JP3825889B2 - Electro-crushing method and apparatus - Google Patents

Electro-crushing method and apparatus Download PDF

Info

Publication number
JP3825889B2
JP3825889B2 JP19726997A JP19726997A JP3825889B2 JP 3825889 B2 JP3825889 B2 JP 3825889B2 JP 19726997 A JP19726997 A JP 19726997A JP 19726997 A JP19726997 A JP 19726997A JP 3825889 B2 JP3825889 B2 JP 3825889B2
Authority
JP
Japan
Prior art keywords
crushed
electrode plates
pair
discharge
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19726997A
Other languages
Japanese (ja)
Other versions
JPH1133430A (en
Inventor
偉雄 吉見
豊久 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP19726997A priority Critical patent/JP3825889B2/en
Publication of JPH1133430A publication Critical patent/JPH1133430A/en
Application granted granted Critical
Publication of JP3825889B2 publication Critical patent/JP3825889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Landscapes

  • Disintegrating Or Milling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、対の電極板に高電圧パルスを印加して、この電極板間に発生する放電により被破砕物を破砕する電気破砕方法及び装置に関するものである。
【0002】
【従来の技術】
まず、電気放電によって起こる被破砕物の破砕現象は、図9の(1)〜(3)の三つの場合に分けられる。
図9の(1)は、電気放電が被破砕物6から離れた位置を通る場合である。この場合は、電気放電によってその周囲の媒体が状態変化を起こして衝撃波が発生し、衝撃波が圧縮力として被破砕物6に作用することによって被破砕物6が破砕される場合である。
【0003】
図9の(2),(3)は、いずれも電気放電が被破砕物6内を通り、被破砕物6内部を通る電気放電が物体内部の微細空隙6a中の空気や水等に爆発的熱膨張を引き起こし、この爆発的熱膨張によって物体に作用する引っ張り荷重によって被破砕物6が破砕される場合である。
【0004】
例えば、鉱石の場合、次の表1に示すように、圧縮強度と比較して、引張強度が著しく小さい。従って、被破砕物6が鉱石の場合では、破砕方法としては、電気放電を物体内に通して、電気放電が引き起こす爆発的熱膨張により引っ張り破壊を起こさせることが、破砕の効率化に繋がる。
【0005】
なお、前述の図9の(3)の場合は電気放電を発生する両電極が被破砕物6に密着しているが、図9の(2)場合は一方の電極と被破砕物6との間に隙間が存在する。このように、隙間が存在している場合は、放電エネルギの一部が隙間空間に散逸してしまうエネルギロスが起こるため、図9の(3)のように両電極が被破砕物6に密着している場合と比較すると、破砕効率が悪くなる。
【0006】
【表1】

