm1=Jm1・dωm1/dt ・・・・・・・・・・・・・(5)
Trqm・Rg=T ・・・・・・・・・・・・・(6)
Tm1・Rg=T1 ・・・・・・・・・・・・・(7)
ここに、
Vt: 車両進行速度、Vd: 動輪周速度、Vs: すべり速度 (動輪周速度と車両速度との差速度) 、Rv:列車の走行抵抗、M :1動輪軸に換算した列車全体の重量、μ(Vs) :接線力係数、W :軸重、g :重力加速度、r: 動輪半径、Rg :歯車比、T :動軸入力トルク、T1: 動軸出力トルク、Trqm: 主電動機軸まわりの入力トルク、Tm1 :主電動機軸まわりの出力トルク、J : 動輪軸まわりの慣性モーメント、Jm:電動機軸に換算した回転軸まわりの慣性モーメント(入力トルクに対応したもの)、Jm1: 主電動機軸まわりの慣性モーメント(入力トルクに対応したもの) 、ωd: 動軸出力トルクによって発生する動輪軸角速度、ωmi: 主電動機軸まわりの入力トルクに対応した主電動機の回転角速度、ωm1: 主電動機軸まわりの出力トルクに対応した主電動機の回転角速度である。
【0016】
さらに、

Figure 0003826204
上記(6)〜(8)式から、
Trqm−Tm1=〔μ (Vs)・W・g・r〕/Rg・・・・・・(9)
が得られる。
ここで、Trqm−Tm1を負荷外乱と見なせば、図1に破線で示す最小次元外乱オブザーバ1を構成し、その出力Fμを係数器2に入力することによって、(10)式のように接線力係数の推定値μeが求められる。
Figure 0003826204
ここに、s: ラプラス演算子、a: 外乱オブザーバの極であり、極aの逆数はオブザーバの推定遅れの時定数を意味している。
である。
【0017】
図2は、外乱オブザーバの極aを変えた場合の接線力係数の推定シミュレーション結果の例を示す特性図であって、図4に示すような接線力係数の特性を仮定して、指令トルクをランプ関数状に増大させていったときの結果を示している。
図2において、接線力係数は真値μ(Vs)を、また接線力係数の推定誤差は接線力係数μ(Vs)と接線力係数の推定値μeの差を表しており、図示の如く、外乱オブザーバの極が5000の場合と100の場合共に、接線力係数の真値μ(Vs)に接線力係数の推定値μeが良く追従していて、その推定誤差は非常に小さく、高い精度で接線力係数が推定できていることが分かる。
【0018】
このように外乱オブザーバによって接線力係数の推定値μeを時々刻々演算し、このμeに対応したトルクを指令して主電動機で発生するように制御することによって、接線力をピーク点近傍に維持する制御が可能になる。接線力がピーク点近傍にあるか、ピーク点のどちら側にあるかを判別するには図6のように接線力係数の推定値である係数器2の出力に微分器11及び符号判別器12とを設け、その出力が正値、負値、零値を判定すればよい。接線力係数の微分値はdμ(Vs)/dVsで表されるが、この式は{dμ(Vs)/dt}/{dVs/dt}と変形される。ただしdtは時間微分である。すなわち前記微分器11は{dμ(Vs)/dt}を出力する。接線力係数の微分値の符号により現在の接線力係数の状態を正確に評価することができる。接線力係数を推定する最小次元外乱オブザーバはローパスフィルタの機能があるので、微分演算に対してはある程度ノイズを抑制したものになっている。ここで接線力係数の微分は無次元化された出力情報を基に演算せず、負荷トルク推定器または接線力推定器の出力を歯車比、車輪径、軸重を乗除せずに微分しても等価な情報が得られる。この微分値の符号により現在の接線力係数の状態を正確に評価する方法は前記軸重が変動する場合にも図6の実施方法により適用可能であることはいうまでもない。
【0019】
【発明の効果】
以上に説明したように本発明によれば、時々刻々接線力係数を精度良く推定できるので、この推定値を用いて主電動機のトルク制御を行うことによって、接線力のピーク点近傍に発生トルクを維持することができ、良好な乗り心地を維持しつつ粘着力の有効利用が可能となり、実用上、極めて有用性の高いものである。
【図面の簡単な説明】
【図1】本発明の請求項1記載の実施例を示すブロック図である。
【図2】外乱オブザーバによる接線力係数推定のシミュレーション例を示す特性図である。
【図3】従来の空転・滑走検出時の接線力係数の推定値をもとに再粘着制御した場合の接線力の推移を示す図である。
【図4】すべり速度に対する車輪・レール間の接線力特性の例を示す図である。
【図5】本発明の請求項2記載の実施例を示すブロック図である。
【図6】本発明の請求項3記載の実施例を示すブロック図である。
【符号の説明】
1 最小次元外乱オブザーバ
2、4,5,8 係数器
3、7 加算器
6 積分器
9 係数器(可変)
10 除算器
11 微分器
12 符号判別器
Trqm 主電動機発生トルクの演算値あるいは計測値
ωmi 主電動機回転子軸系の入力トルクに対応した主電動機の回転角速度
Jm 主電動機回転子軸に換算した回転系の全慣性モーメント
a 最小次元外乱オブザーバの極
s ラプラス演算子
Tl 負荷トルクまたは車両加速トルク成分の推定値
Fμ 接線力の推定値
μ(Vs)接線力係数
μe 接線力係数の推定値
Rg 歯車比
W 軸重
g 重力加速度
r 動輪半径[0001]
[Technical field to which the invention belongs]
The present invention relates to an electric vehicle tangential force coefficient estimation device required to realize a re-adhesion control method that effectively uses adhesive force of an electric vehicle.
[0002]
[Prior art]
An electric vehicle performs acceleration / deceleration by a tangential force (also referred to as adhesive force) between wheels and rails. This tangential force generally has a characteristic as shown by a broken line in FIG. 4 with respect to a sliding speed. . The tangential force divided by the axial weight (vertical load applied to the rail per axle) is called the tangential force coefficient, and the maximum tangential force divided by the axial weight is called the adhesion coefficient. As shown in the figure, when the main motor generates torque that does not exceed the maximum value of the tangential force, idling and sliding do not occur, and the electric vehicle runs at a small sliding speed on the left side of the maximum value of the tangential force. . If a torque greater than the maximum value is generated, the slip speed increases and the tangential force decreases, so the slip speed increases and the slipping state increases.However, when the wheels and rails are dry, the torque generated by the main motor is Since the vehicle performance is set so as not to exceed the maximum value of the tangential force, idling and sliding do not occur.
[0003]
However, as shown by the solid line, when the rail surface is wet due to rain or the like, the adhesion coefficient decreases and the maximum value of the tangential force becomes smaller than the generated torque of the main motor corresponding to the set performance of the vehicle. In this case, the slip speed increases and the vehicle is idling. If left as it is, the tangential force decreases correspondingly, and the acceleration force required to accelerate the vehicle further decreases. It is necessary to detect and re-adhere the torque generated by the main motor. When re-adhesion is performed by controlling the torque in this way, it is possible to control the electric motor so that the torque generated by the main motor is as close to the maximum value of the tangential force as possible while suppressing the sliding speed to a small value. Necessary for improving deceleration performance.
[0004]
As a device for realizing such re-adhesion control, the rotational frequency (rotational speed) of the main motor is detected, and the time change rate, that is, the dynamic axis acceleration is obtained to detect idling / sliding and The adhesion coefficient is estimated by estimating the decrease from the adhesion coefficient corresponding to the main motor torque at that time from the axial acceleration, and the torque corresponding to the adhesion coefficient estimated after re-adhesion is generated in the main motor. There is an adhesion control device.
[0005]
[Problems to be solved by the invention]
However, in the case of this device, in order to reliably detect idling / sliding without erroneous detection, it is particularly necessary to suppress the fluctuation of each calculation point of the axial acceleration to be small, and the calculation interval of the axial acceleration is lengthened. Is commonly used. As a result, a large delay occurs in the calculation of the axial acceleration, and the idle / slide speed increases at the time of idle / slide detection due to the relationship with the threshold for reliably detecting idle / slide, as shown in FIG. Even if the adhesion coefficient is estimated at that time, actually, the tangential force coefficient when the sliding speed is increased is estimated instead of the adhesion coefficient, which is smaller than the adhesion coefficient.
[0006]
Further, even if the axial acceleration is calculated with such a large delay, the estimated value of the tangential force coefficient also varies greatly because the calculated value of the axial acceleration for each calculation time varies greatly. Since re-adhesion control is performed using this tangential force coefficient, torque control near the maximum value of the tangential force coefficient cannot be realized. Furthermore, in order to reduce slip speed after detecting idling / sliding, that is, in order to re-adhere, by reducing the torque generated in the main motor, it is controlled to return to the torque equivalent to the estimated adhesion coefficient It is considered that the ride comfort deteriorates. As described above, the conventional method for estimating the tangential force coefficient cannot realize the re-adhesion control capable of effectively using the adhesive force while maintaining a good riding comfort.