Figure 0003825889
【0007】
ここで、図8は従来の電気破砕装置の一例であり、特開昭60−118252号公報に開示されたものがある。この電気破砕装置1は、タイヤ等の常温では破砕が不能又は困難な被破砕物に対し、例えば液化窒素ガス等の低温液化ガスで冷却して脆化させた後に、電気放電によって破砕するものである。
【0008】
この電気破砕装置1では、被破砕物6を収容しているバケット8は昇降装置18によって搬入用のコンベヤ5の終端から処理槽3内の固定電極4の付近まで昇降可能にされている。また、可動電極10は移動装置19によって支持されている。
【0009】
この移動装置19は、バケット8が被破砕物6を固定電極4上に降ろす時には、図に実線で示すように、バケット8の動作の邪魔にならない位置に可動電極10を退避させ、バケット8がコンベヤ5の終端側に戻った時には、図に2点鎖線で示すように、固定電極4と対向する位置に可動電極10が来るように、可動電極10を進出させる。また、移動装置19は、固定電極4上の被破砕物6が固定電極4と可動電極10によって挟まれるように、固定電極4を降下させる構成となっている。
【0010】
ここで、電気放電により破砕を行う場合には、図9の(3)に示した状態で電気放電が成されるように、一対の電極相互の位置、あるいは一対の電極間の被破砕物6の状態を制御・管理すれば、より少ない電力で効率よく破砕処理を実施でき、省エネルギーと、生産性の向上とを図ることが可能になる。
【0011】
【発明が解決しようとする課題】
ところが、図8に示した従来の電気破砕装置1では、可動電極10と被破砕物6とをバランスよく接触させることができず、被破砕物6を固定電極4と可動電極10とで隙間なく挟み込んだ状態を得ることは、実際上不可能に近い。従って、可動電極10と被破砕物6とは非接触の状態で放電されるので、図9の(1)または(2)の状態で電気放電がなされる場合が大半となり、放電エネルギーのロスが多くなるという問題があった。
【0012】
更に、図8の装置では、被破砕物6を一定量ずつバッチ式に搬入・搬出する方式となっており、連続処理ができず生産性の向上を図ることが難しい。
また、放電エネルギーのロスを見込んで放電電圧を高めていると、たまたま可動電極10と被破砕物6との距離が近く、図9の(3)に示す理想の放電がなされた場合には、電気放電が強力すぎて、過度の破砕が発生する虞もあった。
【0013】
このように、図9の(3)に示す理想の放電を安定して実現させるには、被破砕物の一つずつの固まりを電極により挟む他になく、生産性が悪すぎるために、今日まで実現されていない。
【0014】
そこで、本発明の目的は上記課題を解消することにあり、一対の電極間に隙間なく被破砕物を挟んだ理想の状態で被破砕物内に電気放電を通して、エネルギーロスが少なく効率の良い電気破砕を実現でき、また、被破砕物の投入時に一方の電極の退避等が必要なく、連続処理が可能で、省エネルギーと生産性の向上とを実現することのできる電気破砕方法及び装置を提供することである。
【0015】
【課題を解決するための手段】
本発明の上記目的は、対の電極に高電圧パルスを印加して、これら電極間の放電路内に置かれて気体又は液体を内包する被破砕物を放電により破砕する電気破砕方法であって、前記電極が対の電極板で上下方向に開通して下側に向かって次第に通路幅が狭くなる通路を形成して対向配置され、これら対の電極板間の通路に被破砕物が投入されて対電極間に被破砕物の接触経路が形成され前記被破砕物と前記電極板との接触部分から被破砕物同士の接触部分を経由して前記被破砕物内の気体又は液体を通る放電により放電経路内の被破砕物が破砕されることにより達成される。
【0016】
実際の主要な構成としては、上下方向に開通して下側に向かって次第に通路幅が狭くなる通路を形成して対向配置された対の電極板と、該対の電極板に高電圧パルスを印加して電極板間に置かれて気体又は液体を内包する被破砕物の接触経路に放電を発生させる高電圧パルス発生手段と、電極板間の通路に被破砕物を投入する被破砕物供給手段とを備える構成の電気破砕装置となる。
【0017】
そして、上記構成によれば、被破砕物供給手段から対の電極板間に投入された被破砕物は、自然落下によって対の電極板間の通路を通過しようとする。そして、対の電極板間の通路は、下側に向かって次第に通路幅が狭まる構成のため、対の電極板間の下端の離間寸法を適宜に設定しておけば、対の電極板の下端部で投入された被破砕物が詰まった状態を作ることができ、結局、対の電極間に接触状態で被破砕物を挟んだ理想の状態で被破砕物内に電気放電を通すことができ、エネルギーロスが少なく効率の良い電気破砕を実現することができる。
そして、対の電極板は、投入される被破砕物の粒塊寸法に変更がなければ、いずれも固定配置にしても良く、被破砕物の投入時に一方の電極の退避等が必要なく、電極板の退避操作等によるタイムロスを招くことなく、連続処理が可能である。
【0018】
また、被破砕物に両電極が密着して、放電エネルギーのロスが少ない理想の状態で電気破砕を実施できるため、放電エネルギーのロスを見込んで放電電圧を高めに設定する必要がなく、電気放電が強力すぎて過度の破砕が発生するという不都合を防止することができる。
【0019】
なお、上記の電気破砕方法及び装置において、上下方向に開通すると共に下側に向かって次第に通路幅が狭くなる通路を形成するように対向配置される上記対の電極板は、上下多段に且つ下段側ほど対向間隔が小さくなるように装備し、多段階放電で徐々に小径とする破砕を可能とすることができる。
このようにすると、各段の電極板毎に、破砕対象の被破砕物の塊の大きさをある程度の範囲に設定することができ、より適正な放電電圧を設定することができる。
【0020】
なお、上記の電気破砕方法及び装置において、対の電極板は、処理槽の液中に浸漬されて、液中で被破砕物に電気放電を行うようにしてもよい。
このようにすると、一対の電極板を浸漬する液の電気特性を適宜に選定することによって、被破砕物に通す電気放電をより高精度に制御・管理可能になる。
また、上記の電気破砕方法及び装置において、対の電極板の角度調整機構を備えることができる。この機構により、破砕処理済みの物体の落下を調整することができ、破砕物の粒径を任意に変更することもできる。
更に、本発明は対の電極板間でプリッジングしている被破砕物に放電電流を通す発明であるが、放電しない時のプリッジングは不要であるので、電極板に揺動機構を設けることで、プリッジングを解消することができる。
【0021】
【発明の実施の形態】
以下、添付図面に基づいて本発明の実施形態に係る電気破砕装置を詳細に説明する。
図1は本発明に係る電気破砕装置の第1実施形態の概略構成図、図2は図1における要部の拡大図、図3は対向配置された一対の電極板間における電気放電の発生形態の説明図である。
【0022】
この第1実施形態の電気破砕装置30は、上下方向に開通すると共に下側に向かって次第に通路幅が狭くなる通路31を形成するように対向配置された対の電極板33,34と、これらの対の電極板33,34に高電圧パルスを印加して放電を発生させる高電圧パルス発生装置36と、通路31に被破砕物38を投入する被破砕物供給手段としてのシュータ40と、対の電極板33,34を浸漬する液42を貯留した処理槽44と、通路31の下端出口から落下してくる破砕処理済みの被破砕物38を槽外に排出する回収用搬送手段46とを備えて、対の電極板33,34間の通路31に投入された被破砕物38を対の電極板33,34間に発生する電気放電により破砕させる。
【0023】
この第1実施形態の場合は、電極板33,34は、これらの電極板33,34間の挟角αが30゜程度になるように、設定しているが、対向する電極板相互の挟角αは、この実施形態のものに限定するものではなく、投入される被破砕物38の初期の塊の大きさ等に応じて、適宜に設計変更可能である。但し、実用的には、挟角αは、約30〜90゜の範囲で適宜値に設定するとよい。
【0024】
前述の各電極板33,34はいずれも、図2に示すように、上下方向の途中の3カ所に絶縁材料性の絶縁域48を装備したもので、実質的には、電極板33は上下方向に離間配置した4つの互いに独立した電極板33a,33b,33c,33dとして機能し、電極板34は上下方向に離間配置した4つの互いに独立した電極板34a,34b,34c,34dとして機能する。
また、絶縁域48で分割された各電極板33a,33b,33c,33d,34a,34b,34c,34dは、水平方向に対向するもの同士が、下方側に向かって次第に通路幅が狭くなる通路31を形成する電極板の対となる。
絶縁域48は、電気放電が対向配置された電極板間以外に飛ぶことを防止するためのもの、即ち、上下に近接する電極板間で電気放電が発生することを防止するためのものである。
【0025】
即ち、この第1実施形態の場合は、実質的には、上下方向に開通すると共に下側に向かって次第に通路幅が狭くなる通路31を形成するように対向配置される4対の電極板が、対向間隔が下段側が小さくなるように、上下に4段に装備された構成となっている。
図3に示すように、上下方向に開通すると共に下側に向かって次第に通路幅が狭くなる通路51を形成するように対向配置される電極板52,53に、電気放電を発生させる所定の電圧が印加されると、基本的には、通路幅wが最小となる各電極板の下端域A間に、電気放電が発生する。
実際には、被破砕物が投入されると、各電極板52,53に接触している被破砕物同士が更に接触している経路が下端域A間に形成され、この経路を通って電気放電が発生する。そして、この経路にある被破砕物が破砕される。
【0026】
従って、この第1実施形態のように、上下方向に4段に、電極板対を配置した構成では、各段の電極板対毎に、各電極板の下端域で電気放電が発生し、結局、被破砕物38は、通路31を通過するまでに、最大、4回の電気破砕を受け、段階的に所望の粒径に破砕されることになる。
なお、対の電極板の隙間は目的の破砕程度に対応して設定される。
【0027】
高電圧パルス発生装置36は、一定周期毎に、互いに対をなす各段の電極板33a,33b,33c,33d,34a,34b,34c,34dに、高電圧パルスの印加を行う。
また、高電圧パルス発生装置36は、被破砕物38を通過する電気放電が強力過ぎて過破砕が生じないように、各段の電極板に印加する高電圧パルスは、各段における通路幅や、被破砕物38の特性(引張強度や硬度などの特性)に応じて設定する。更に、対となっている電極以外の電極に放電しないように、各段へのパルス供給を同時に行うことが好適である。
【0028】
実際には、高電圧パルス発生装置36では、所望の破砕程度について、各段の電極板毎に、図4に示すようなサンプリングデータに基づいて、各電極板間の電気容量や、各供給電圧条件、更には、電極板間の媒体の電気抵抗、放電インターバルを設定している。
図4は、花崗岩を破砕する場合を例にとって、各電極板間の電気容量について、印加する電圧と放電エネルギーとの相関を示したもので、各電気容量の線上の●印は電気は流れるが花崗岩は破砕されない部分、電気容量の線上△印は流れる電気によって花崗岩が実際に破砕される部分を示している。
この図4では、曲線Bよりも上方の範囲が絶縁破壊(electrical breakdown)を興じる部分で、曲線Cよりも上方の部分が実際に花崗岩が電気破砕される範囲である。従って、曲線Cよりも上方の範囲に入るように、各電極板間の電気容量設定や、供給電圧を設定することになる。
【0029】
電極板33,34が浸漬される液42は、電気放電が良好に果たせるように両極板間における絶縁特性を調整する機能と、例えば、被破砕物38が多孔性の鉱石等の場合に、電気放電が被破砕物38内を通過したときに起こる爆発的膨張によって引っ張り荷重が被破砕物38内の微細空隙に効率良く作用するように、被破砕物38内の空隙を埋める機能を果たすもので、これらの機能を満足する液体(水が好適)が適宜選定される。
【0030】
更に、上記の装置における対の電極板の隙間やなす角度、及び、各電極板間の電気容量、各供給電圧条件、電極板間の媒体の電気抵抗、放電インターバル等は、原料の粒度、空隙率、硬度、水分量にもよって変更を受ける。
【0031】
以上の電気破砕装置30では、対の電極板間の放電域に被破砕物38を挟んだ理想の状態で被破砕物38内に電気放電を通して、エネルギーロスが少なく効率の良い電気破砕を実現することができる。
そして、対の電極板33,34は、投入される被破砕物38の粒塊寸法に変更がなければ、いずれも固定配置にしても良く、被破砕物38の投入時に一方の電極の退避等が必要なく、電極板33,34の退避操作等によるタイムロスを招くことなく、連続処理が可能である。
従って、より少ない電力で効率よく破砕処理を実施でき、省エネルギーと生産性の向上とを実現することができる。
【0032】
また、被破砕物38に両電極が接触して、放電エネルギーのロスが少ない理想の状態で電気破砕を実施できるため、放電エネルギーのロスを見込んで放電電圧を高めに設定する必要がなく、電気放電が強力すぎて過度の破砕が発生するという不都合を防止することができ、適正な破砕処理を経済的に連続実施することができる。
【0033】
上記のように、段階的に破砕を実施できるため、一度の電気破砕で処理を完了させる場合と比較すると、各段の電極板毎に、破砕対象の被破砕物38の塊の大きさに応じた適正な放電電圧を設定することができ、破砕を徐々に進めて、破砕程度をより均一にすることができ、製品歩留まりの低下を防止することができる。
【0034】
また、この第1実施形態の場合は、一対の電極板33,34は、処理槽44の液42中に浸漬されて、液42中で被破砕物38に電気放電を行うため、液42の電気特性を適宜に選定することによって、被破砕物38に通す電気放電をより高精度に制御・管理可能になる。
【0035】
なお、以上の実施形態では、下方に向かって次第に通路幅が狭まるように対向配置される電極板57,58を、液中に浸漬するようにしたが、電極板57,58は、被破砕物38の特性によっては、空中に設置するようにしても良い。
【0036】
図5は本発明に係る電気破砕装置の第2実施形態の概略構成図、図6は図5における要部の拡大図である。
この第2実施形態の電気破砕装置55は、上下方向に開通すると共に下側に向かって次第に通路幅が狭くなる通路を形成するように対向配置された電極板57,58と、これらの電極板57,58に高電圧パルスを印加してこれらの電極板57,58間に電気放電を発生させる高電圧パルス発生装置36と、電極板57,58間の通路に被破砕物38を投入する被破砕物供給手段としてのシュータ40と、電極板57,58間の通路を通過した被破砕物38を受ける処理槽60と、処理槽60の底部に落下してくる破砕処理済みの被破砕物38を槽外に排出する回収用搬送手段62とを備えて、電極板57,58間の通路に投入された被破砕物38を電極板57,58間に発生する電気放電により破砕させる。
【0037】
前述の第1実施形態と異なる点は、電極板57,58が上下方向に三段に完全に分離して装備されている点、三段に装備した各電極板57,58はいずれも空中に設置している点、さらに、シュータ40の上に投入された被破砕物38に対して散水するシャワー64を装備した点である。
【0038】
シャワー64は、被破砕物38が多孔質性または亀裂が多い構造で強度的に弱い素材の場合に、散水により投入された被破砕物38に含水させて、電気放電による被破砕物38の過破砕を防止するためのものである。
【0039】
この実施形態では、上下方向に三段に装備された各電極板57,58の内、最上段の電極板57,58は挟角θ1が約30゜、中断の電極板57,58は挟角θ2が約60゜、最下段の電極板57,58は挟角θ3が約90゜になるように、対向配置されている。
また、それぞれの電極板57,58は、背面が絶縁体66で覆われている。この絶縁体66は、電気放電が対向配置された電極板57,58間以外に飛ぶことを防止するためのもの、即ち、上下に近接する電極板間で電気放電が発生することを防止するためのものである。
【0040】
また、この実施形態の場合は、各段の電極板間の下端の通路幅は、各電極板の下端を結んだ線分68,69相互の挟角βが30゜よりも小さくなるように、下段側のものほど小さく設定されている。
しかしながら、各角度及び電極板間の下端の通路幅は、適宜設定されることができる。
【0041】
また、処理槽60の底部側には、液70が貯留されている。この液70は、最下段の電極板57,58を通過して落下してくる破砕処理済みの被破砕物38を受けて、処理槽60への衝突による過破砕を防止すると共に、処理槽60への落下・衝突による騒音の発生を防止する。
【0042】
以上の電気破砕装置55の場合も、前述した第1実施形態と同様の作用効果を得ることができる。
なお、下方に向かって次第に通路幅が狭まるように対向配置される電極板の装備段数は、前述の実施形態に限定するものではない。例えば、2段あるいは5段以上の任意段数に装備するようにしてもよい。
また、以上の実施形態では、下方に向かって次第に通路幅が狭まるように対向配置される電極板が、上下方向に多段に装備する構成としたが、多段階に破砕を行う必要がない場合には、電極板の装備を一段としてもよい。
【0043】
更に、図7は被破砕物のプリッジングを防止するための揺動装置80と、破砕処理済みの被破砕物の落下調整若しくは破砕物の粒径調整のための開度調整装置90を備えた形態をしている。図5,6の実施形態の装置を例に取ると、この揺動装置80と開度調整装置90は少なくとも一方が電極板57,58の背面に備えられた絶縁体66に取り付けられるが、当然、図1,2の実施形態の装置にも適用できる。揺動装置80としては、振動を与える機構や揺動モーター等により電極板57,58を振る機構などが与えられる。また、開度調整装置90は、油圧シリンダーや電動のアクチュエーター等を電極板57,58の下部又は上部に取付け、その取付位置の反対端を軸支して、適宜角度調整が計られる。
【0044】
【発明の効果】
本発明の電気破砕方法及び装置によれば、対の電極間に被破砕物を挟んだ理想の状態で被破砕物内に電気放電を通して、エネルギーロスが少なく効率の良い電気破砕を実現することができる。また、連続処理が可能で、より少ない電力で効率よく破砕処理を実施でき、省エネルギーと生産性の向上とを実現することができる。
そして、被破砕物に両電極が密着して、放電エネルギーのロスが少ない理想の状態で電気破砕を実施できるため、適正な破砕処理を経済的に連続実施することができる。
さらに、上記の電気破砕方法及び装置において、上下に多段に電極板対を装備したことで、破砕を徐々に進めることができ、破砕程度をより均一にすることができ、製品歩留まりの低下を防止することができる。
【図面の簡単な説明】
【図1】本発明に係る電気破砕装置の第1実施形態の概略構成図である。
【図2】図1における要部の拡大図である。
【図3】対向配置された一対の電極板間における電気放電の発生形態の説明図である。
【図4】対向配置された一対の電極板間の電気容量についての電圧と放電エネルギーとの相関図である。
【図5】本発明に係る電気破砕装置の第2実施形態の概略構成図である。
【図6】図5における要部の拡大図である。
【図7】本発明に係る電気破砕装置の電極板の他の形態を示す部分概略図である。
【図8】従来の電気破砕装置の概略構成図である。
【図9】電気放電による物体の破砕形態の説明図である。
【符号の説明】
30 電気破砕装置
31 通路
33,34 電極板
36 高電圧パルス発生装置
38 被破砕物
40 シュータ(被破砕物供給手段)
42 液
44 処理槽
46 回収用搬送手段
55 電気破砕装置
57,58 電極板
60 処理槽
62 回収用搬送手段
64 シャワー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric crushing method and apparatus for applying a high voltage pulse to a pair of electrode plates and crushing an object to be crushed by a discharge generated between the electrode plates.
[0002]
[Prior art]
First, the crushing phenomenon of an object to be crushed by electric discharge is divided into three cases (1) to (3) in FIG.
(1) in FIG. 9 is a case where the electric discharge passes through a position away from the object 6 to be crushed. In this case, the surrounding medium causes a change in state due to electric discharge, a shock wave is generated, and the object to be crushed 6 is crushed by the shock wave acting on the object to be crushed 6 as a compressive force.
[0003]
In both (2) and (3) of FIG. 9, the electric discharge passes through the object to be crushed 6 and the electric discharge passing through the object to be crushed 6 explodes into the air, water, etc. in the fine gap 6a inside the object. This is a case where the object to be crushed 6 is crushed by a tensile load that causes thermal expansion and acts on the object by this explosive thermal expansion.
[0004]
For example, in the case of ore, as shown in Table 1 below, the tensile strength is significantly smaller than the compressive strength. Therefore, in the case where the object to be crushed 6 is ore, as a crushing method, passing the electric discharge through the object and causing the tensile breakage by the explosive thermal expansion caused by the electric discharge leads to the efficiency of the crushing.
[0005]
In the case of (3) in FIG. 9 described above, both electrodes that generate electric discharge are in close contact with the object to be crushed 6. In the case of (2) in FIG. There is a gap between them. In this way, when there is a gap, energy loss occurs in which part of the discharge energy is dissipated into the gap space, so both electrodes are in close contact with the object to be crushed 6 as shown in FIG. Compared with the case where it is doing, crushing efficiency worsens.
[0006]
[Table 1]
Figure 0003825889
[0007]
Here, FIG. 8 shows an example of a conventional electric crushing apparatus, which is disclosed in Japanese Patent Application Laid-Open No. 60-118252. The electric crushing device 1 is a device that crushes an object to be crushed at room temperature such as a tire or the like with an electric discharge after being cooled and embrittled with a low-temperature liquefied gas such as liquefied nitrogen gas. is there.
[0008]
In this electric crushing apparatus 1, the bucket 8 that accommodates the object to be crushed 6 can be moved up and down from the end of the carry-in conveyor 5 to the vicinity of the fixed electrode 4 in the processing tank 3 by a lifting device 18. The movable electrode 10 is supported by the moving device 19.
[0009]
When the bucket 8 lowers the object 6 to be crushed onto the fixed electrode 4, the moving device 19 retracts the movable electrode 10 to a position that does not interfere with the operation of the bucket 8, as shown by the solid line in the figure. When returning to the terminal end side of the conveyor 5, the movable electrode 10 is advanced so that the movable electrode 10 comes to a position facing the fixed electrode 4 as indicated by a two-dot chain line in the figure. The moving device 19 is configured to lower the fixed electrode 4 so that the object 6 on the fixed electrode 4 is sandwiched between the fixed electrode 4 and the movable electrode 10.
[0010]
Here, when crushing by electric discharge, the position of the pair of electrodes or the object to be crushed 6 between the pair of electrodes so that the electric discharge is performed in the state shown in FIG. If this state is controlled and managed, the crushing process can be efficiently performed with less electric power, and energy saving and productivity can be improved.
[0011]
[Problems to be solved by the invention]
However, in the conventional electric crushing apparatus 1 shown in FIG. 8, the movable electrode 10 and the object to be crushed 6 cannot be brought into contact with good balance, and the object to be crushed 6 is not spaced between the fixed electrode 4 and the movable electrode 10. It is practically impossible to obtain a sandwiched state. Therefore, since the movable electrode 10 and the object to be crushed 6 are discharged in a non-contact state, electric discharge is mostly performed in the state of (1) or (2) in FIG. There was a problem of increasing.
[0012]
Furthermore, in the apparatus of FIG. 8, it becomes a system which carries in and carries out the to-be-crushed object 6 batchwise by a fixed quantity, cannot perform a continuous process, but it is difficult to aim at the improvement of productivity.
Further, when the discharge voltage is increased in anticipation of loss of discharge energy, it happens that the distance between the movable electrode 10 and the object to be crushed 6 is close, and the ideal discharge shown in (3) of FIG. There was also a possibility that excessive crushing occurred because the electric discharge was too strong.
[0013]
Thus, in order to stably realize the ideal discharge shown in (3) of FIG. 9, there is no other way to sandwich each mass of the object to be crushed by the electrodes, and the productivity is too bad. Not realized.
[0014]
Accordingly, an object of the present invention is to eliminate the above-mentioned problem, and through an electric discharge in the object to be crushed in an ideal state in which the object to be crushed is sandwiched between a pair of electrodes without a gap, an efficient electric power with little energy loss is obtained. Provided is an electric crushing method and apparatus that can realize crushing, and does not require retraction of one electrode when a material to be crushed is input, can be continuously processed, and can realize energy saving and productivity improvement. That is.
[0015]
[Means for Solving the Problems]