[0007]
As described above, in order to suppress the fluctuation of the axial acceleration at each calculation time point, a method of detecting idling / sliding using the axial acceleration obtained by increasing the calculation time interval and estimating the tangential force coefficient at that time Therefore, it is only possible to estimate the tangential force coefficient when the idling / sliding is large, that is, when the sliding speed is large, because only the tangential force at the time of idling / sliding detection can be estimated and the sensitivity to the idling / sliding detection in general. Therefore, even if the re-adhesion control is performed using the estimated value of the tangential force, the torque corresponding to the maximum value of the tangential force cannot be generated. In addition, since it is intermittent control that controls torque by detecting idling / sliding, there is a tendency to deteriorate the ride comfort.
The present invention was devised in view of the above points, and the object of the present invention is to solve these drawbacks and to accurately estimate the tangential force coefficient for each calculation time point of the rotational angular velocity of the main motor. Providing a tangential force coefficient estimation device for an electric vehicle capable of realizing re-adhesion control that enables effective use of adhesive force while maintaining good riding comfort by performing torque control using this estimation method There is to do.
[0008]
[Means for Solving the Problems]
In other words, the means to achieve that purpose is
The first coefficient unit 4 that multiplies the rotation angular velocity information of the main motor shaft of the electric vehicle by the total inertia of the rotating system converted to the motor rotor shaft, and the gain constant of the integrator 6 is added to the output information of the coefficient unit 4 An input adder 3 that includes a second coefficient unit 5 to be multiplied, uses the second coefficient unit output information as the first information, and adds second information that is a calculated value or a measured value of the torque generated by the main motor. And the integrator 6 having the output information of the adder 3 as input information, and the integrator output obtained by feeding back the information obtained by inverting the sign of the integrator output to the input adder 3 as third information. The main motor load torque estimator 1 is constituted by the output adder 7 for adding the third information and the information obtained by inverting the sign of the first information, and the load torque estimation information is set to the fourth information. Information, and the fourth information includes the reduction gear ratio, the inverse value of the driving wheel radius, and the inverse value of the driving wheel equivalent load. Estimating a tangential force coefficient of the electric vehicle from the third coefficient unit 2 which to multiply.
[0009]
The load torque estimator 1 is called a so-called minimum dimension disturbance observer, and when the parameters of the motor, such as the load torque or inertia and viscosity, change stepwise, these can be collectively estimated as load disturbances. .
The disturbance observer is known as a disturbance suppression policy of the servo motor control system, and its principle is disclosed in the following paper.
Literature name: Kiyoshi Oishi, Kohei Onishi, Kunio Miyachi (Keio University): “Torque control of separately excited DC machines using observers”, IEEJ rotating machine workshop data, RM-82-33, 1982-2
[0010]
Even if the mechanical parameter changes in a complicated form instead of a step form, if the change is slow, it can be estimated by a minimum dimensional disturbance observer as a stack of minute step changes. By the way, the component that contributes to the acceleration of the vehicle in the generated torque of the electric motor is the remainder obtained by subtracting the torque component that accelerates the rotating portion such as the motor rotor itself, the reduction gear, and the drive wheels from the generated torque. That is, the output of the disturbance estimator 1 is nothing but a component that accelerates the vehicle. In order to express the acceleration torque component by the driving wheel circumferential tangential force, the reduction gear ratio is multiplied and divided by the driving wheel radius. The tangential force coefficient is obtained by further dividing the wheel peripheral tangential force obtained here by the wheel axle conversion load. Alternatively, the tangential force coefficient can be estimated by installing a third coefficient unit 2 that multiplies the disturbance observer output, that is, the fourth information by a reduction gear ratio, a moving wheel radius reciprocal value, a moving wheel shaft equivalent load reciprocal value, and the like. it can.