The object of the present invention is an electric crushing method in which a high voltage pulse is applied to a pair of electrodes, and an object to be crushed that is placed in a discharge path between the electrodes and contains gas or liquid is crushed by discharge. The electrodes are arranged opposite to each other by forming a pair of electrode plates that open in the vertical direction and form a passage that gradually decreases in width toward the lower side, and a material to be crushed is introduced into the passage between the pair of electrode plates. contact path of the crush material is formed between the counter electrode Te, the via contact portion of the object to be crushed between the contact portion between said electrode plate and the crush material through the gas or liquid within the object to be crushed This is achieved by crushing the object to be crushed in the discharge path by electric discharge .
[0016]
The actual main configuration is as follows: a pair of electrode plates that are arranged opposite to each other by forming a passage that opens in the vertical direction and gradually decreases in width toward the lower side, and a high voltage pulse is applied to the pair of electrode plates. High voltage pulse generating means for generating a discharge in the contact path of the object to be crushed that is placed between the electrode plates and containing gas or liquid, and to supply the object to be crushed into the passage between the electrode plates And an electric crushing device having a configuration.
[0017]
And according to the said structure, the to-be-crushed object thrown in between the paired electrode plates from the to-be-crushed object supply means tends to pass the channel | path between a pair of electrode plates by natural fall. The passage between the pair of electrode plates has a configuration in which the passage width gradually decreases toward the lower side. Therefore, if the distance between the lower ends of the pair of electrode plates is appropriately set, the lower end of the pair of electrode plates It is possible to create a state in which the object to be crushed charged at the section is clogged, and eventually, an electric discharge can be passed through the object to be crushed in an ideal state in which the object to be crushed is sandwiched between the pair of electrodes. In addition, efficient electric fragmentation can be realized with little energy loss.
And as long as there is no change in the agglomerate size of the object to be crushed, the pair of electrode plates may be fixedly arranged, and there is no need to evacuate one of the electrodes when the object to be crushed is charged. Continuous processing is possible without incurring time loss due to the retraction operation of the plate.
[0018]
In addition, since both electrodes are in close contact with the material to be crushed and electric loss can be carried out in an ideal state with little loss of discharge energy, there is no need to set a high discharge voltage in anticipation of loss of discharge energy. However, it is possible to prevent the inconvenience that excessive crushing occurs due to being too strong.
[0019]
In the above-described electric crushing method and apparatus, the pair of electrode plates that are arranged to face each other so as to form a passage that opens in the vertical direction and that gradually decreases in width toward the lower side are arranged in a plurality of upper and lower stages. Equipped so that the facing interval becomes smaller toward the side, it is possible to crush to gradually reduce the diameter by multi-stage discharge.
If it does in this way, the magnitude | size of the lump of the to-be-crushed object of crushing object can be set to a certain range for every electrode plate of each step | level, and a more appropriate discharge voltage can be set.
[0020]
Note that, in the above-described electric crushing method and apparatus, the pair of electrode plates may be immersed in the liquid in the treatment tank so that an electric discharge is performed on the object to be crushed in the liquid.
If it does in this way, it becomes possible to control and manage the electric discharge passed through to-be-crushed material with higher precision by selecting appropriately the electric characteristic of the liquid which immerses a pair of electrode plates.
Moreover, in the above-described electrofracturing method and apparatus, an angle adjusting mechanism for the pair of electrode plates can be provided. By this mechanism, it is possible to adjust the fall of the object that has been crushed, and to arbitrarily change the particle size of the crushed material.
Furthermore, the present invention is an invention in which a discharge current is passed through the object to be crushed between the pair of electrode plates, but since it is not necessary to plan the discharge when not discharging, by providing a swing mechanism on the electrode plate, Priding can be eliminated.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an electric crushing apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of a first embodiment of an electric crushing apparatus according to the present invention, FIG. 2 is an enlarged view of a main part in FIG. 1, and FIG. 3 is a form of generation of electric discharge between a pair of opposed electrode plates. It is explanatory drawing of.
[0022]
The electric crushing device 30 according to the first embodiment includes a pair of electrode plates 33 and 34 that are opposed to each other so as to form a passage 31 that opens in the vertical direction and gradually narrows toward the lower side. A high voltage pulse generator 36 for generating a discharge by applying a high voltage pulse to the pair of electrode plates 33, 34, a shooter 40 as a material supply means for supplying a material 38 to be crushed into the passage 31, and a pair A treatment tank 44 in which the liquid 42 for immersing the electrode plates 33 and 34 is stored, and a recovery conveying means 46 for discharging the crushed material 38 falling from the lower end outlet of the passage 31 to the outside of the tank. In addition, the object to be crushed 38 put into the passage 31 between the pair of electrode plates 33 and 34 is crushed by an electric discharge generated between the pair of electrode plates 33 and 34.
[0023]
In the case of the first embodiment, the electrode plates 33 and 34 are set so that the included angle α between these electrode plates 33 and 34 is about 30 °. The angle α is not limited to that in this embodiment, and the design can be changed as appropriate according to the size of the initial mass of the material to be crushed 38 to be input. However, practically, the included angle α is preferably set to an appropriate value in the range of about 30 to 90 °.
[0024]
As shown in FIG. 2, each of the above-described electrode plates 33 and 34 is provided with insulating regions 48 made of an insulating material at three locations in the vertical direction. The electrode plates 34 function as four independent electrode plates 33a, 33b, 33c, 33d spaced apart in the direction, and the electrode plate 34 functions as four independent electrode plates 34a, 34b, 34c, 34d spaced apart in the vertical direction. .
In addition, the electrode plates 33a, 33b, 33c, 33d, 34a, 34b, 34c, and 34d that are divided by the insulating region 48 are the ones that face each other in the horizontal direction, and the passage width gradually decreases toward the lower side. This is a pair of electrode plates forming 31.
The insulating region 48 is for preventing the electric discharge from flying other than between the opposed electrode plates, that is, for preventing the electric discharge from occurring between the electrode plates adjacent in the vertical direction. .
[0025]
That is, in the case of this first embodiment, there are substantially four pairs of electrode plates that are arranged to face each other so as to form a passage 31 that opens in the vertical direction and gradually decreases in width toward the lower side. In this configuration, the upper and lower sides are arranged in four stages so that the facing distance becomes smaller on the lower stage side.
As shown in FIG. 3, a predetermined voltage for generating an electric discharge in the electrode plates 52, 53 arranged to face each other so as to form a passage 51 that opens in the vertical direction and gradually decreases in width toward the lower side. Is applied, an electric discharge is basically generated between the lower end areas A of the electrode plates having the smallest passage width w.
Actually, when the object to be crushed is input, a path in which the objects to be crushed which are in contact with the electrode plates 52 and 53 are further in contact with each other is formed between the lower end areas A. Discharge occurs. And the to-be-crushed object in this path | route is crushed.
[0026]
Accordingly, in the configuration in which the electrode plate pairs are arranged in four stages in the vertical direction as in the first embodiment, an electric discharge is generated in the lower end region of each electrode plate for each electrode plate pair in each stage. The material to be crushed 38 is subjected to electric crushing four times at the maximum before passing through the passage 31, and is crushed to a desired particle size step by step.
The gap between the pair of electrode plates is set corresponding to the target crushing degree.
[0027]
The high voltage pulse generator 36 applies high voltage pulses to the electrode plates 33a, 33b, 33c, 33d, 34a, 34b, 34c, and 34d that are paired with each other at regular intervals.
Further, the high voltage pulse generator 36 is configured so that the high voltage pulse applied to the electrode plates at each stage has a passage width or It is set according to the characteristics (characteristics such as tensile strength and hardness) of the material to be crushed 38. Furthermore, it is preferable to simultaneously supply pulses to each stage so as not to discharge to electrodes other than the paired electrodes.
[0028]
Actually, in the high voltage pulse generator 36, for each desired degree of crushing, for each electrode plate at each stage, the electric capacity between each electrode plate and each supply voltage based on the sampling data as shown in FIG. Conditions, furthermore, the electric resistance of the medium between the electrode plates and the discharge interval are set.
Fig. 4 shows the correlation between the applied voltage and the discharge energy for the electric capacity between the electrode plates, taking granite as an example. The ● mark on each electric capacity line indicates that electricity flows. The granite is a portion where it is not crushed, and the Δ mark on the electric capacity line indicates the portion where the granite is actually crushed by the flowing electricity.
In FIG. 4, the range above the curve B is the portion where electrical breakdown occurs, and the portion above the curve C is the range where the granite is actually electrically fractured. Accordingly, the capacitance setting between the electrode plates and the supply voltage are set so as to fall within the range above the curve C.
[0029]
The liquid 42 in which the electrode plates 33 and 34 are immersed has a function of adjusting the insulating characteristics between the bipolar plates so that the electric discharge can be satisfactorily performed. For example, when the material to be crushed 38 is a porous ore or the like, It fulfills the function of filling the voids in the material to be crushed so that the tensile load efficiently acts on the fine voids in the material to be crushed by the explosive expansion that occurs when the discharge passes through the material to be crushed. A liquid satisfying these functions (preferably water) is appropriately selected.
[0030]
Further, the gap between the pair of electrode plates and the angle formed between the electrode plates in the above apparatus, the electric capacity between the electrode plates, each supply voltage condition, the electric resistance of the medium between the electrode plates, the discharge interval, etc. It is also changed by the rate, hardness and moisture content.
[0031]
In the above-described electric crushing device 30, the electric discharge is passed through the object to be crushed 38 in an ideal state in which the object to be crushed 38 is sandwiched between the discharge regions between the pair of electrode plates, thereby realizing efficient electric crushing with little energy loss. be able to.
The pair of electrode plates 33 and 34 may be fixedly arranged as long as the particle size of the object to be crushed 38 is not changed, and one electrode is retracted when the object to be crushed 38 is charged. Therefore, continuous processing is possible without incurring time loss due to the retracting operation of the electrode plates 33 and 34.
Therefore, the crushing process can be efficiently performed with less electric power, and energy saving and productivity improvement can be realized.
[0032]
In addition, since both electrodes are in contact with the object to be crushed 38 and electric crushing can be carried out in an ideal state with little loss of discharge energy, there is no need to set the discharge voltage high in anticipation of loss of discharge energy. The inconvenience that the discharge is too strong and excessive crushing can be prevented, and appropriate crushing treatment can be carried out continuously economically.
[0033]
As described above, since crushing can be carried out step by step, compared to the case where the processing is completed by a single electric crushing, depending on the size of the crushing object 38 to be crushed for each electrode plate at each stage. Therefore, it is possible to set an appropriate discharge voltage, gradually proceed crushing, make the crushing degree more uniform, and prevent a decrease in product yield.
[0034]
In the case of the first embodiment, the pair of electrode plates 33 and 34 is immersed in the liquid 42 of the treatment tank 44 and performs electric discharge on the material 38 in the liquid 42, so that the liquid 42 By appropriately selecting the electrical characteristics, it becomes possible to control and manage the electrical discharge passing through the object to be crushed with higher accuracy.
[0035]
In the above embodiment, the electrode plates 57 and 58 that are arranged to face each other so that the passage width gradually narrows downward are immersed in the liquid. However, the electrode plates 57 and 58 are to be crushed. Depending on the characteristics of 38, it may be installed in the air.
[0036]
FIG. 5 is a schematic configuration diagram of a second embodiment of the electric crushing apparatus according to the present invention, and FIG. 6 is an enlarged view of a main part in FIG.