[0011]
Further, when estimating the tangential force coefficient of the electric vehicle, the third coefficient unit 2 uses the axial weight as a constant. However, the axle load of an electric vehicle fluctuates when the number of passengers changes. Therefore, if the following configuration is adopted, the correct tangential force coefficient can be obtained even if the axle load of the electric vehicle fluctuates, that is, the calculated or measured value of the rotational angular velocity of the main motor and the generated torque of the main motor is obtained. In a method for estimating a tangential force coefficient of an electric vehicle as input information, a first coefficient unit 4 that multiplies the rotational angular velocity information of the main motor shaft by a rotation system inertia converted to the motor rotor shaft, and the coefficient unit 4 The second coefficient unit 5 that multiplies the output information by the gain constant of the integrator 6, and the second coefficient unit output information is the first information, and is a measured value or a calculated value of the torque generated by the main motor. An input adder 3 for adding the second information, an integrator 6 using the output information of the adder 3 as input information, and information obtained by inverting the sign of the integrator output is fed back to the input adder 3 The obtained integrator output is the third information, The output adder 7 adds the third information and the information obtained by inverting the sign of the first information, and the output adder output information is the fourth information. The fourth information includes the reduction gear ratio and the inverse value of the driving wheel radius. And a fourth coefficient unit 8 for multiplying the electric wheel driving wheel circumferential tangential force estimator and the driving wheel circumferential tangential force estimator output information as fifth information, and the fifth information includes the driving wheel shaft load. By constructing a device comprising a fifth coefficient unit 9 that multiplies the reciprocal number, the tangential force coefficient of the electric vehicle can be estimated.
[0012]
Further, when the tangential force coefficient reaches the maximum value, the differential value of the tangential force coefficient becomes zero, so this can be known by providing a means for differentiating the estimated tangential force coefficient. That is, in a method for estimating a tangential force coefficient of an electric vehicle by using, as input information, a rotational angular velocity of a main motor shaft of the electric vehicle and a calculated value or a measured value of torque generated by the main motor, the motor is included in the rotational angular velocity information of the main motor shaft. A first coefficient unit 4 that multiplies the rotation system inertia converted to the rotor shaft; and a second coefficient unit 5 that multiplies the output information of the coefficient unit 4 by a gain constant of an integrator 6. The input adder 3 adds the second information which is the measured or calculated value of the torque generated by the main motor, and the integrator which uses the output information of the adder 3 as input information. 6, the integrator output obtained by feeding back the information obtained by inverting the sign of the integrator output to the input adder 3 is the third information, and the information obtained by inverting the sign of the third information and the first information. And an output adder 7 for adding A load torque estimator; and a third coefficient unit 2 that uses the load torque estimation information as fourth information, and multiplies the fourth information by a reduction gear ratio, a moving wheel radius reciprocal value, and a driving wheel equivalent load reciprocal value. If the apparatus comprising the differentiator 11 for differentiating the output of the third coefficient unit 2 and the sign of the differentiator output and the zero discrimination means 12 is configured, the tangential force coefficient estimation of the electric vehicle and the tangential force coefficient are maximized. The point in time when the value is reached can be estimated. Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block line showing a basic configuration of tangential force coefficient estimation using a minimum dimensional disturbance observer, and corresponds to the first embodiment of the first aspect. FIG. 2 is a diagram showing a simulation result of tangential force coefficient estimation based on the principle of FIG. 1, and FIG. 3 is a graph of tangential force in the case of performing re-adhesion control based on the estimated value of the tangential force coefficient at the time of conventional idling / sliding detection. FIG. 4 is a diagram showing a transition, and FIG. 4 is a diagram showing an example of a tangential force characteristic between a wheel and a rail with respect to a sliding speed. FIGS. 5 and 6 are block diagrams showing another embodiment according to claims 2 and 3 of the present invention.
In FIG. 1, the main motor generated torque Trqm and the rotational angular velocity ωmi are input to estimate the vehicle acceleration torque Tl by the minimum dimension disturbance observer 1, and the result is the coefficient Rg / (W · g · r) of the third coefficient unit 2. A device that multiplies and estimates the tangential force coefficient μe of the electric vehicle. In FIG. 1, the main information obtained by multiplying the main motor rotational angular velocity input ωmi by the coefficient Jm of the first coefficient unit 4 and the coefficient a of the second coefficient unit 5 is used as the first information, and this first information is input to the adder 3. To do. Further, an input of the calculated value or measured value Trqm of the main motor generated torque is input to the adder 3 as second information, and a signal obtained by inverting the sign of the output of the integrator 6 is fed back and input to the adder 3. The output of the integrator 6 is input to the next adder 7 as third information, and the sign of the first information is inverted and input to the adder 7. Thus, the load torque or the vehicle acceleration torque component Tl is obtained. This vehicle acceleration torque component Tl is set as fourth information. The fourth information is multiplied by the coefficient Rg / (W · g · r) by the third coefficient unit 2 to obtain an estimated value μe of the tangential force coefficient.