The electric crushing device 55 according to the second embodiment includes electrode plates 57 and 58 that are opposed to each other so as to form a passage that opens in the vertical direction and gradually decreases in width toward the lower side, and these electrode plates. A high voltage pulse generator 36 that applies a high voltage pulse to the electrode plates 57 and 58 to generate an electric discharge between the electrode plates 57 and 58, and an object to be crushed into the passage between the electrode plates 57 and 58. The shooter 40 as the crushed material supply means, the treatment tank 60 that receives the material to be crushed 38 that has passed through the passage between the electrode plates 57 and 58, and the crushed material 38 that has been crushed and falls to the bottom of the treatment tank 60. And a collecting transport means 62 for discharging the material to the outside of the tank, and the object to be crushed 38 introduced into the passage between the electrode plates 57 and 58 is crushed by the electric discharge generated between the electrode plates 57 and 58.
[0037]
The difference from the first embodiment described above is that the electrode plates 57 and 58 are completely separated in three stages in the vertical direction, and the electrode plates 57 and 58 equipped in the three stages are both in the air. In addition, it is equipped with a shower 64 that sprays water on the material to be crushed 38 that is put on the shooter 40.
[0038]
When the object to be crushed 38 is porous or has a structure with many cracks and is weak in strength, the shower 64 is made to contain water in the object to be crushed 38 that has been thrown in by sprinkling water, so This is to prevent crushing.
[0039]
In this embodiment, the vertical direction of the respective electrode plates 57 and 58 that is provided on three stages, the uppermost electrode plates 57 and 58 included angle theta 1 is about 30 °, the interruption electrode plates 57, 58 interposed The angle θ 2 is about 60 °, and the lowermost electrode plates 57 and 58 are arranged to face each other so that the included angle θ 3 is about 90 °.
In addition, the back surfaces of the electrode plates 57 and 58 are covered with an insulator 66. This insulator 66 is used to prevent the electric discharge from flying other than between the electrode plates 57 and 58 opposed to each other, that is, to prevent the electric discharge from occurring between the electrode plates adjacent in the vertical direction. belongs to.
[0040]
In the case of this embodiment, the lower end passage width between the electrode plates of each stage is such that the included angle β between the line segments 68 and 69 connecting the lower ends of the electrode plates is smaller than 30 °. The lower one is set smaller.
However, each angle and the passage width at the lower end between the electrode plates can be set as appropriate.
[0041]
A liquid 70 is stored on the bottom side of the processing tank 60. The liquid 70 receives the crushed material 38 that has passed through the lowermost electrode plates 57, 58 and falls, prevents over-crushing due to collision with the treatment tank 60, and also treats the treatment tank 60. Prevents noise from being dropped or impacted on the surface.
[0042]
Also in the case of the above-mentioned electric crushing apparatus 55, the same effect as 1st Embodiment mentioned above can be acquired.
It should be noted that the number of electrode plates that are arranged to face each other so that the passage width gradually decreases downward is not limited to the above-described embodiment. For example, it may be equipped in an arbitrary number of stages of two stages or five or more stages.
Moreover, in the above embodiment, the electrode plates that are arranged to face each other so that the passage width gradually narrows downward are configured to be equipped in multiple stages in the vertical direction, but when crushing in multiple stages is not necessary May be equipped with one electrode plate.
[0043]
Further, FIG. 7 shows an embodiment provided with a rocking device 80 for preventing the crushed object from being plunged, and an opening degree adjusting device 90 for adjusting the fall of the crushed material to be crushed or adjusting the particle size of the crushed material. I am doing. Taking the apparatus of the embodiment of FIGS. 5 and 6 as an example, at least one of the swinging device 80 and the opening degree adjusting device 90 is attached to an insulator 66 provided on the back surface of the electrode plates 57 and 58. 1 and 2 can be applied to the apparatus of the embodiment shown in FIGS. As the oscillating device 80, a mechanism for applying vibration, a mechanism for oscillating the electrode plates 57 and 58 by an oscillating motor, or the like is provided. Further, the opening adjustment device 90 is attached to a lower or upper portion of the electrode plates 57 and 58 with a hydraulic cylinder, an electric actuator, etc., and an angle adjustment is appropriately performed by pivotally supporting the opposite end of the attachment position.
[0044]
【The invention's effect】
According to the electric crushing method and apparatus of the present invention, it is possible to realize efficient electric crushing with less energy loss through electric discharge through the crushing object in an ideal state in which the crushing object is sandwiched between a pair of electrodes. it can. In addition, continuous processing is possible, and crushing can be efficiently performed with less power, and energy saving and productivity can be improved.
And since both electrodes contact | adhere to a to-be-crushed object and electric crushing can be implemented in the ideal state with few loss of discharge energy, appropriate crushing processing can be implemented economically continuously.
Furthermore, in the above-described electro-crushing method and apparatus, the electrode plate pairs are provided in multiple stages on the top and bottom, so that crushing can be progressed gradually, the crushing degree can be made more uniform, and reduction in product yield can be prevented. can do.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of an electric crushing apparatus according to the present invention.
FIG. 2 is an enlarged view of a main part in FIG.
FIG. 3 is an explanatory diagram of a form of electric discharge generated between a pair of electrode plates arranged opposite to each other.
FIG. 4 is a correlation diagram between voltage and discharge energy with respect to electric capacity between a pair of electrode plates arranged opposite to each other.
FIG. 5 is a schematic configuration diagram of a second embodiment of the electric crushing apparatus according to the present invention.
6 is an enlarged view of a main part in FIG.
FIG. 7 is a partial schematic view showing another embodiment of the electrode plate of the electric crushing apparatus according to the present invention.
FIG. 8 is a schematic configuration diagram of a conventional electric crushing apparatus.
FIG. 9 is an explanatory view of a form of crushing an object by electric discharge.
[Explanation of symbols]
30 Electro-crusher 31 Passage 33, 34 Electrode plate 36 High voltage pulse generator 38 Object to be crushed 40 Shuter (object to be crushed)
42 Liquid 44 Treatment tank 46 Recovery transport means 55 Electric crushing device 57, 58 Electrode plate 60 Treatment tank 62 Recovery transport means 64 Shower