[0014]
FIG. 5 shows a means for taking into account the fact that the axle load W changes depending on the load of the vehicle and reflecting this in the estimated value μe of the tangential force coefficient as a third input. That is, the coefficient of the coefficient unit 2 is divided into a constant term Rg / r and a variable 1 / (W · g), and the tangential force Fμ obtained by multiplying the vehicle acceleration torque component Tl by the constant term Rg / r is used as the fifth information. By dividing the fifth information Fμ by W · g or multiplying by the inverse 1 / (W · g), the estimated value μe of the tangential force coefficient in consideration of the change in the loaded load is obtained. FIG. 5 shows an example of means for multiplying the reciprocal 1 / (W · g) of the variable axle load, but this can also be realized by means for dividing W · g.
FIG. 6 shows a means based on the torque disturbance observer 1, but if the motor-generated torque Trqm input and the rotational angular velocity ωmi input are previously multiplied by a constant term Rg / r, the estimator itself becomes a driving wheel circumferential tangential force observer. Needless to say, such a device is equivalent to the method using the torque disturbance observer 1 of FIG.
[0015]
Next, the operation of this embodiment will be described.
When the entire vehicle is represented by a single-axis model, the following relational expressions (1) to (7) are obtained.
M · dVt / dt = μ (Vs) · W · g-Rv (1)
J · dωd / dt = T−μ (Vs) · W · g · r (2)
Vs = Vd−Vt (3)
Trqm = Jm · dωmi / dt (4)
Tm1 = Jm1 · dωm1 / dt (5)
Trqm · Rg = T (6)
Tm1 ・ Rg = T1 (7)
here,
Vt: Vehicle traveling speed, Vd: Driving wheel peripheral speed, Vs: Sliding speed (difference between driving wheel peripheral speed and vehicle speed), Rv: Train running resistance, M: Weight of entire train converted to one driving wheel axis, μ (Vs): Tangential force coefficient, W: Shaft weight, g: Gravity acceleration, r: Driving wheel radius, Rg: Gear ratio, T: Dynamic shaft input torque, T1: Dynamic shaft output torque, Trqm: Input around the main motor shaft Torque, Tm1: Output torque around the main motor shaft, J: Moment of inertia around the wheel shaft, Jm: Moment of inertia around the rotating shaft converted to the motor shaft (corresponding to the input torque), Jm1: Around the main motor shaft Moment of inertia (corresponding to input torque), ωd: Driving wheel shaft angular velocity generated by dynamic shaft output torque, ωmi: Rotational angular velocity of main motor corresponding to input torque around main motor shaft, ωm1: Output around main motor shaft Which is a rotation angular velocity of the main motor corresponding to the torque.
[0016]
further,
Figure 0003826204
From the above formulas (6) to (8),
Trqm−Tm1 = [μ (Vs) · W · g · r] / Rg (9)
Is obtained.
Here, if Trqm−Tm1 is regarded as a load disturbance, the minimum dimension disturbance observer 1 indicated by a broken line in FIG. 1 is configured, and its output Fμ is input to the coefficient unit 2 to obtain a tangent line as shown in equation (10). An estimated value μe of the force coefficient is obtained.
Figure 0003826204
Here, s: Laplace operator, a: pole of disturbance observer, and the reciprocal of pole a means the time constant of the estimated delay of the observer.
It is.
[0017]
FIG. 2 is a characteristic diagram showing an example of a simulation result of estimation of the tangential force coefficient when the pole a of the disturbance observer is changed. Assuming the characteristic of the tangential force coefficient as shown in FIG. The result is shown when the ramp function is increased.
In FIG. 2, the tangential force coefficient represents the true value μ (Vs), and the tangential force coefficient estimation error represents the difference between the tangential force coefficient μ (Vs) and the estimated value of the tangential force coefficient μe. In both cases where the disturbance observer pole is 5000 and 100, the estimated value μe of the tangential force coefficient closely follows the true value μ (Vs) of the tangential force coefficient, and the estimation error is very small and highly accurate. It can be seen that the tangential force coefficient can be estimated.
[0018]
In this manner, the estimated value μe of the tangential force coefficient is calculated momentarily by the disturbance observer, and the tangential force is maintained near the peak point by controlling the torque corresponding to this μe to be generated by the main motor. Control becomes possible. In order to determine whether the tangential force is in the vicinity of the peak point or on which side of the peak point, the differentiator 11 and the sign discriminator 12 are added to the output of the coefficient unit 2 which is an estimated value of the tangential force coefficient as shown in FIG. And the output is determined to be a positive value, a negative value, or a zero value. The differential value of the tangential force coefficient is expressed by dμ (Vs) / dVs, but this expression is modified as {dμ (Vs) / dt} / {dVs / dt}. Where dt is a time derivative. That is, the differentiator 11 outputs {dμ (Vs) / dt}. The state of the current tangential force coefficient can be accurately evaluated by the sign of the differential value of the tangential force coefficient. Since the minimum-dimensional disturbance observer that estimates the tangential force coefficient has a function of a low-pass filter, noise is suppressed to some extent for the differential operation. Here, differentiation of the tangential force coefficient is not calculated based on the non-dimensional output information, and the output of the load torque estimator or tangential force estimator is differentiated without dividing the gear ratio, wheel diameter, and axle load. Equivalent information can be obtained. It goes without saying that the method of accurately evaluating the current state of the tangential force coefficient by the sign of the differential value can be applied by the implementation method of FIG. 6 even when the axial load varies.
[0019]
【The invention's effect】
As described above, according to the present invention, the tangential force coefficient can be accurately estimated from moment to moment. Therefore, by using this estimated value to control the torque of the main motor, the generated torque is increased near the peak point of the tangential force. It can be maintained, and the adhesive force can be effectively used while maintaining a good riding comfort, which is extremely useful in practice.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment according to claim 1 of the present invention;
FIG. 2 is a characteristic diagram showing a simulation example of tangential force coefficient estimation by a disturbance observer.
FIG. 3 is a diagram showing a transition of tangential force when re-adhesion control is performed based on an estimated value of a tangential force coefficient at the time of conventional idling / sliding detection.
FIG. 4 is a diagram illustrating an example of a tangential force characteristic between a wheel and a rail with respect to a sliding speed.
FIG. 5 is a block diagram showing an embodiment according to claim 2 of the present invention;
FIG. 6 is a block diagram showing an embodiment of the third aspect of the present invention.
[Explanation of symbols]
1 Minimum dimension disturbance observer 2, 4, 5, 8 Coefficient unit 3, 7 Adder 6 Integrator 9 Coefficient unit (variable)
10 Divider 11 Differentiator 12 Sign discriminator Trqm Calculated or measured value of main motor generated torque ωmi Rotational angular velocity of main motor corresponding to input torque of main motor rotor shaft system Jm Rotating system converted to main motor rotor shaft Total moment of inertia a P of minimum dimension disturbance observer Laplace operator Tl Estimated value of load torque or vehicle acceleration torque component Fμ Estimated tangential force μ (Vs) Tangential force coefficient μe Estimated tangential force coefficient Rg Gear ratio W Axle weight g Gravity acceleration r Driving wheel radius

Claims (3)

電気車の主電動機軸の回転角速度と主電動機の発生トルクの演算値または計測値を入力情報として電気車の接線力係数を推定する装置において、前記主電動機軸の回転角速度情報に該電動機回転子軸に換算した回転系慣性を乗算する第1の係数器4と、該係数器4の出力情報に積分器6の同一のゲイン定数を乗算する第2の係数器5を具え、該第2の係数器出力情報を第1の情報とし、前記主電動機の発生トルクの演算値または計測値である第2の情報を加算する入力加算器3と、該加算器3の出力情報を入力情報とする積分器6と、該積分器6の出力符号を反転した情報を前記入力加算器3に帰還して得られる積分器6の出力を第3の情報とし、該第3情報と前記第1情報の符号を反転した情報とを加算する出力加算器7とから構成される主電動機負荷トルクの推定器1と、該負荷トルク推定情報を第4の情報とし、該第4情報に減速歯車比と動輪半径逆数値と動輪軸換算荷重逆数値とを乗算する第3の係数器2とから成る電気車の接線力係数推定装置。