Claims (6)

対の電極に高電圧パルスを印加して、これら電極間の放電路内に置かれて気体又は液体を内包する被破砕物を放電により破砕する電気破砕方法であって、
前記電極が対の電極板で上下方向に開通して下側に向かって次第に通路幅が狭くなる通路を形成して対向配置され、
これら対の電極板間の通路に被破砕物が投入されて対電極間に被破砕物の接触経路が形成され
前記被破砕物と前記電極板との接触部分から被破砕物同士の接触部分を経由して前記被破砕物内の気体又は液体を通る放電により放電経路内の被破砕物が破砕されることを特徴とした電気破砕方法。
An electric crushing method in which a high voltage pulse is applied to a pair of electrodes, and an object to be crushed which is placed in a discharge path between these electrodes and contains gas or liquid is crushed by discharge ,
The electrodes are arranged opposite to each other by forming a passage in which a passage width is gradually narrowed toward the lower side by opening up and down with a pair of electrode plates,
The object to be crushed is put into the passage between the pair of electrode plates, and a contact path of the object to be crushed is formed between the counter electrodes .
That the crush material in the discharge path is disrupted by discharge through a gas or liquid in the said object to be crushed through the contact portion of the object to be crushed between the contact portion between said electrode plate and object to be crushed Characterized electro-fracturing method.
前記対の電極板を上下多段に且つ下段側ほど対向間隔が小さくなるように装備した構成とし、多段階放電で徐々に小径とする破砕を可能としたことを特徴とした請求項1に記載の電気破砕方法。The pair of electrode plates are arranged so as to be arranged in multiple upper and lower stages so that the facing distance becomes smaller toward the lower stage side, and crushing to gradually reduce the diameter by multistage discharge is possible. Electro-crushing method. 上下方向に開通して下側に向かって次第に通路幅が狭くなる通路を形成して対向配置された対の電極板と、該対の電極板に高電圧パルスを印加して電極板間に置かれて気体又は液体を内包する被破砕物の接触経路に放電を発生させる高電圧パルス発生手段と、前記電極板間の通路に前記被破砕物を投入する被破砕物供給手段とを備えることを特徴とした電気破砕装置。A pair of electrode plates that are opposed to each other by forming a passage that opens in the vertical direction and gradually decreases in width toward the lower side, and a high voltage pulse is applied to the pair of electrode plates to be placed between the electrode plates . a high-voltage pulse generating means for generating a discharge in contact path of the objects to be crushed enclosing the gas or liquid him, that and a object to be crushed supply means for introducing the object to be crushed in the path of the electrode plates An electric crushing device. 前記対の電極板を絶縁体により上下多段に且つ下段側ほど対向間隔が小さくなるように装備したことを特徴とした請求項3に記載の電気破砕装置。4. The electric crushing apparatus according to claim 3, wherein the pair of electrode plates are equipped with an insulator so as to be multi-tiered in the vertical direction and so that the facing distance becomes smaller toward the lower side. 前記対の電極板が処理槽の液中に浸漬されていることを特徴とした請求項3又は4に記載の電気破砕装置。The electric crushing apparatus according to claim 3 or 4, wherein the pair of electrode plates is immersed in a liquid in a treatment tank. 前記対の電極板の少なくとも1つに角度調整手段が設けられていることを特徴とした請求項3〜5の一項に記載の電気破砕装置。6. The electric crushing apparatus according to claim 3, wherein an angle adjusting means is provided on at least one of the pair of electrode plates.
JP19726997A 1997-07-23 1997-07-23 Electro-crushing method and apparatus Expired - Fee Related JP3825889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19726997A JP3825889B2 (en) 1997-07-23 1997-07-23 Electro-crushing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19726997A JP3825889B2 (en) 1997-07-23 1997-07-23 Electro-crushing method and apparatus