An apparatus for estimating a tangential force coefficient of an electric vehicle by using, as input information, a rotational angular velocity of a main motor shaft of the electric vehicle and a calculated value or a measured value of a generated torque of the main motor. A first coefficient unit 4 that multiplies the rotation system inertia converted into an axis; and a second coefficient unit 5 that multiplies the output information of the coefficient unit 4 by the same gain constant of the integrator 6. The coefficient adder output information is the first information, the input adder 3 for adding the second information which is the calculated value or the measured value of the torque generated by the main motor, and the output information of the adder 3 is the input information. The output of the integrator 6 and the integrator 6 obtained by feeding back the information obtained by inverting the output code of the integrator 6 to the input adder 3 is used as the third information, and the third information and the first information And an output adder 7 for adding the information with the sign inverted. Motor load torque estimator 1 and a third coefficient unit that uses the load torque estimation information as fourth information and multiplies the fourth information by a reduction gear ratio, a moving wheel radius reciprocal value, and a driving wheel shaft converted load reciprocal value. A tangential force coefficient estimation device for an electric vehicle comprising two. 電気車の主電動機軸の回転角速度と主電動機の発生トルクの演算値または計測値を入力情報として電気車の接線力係数を推定する装置において、前記主電動機軸の回転角速度情報に該電動機回転子軸に換算した回転系慣性を乗算する第1の係数器4と、該係数器4の出力情報に積分器6のゲイン定数を乗算する第2の係数器5を具え、該第2の係数器出力情報を第1の情報とし、前記主電動機の発生トルクの計測値または演算値である第2の情報を加算する入力加算器3と、該加算器3の出力情報を入力情報とする積分器6と、該積分器6の出力の符号を反転した情報を前記入力加算器3に帰還して得られる積分器6の出力を第3の情報とし、該第3情報と前記第1情報の符号を反転した情報とを加算する出力加算器7と、該出力加算器出力情報を第4の情報とし、該第4情報に減速歯車比と動輪半径逆数値とを乗算する第4の係数器8とから構成される電気車動輪周接線力の推定器と、該動輪周接線力推定器出力情報を第5の情報とし、該第5情報に動輪軸荷重の逆数を乗算する第5の係数器9とから成る電気車の接線力係数推定装置。An apparatus for estimating a tangential force coefficient of an electric vehicle by using, as input information, a rotational angular velocity of a main motor shaft of the electric vehicle and a calculated value or a measured value of a generated torque of the main motor. A first coefficient unit 4 that multiplies the rotation system inertia converted into an axis, and a second coefficient unit 5 that multiplies the output information of the coefficient unit 4 by a gain constant of an integrator 6, and the second coefficient unit An input adder 3 for adding output information as first information and adding second information, which is a measured value or a calculated value of torque generated by the main motor, and an integrator having output information from the adder 3 as input information 6 and the output of the integrator 6 obtained by feeding back the information obtained by inverting the sign of the output of the integrator 6 to the input adder 3 as the third information, and the sign of the third information and the first information Output adder 7 for adding the inverted information and the output adder output A fourth coefficient unit 8 that multiplies the fourth information by a reduction gear ratio and a reciprocal value of the moving wheel radius, and A tangential force coefficient estimation device for an electric vehicle comprising a fifth coefficient unit 9 that uses the tangential force estimator output information as fifth information and multiplies the fifth information by the reciprocal of the driving wheel axle load. 電気車の主電動機軸の回転角速度と主電動機の発生トルクの演算値または計測値を入力情報として電気車の接線力係数を推定する装置において、前記主電動機軸の回転角速度情報に該電動機回転子軸に換算した回転系慣性を乗算する第1の係数器4と、該係数器4の出力情報に積分器6のゲイン定数を乗算する第2の係数器5を具え、該第2の係数器出力情報を第1の情報とし、前記主電動機の発生トルクの計測値または演算値である第2の情報を加算する入力加算器3と、該加算器3の出力情報を入力情報とする積分器6と、該積分器6の出力の符号を反転した情報を前記入力加算器3に帰還して得られる積分器6の出力を第3の情報とし、該第3情報と前記第1情報の符号を反転した情報とを加算する出力加算器7とから構成される主電動機負荷トルクの推定器1と、該負荷トルク推定情報を第4の情報とし、該第4情報に減速歯車比と動輪半径逆数値と動輪軸換算荷重逆数値とを乗算する第3の係数器2と、該第3の係数器2の出力を微分する微分器11と該微分器出力の符号及び零判別手段12を備えて成る電気車の接線力係数推定装置。An apparatus for estimating a tangential force coefficient of an electric vehicle by using, as input information, a rotational angular velocity of a main motor shaft of the electric vehicle and a calculated value or a measured value of a generated torque of the main motor. A first coefficient unit 4 that multiplies the rotation system inertia converted into an axis, and a second coefficient unit 5 that multiplies the output information of the coefficient unit 4 by a gain constant of an integrator 6, and the second coefficient unit An input adder 3 that adds output information as first information, adds second information that is a measured value or a calculated value of torque generated by the main motor, and an integrator that uses the output information of the adder 3 as input information 6 and the output of the integrator 6 obtained by feeding back the information obtained by inverting the sign of the output of the integrator 6 to the input adder 3 as third information, and the sign of the third information and the first information And an output adder 7 for adding information obtained by inverting The machine load torque estimator 1 and a third coefficient unit that uses the load torque estimation information as fourth information and multiplies the fourth information by a reduction gear ratio, a moving wheel radius reciprocal value, and a driving wheel shaft converted load reciprocal value. 2, an electric vehicle tangential force coefficient estimation device comprising a differentiator 11 for differentiating the output of the third coefficient unit 2, a sign of the output of the differentiator, and a zero discrimination means 12.
JP06193898A 1998-02-27 1998-02-27 Electric vehicle tangential force coefficient estimation device Expired - Lifetime JP3826204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06193898A JP3826204B2 (en) 1998-02-27 1998-02-27 Electric vehicle tangential force coefficient estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06193898A JP3826204B2 (en) 1998-02-27 1998-02-27 Electric vehicle tangential force coefficient estimation device

Publications (2)

Publication Number Publication Date
JPH11252716A JPH11252716A (en) 1999-09-17
JP3826204B2 true JP3826204B2 (en) 2006-09-27

Family

ID=13185638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06193898A Expired - Lifetime JP3826204B2 (en) 1998-02-27 1998-02-27 Electric vehicle tangential force coefficient estimation device

Country Status (1)

Country Link
JP (1) JP3826204B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495819B2 (en) * 2000-02-15 2010-07-07 大石 潔 Electric vehicle control device
JP4621377B2 (en) * 2001-04-25 2011-01-26 潔 大石 Electric vehicle control device
JP2007106185A (en) * 2005-10-12 2007-04-26 Toyo Electric Mfg Co Ltd Brake electric operating device of trailer
EP2017172A4 (en) * 2006-05-09 2011-11-02 Equos Res Co Ltd Vehicle, characteristic value estimating device, and loaded article determination device
JP2007302061A (en) * 2006-05-09 2007-11-22 Equos Research Co Ltd Vehicle
ITUA20162297A1 (en) * 2016-04-05 2017-10-05 Faiveley Transport Italia Spa Procedure for calculating the speed of travel of a railway vehicle.

Also Published As

Publication number Publication date
JPH11252716A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
US6208097B1 (en) Traction vehicle adhesion control system without ground speed measurement
KR101165554B1 (en) Controller for electric vehicle
US7285926B2 (en) System and method for locomotive adhesion control
US9333970B2 (en) Traction control device and traction control method
JP5673938B2 (en) Electric vehicle control device
JP6223717B2 (en) Electric vehicle slip control device
JP3826204B2 (en) Electric vehicle tangential force coefficient estimation device
JP4606350B2 (en) Electric vehicle tangential force estimation method
JP5593240B2 (en) Electric motor control method and electric motor control device
JP5994703B2 (en) Electric vehicle control device
JP6621369B2 (en) Idling sliding re-adhesion control method and idling sliding re-adhesion control device
JP2002281606A (en) Motor controller and motor control method
JP6017842B2 (en) Re-adhesion control method and motor control device
JP5828452B2 (en) Electric vehicle control device
JP3935039B2 (en) Speed command control unit and speed control device for electric vehicle
JP7105608B2 (en) Motor control method and motor control device
JP6107294B2 (en) Control device for each wheel independent drive cart
JPH11103507A (en) Speed controller for car
JP2016092954A (en) Electric vehicle control apparatus and power conversion control apparatus
JP6730057B2 (en) Electric vehicle control device
JP2000125406A (en) Electric rolling stock controller
JP2020043715A (en) Apparatus and method for controlling electric motor vehicle
JP3149682B2 (en) Electric car control device
JP7415772B2 (en) Electric vehicle control method and electric vehicle control device
JP7326960B2 (en) Electric vehicle control method and electric vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

EXPY Cancellation because of completion of term