Publications (2)

Publication Number Publication Date
JPH1133430A JPH1133430A (en) 1999-02-09
JP3825889B2 true JP3825889B2 (en) 2006-09-27

Family

ID=16371671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19726997A Expired - Fee Related JP3825889B2 (en) 1997-07-23 1997-07-23 Electro-crushing method and apparatus

Country Status (1)

Country Link
JP (1) JP3825889B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555689A3 (en) * 1992-02-11 1993-10-20 Thomson Consumer Electronics Arrangement for downconverting microwave signals
WO2012129708A1 (en) 2011-03-30 2012-10-04 Selfrag Ag Electrode arrangement for an electrodynamic fragmentation plant
WO2015058312A1 (en) * 2013-10-25 2015-04-30 Selfrag Ag Method for fragmenting and/or pre-weakening material by means of high-voltage discharges
DE102014008989B4 (en) * 2014-06-13 2022-04-07 Technische Universität Bergakademie Freiberg Device and method for the comminution of solids by means of electric pulses
CN104984807B (en) * 2015-07-08 2017-10-31 温州科技职业学院 A kind of method of device and its breaking ores for continuous discharge breaking ores
JP6404808B2 (en) * 2015-12-08 2018-10-17 パナソニック株式会社 Method for disassembling articles
JP6339994B2 (en) * 2015-12-08 2018-06-06 パナソニック株式会社 Discharge crushing apparatus and discharge crushing method
CN106925403A (en) * 2015-12-29 2017-07-07 大连亚泰科技新材料股份有限公司 A kind of application high voltage method prepares the equipment and preparation method of nano-tourmaline
CN105618230B (en) * 2016-02-22 2018-06-01 沈阳理工大学 A kind of high-voltage pulse kata-rocks ore deposit device
EP3251751B1 (en) * 2016-06-02 2019-06-05 Panasonic Corporation Object disassembling apparatus
JP6535315B2 (en) * 2016-06-02 2019-06-26 パナソニック株式会社 Disassembly device for articles
JP6722874B2 (en) * 2017-06-06 2020-07-15 パナソニックIpマネジメント株式会社 Plate-shaped article disassembling device
DE102018131541A1 (en) 2018-12-10 2020-06-10 Technische Universität Bergakademie Freiberg Device for stressing particles by means of electrical impulses
RU2733434C1 (en) * 2020-02-27 2020-10-01 Анатолий Евгеньевич Волков Electric pulsed crushing-separation method and device

Also Published As

Publication number Publication date
JPH1133430A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP3825889B2 (en) Electro-crushing method and apparatus
CN110215985B (en) High-voltage electric pulse device for ore crushing pretreatment
US20060163392A1 (en) Process reactor and method for the electrodynamic fragmentation
JPH01111459A (en) Method for separation of metal alloy particles
JPH0975769A (en) Method for fragmenting and pulverizing solid coagulated fromnonmetallic component or partially from metal component
US10919045B2 (en) Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharges
JP3847340B2 (en) Method for heat treatment of materials in a microwave oven
JP2010189274A (en) Method, system and classifier for sorting silicon piece mixture into at least two size distribution
EP0450112B1 (en) Method for the continuous fabrication of comminuted hydrogen storage alloy material negative electrodes
FI69774C (en) SAETT OCH ANORDNING FOER ATT SOENDERDELA PLAST- OCH / ELLER GUMMIMATERIAL
CN107350056B (en) A kind of high electric field pulse spallation reaction groove for continuous productive process
WO1999003588A1 (en) Disintegration apparatus
GB2421203A (en) Aggregate breakdown by high voltage electrical pulses
KR101942562B1 (en) Apparatus and method for continuous manufacturing of metal chip
US4759905A (en) Method for fabrication of low cost finely divided silicon-germanium and consolidated compacts thereof
JP2003154286A (en) Electrical crushing apparatus and method
JP2003220344A (en) Continuous vibration mill
KR101945380B1 (en) Cooling apparatus for mold of equipment for continuous manufacturing of metal chip
KR101942563B1 (en) Apparatus and method for supplying molten iron of equipment for continuous manufacturing of metal chip
KR20140134450A (en) Apparatus for raw material
US3625360A (en) Electrostatic separation method and apparatus
JP2851681B2 (en) Continuous production method of negative electrode made of finely ground hydrogen storage alloy material
KR20050048256A (en) An apparatus for preventting deadlock of chute hole
RU2072263C1 (en) Method and device for crushing used tires
KR102471250B1 (en) Apparatus and method for processing powder material using intense pulsed light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees