JP3824288B2 - Positive photosensitive resin composition - Google Patents

Positive photosensitive resin composition Download PDF

Info

Publication number
JP3824288B2
JP3824288B2 JP14443798A JP14443798A JP3824288B2 JP 3824288 B2 JP3824288 B2 JP 3824288B2 JP 14443798 A JP14443798 A JP 14443798A JP 14443798 A JP14443798 A JP 14443798A JP 3824288 B2 JP3824288 B2 JP 3824288B2
Authority
JP
Japan
Prior art keywords
acid
group
photosensitive resin
resin composition
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14443798A
Other languages
Japanese (ja)
Other versions
JPH11338150A (en
Inventor
保雅 河辺
健一郎 佐藤
利明 青合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP14443798A priority Critical patent/JP3824288B2/en
Publication of JPH11338150A publication Critical patent/JPH11338150A/en
Application granted granted Critical
Publication of JP3824288B2 publication Critical patent/JP3824288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、IC等の半導体製造工程、液晶、サーマルヘッド等の回路基板の製造、さらにその他のフォトファブリケーション工程に使用されるポジ型感光性樹脂組成物に関するものである。更に詳しくは遠紫外線、X線、電子線等の短波長の光エネルギー線を用いる半導体素子の微細加工に好適に用いられるポジ型感光性樹脂組成物に関するものであり、特にArFエキシマレーザを用いる半導体素子の微細加工に好適用いられるポジ型感光性樹脂組成物である。
【0002】
【従来の技術】
近年、半導体集積回路は高集積化が進み、LSIやVLSIが実用化されるとともに集積回路の最小パターン幅はサブハーフミクロンの領域に至り、さらに微細化が進んでいる。
そのため、微細パターン形成のためのフォトリソグラフィ技術に対する要求がますます厳しくなっている。パターンの微細化を図る手段の一つとして、レジストのパターン形成の際に使用される露光光の短波長化が知られている。
例えば64Mビットまでの集積度のDRAMの製造には、現在まで、高圧水銀灯のi線(365nm)が光源として使用されてきた。256MビットDRAMの量産プロセスには、i線に変わりKrFエキシマレーザー(248nm)が露光光源として実用化され、更に1Gビット以上の集積度を持つDRAMの製造を目的として、より短波長の光源が検討されており、ArFエキシマレーザー(193nm)、F2エキシマレーザー(157nm)、X線、電子線の利用が有効であると考えられている(上野巧ら、「短波長フォトレジスト材料-ULSIに向けた微細加工-」、ぶんしん出版、1988年)。
【0003】
特にArFエキシマレーザーが次世代の露光技術として位置づけられ、ArFエキシマレーザ露光用の高感度、高解像力、且つドライエッチング耐性に優れたレジストの開発が望まれている。
従来のi線及びKrFエキシマレーザー露光用のレジスト材料としては、高いドライエッチング耐性を得るために、芳香族ポリマーを含有するレジストが広く用いられており、例えばノボラック樹脂系レジストあるいはポリビニルフェノール系の化学増幅型レジストが知られている。しかしながら、ドライエッチング耐性を付与する目的で導入された芳香環はArFエキシマレーザー光の波長域でほとんど光を通さないために、レジスト膜の底部にまで露光することが困難であり、従来のレジストでは断面形状の良好なパターンが得られなかった。
【0004】
レジストの透明性の問題点の解決策の一つとして芳香環を全く含まない脂肪族ポリマー、例えばポリメチルメタクリレートを用いればよいことが知られている(J.Vac.Sci. Technol.,B9,3357(1991))。しかしながら、このようなポリマーは、十分なドライエッチング耐性が望めないことから実用できない。このようにArFエキシマレーザー露光用のレジスト材料の開発に当たっては、透明性の向上と高いドライエッチング耐性を両立させることが最大の課題とされている。
そこで、芳香環の代わりに脂環式炭化水素基を含有するレジストが芳香族基と同様の耐ドライエッチング耐性を示し、且つ193nmの吸収が小さいことがProc. SPIE,1672,66(1992)で報告され、近年同ポリマーの利用が精力的に研究されるようになった。
【0005】
元来、脂環式炭化水素基を含有するポリマーをレジストに応用する試みは古くからなされ、例えば特開昭60-195542号、特開平1-217453号、特開平2-59751号ではノルボルネン系のポリマーが開示されており、特開平2-146045号には環状脂肪族炭化水素骨格と無水マレイン酸単位を有するアルカリ可溶性樹脂が種々開示されている。
さらに、特開平5-80515号ではノルボルネンと酸分解基で保護されたアクリル酸系エステルの共重合体が開示され、特開平4-39665号、特開平5-265212号、特開平5-80515、特開平7-234511号では側鎖にアダマンタン骨格を有する共重合体が開示され、特開平7-252324号、特開平9-221526号では、有橋環式炭化水素基を有する炭素数7〜12の脂肪族環式炭化水素基がポリマーの側鎖に連結した化合物、例えば、トリシクロ[5.2.1.02.6]デカンジメチレン基、トリシクロ[5.2.1.02.6]デカンジイル基、ノルボルナンジイル基、ノルボルナンジメチル基、アダマンタンジイル基、が開示され、特開平7-199467号にはトリシクロデカニル基、ジシクロペンテニル基、ジシクロペンテニルオキシエチル基、ノルボニル基、シクロヘキシル基がポリマーの側鎖に連結した化合物が開示されている。
【0006】
さらに特開平9-325498号にはシクロヘキサン及びイソボルニル骨格を主鎖に有する重合体が開示され、さらに特開平9-230595号、特開平9-244247号、特開平10-10739号、WO97-33198、EP794458、EP789278号にはジシクロオレフィン等の各種環状オレフィン類が主鎖に導入された重合体が開示され、特開平8-82925号、特開平9-230597号にはテルペノイド骨格の内、メンチル基又はメンチル誘導体基を有する化合物が好ましいことが開示されている。
【0007】
上記のようなレジスト性能とは別に、リソグラフィープロセスに起因する欠陥(空隙)の発生が歩留まり低下の大きな要因の一つになっており、最近、特に重要な問題となっている。
例えば、現像欠陥は、一般に液盛り時の気泡と現像液中の溶存気体によるマイクロバブルが一因となり欠陥を発生させると言われており(平野ら;第42回応用物理学会講演予行集27p-ZW-9(1996))、ウエファーが大口径化し、現像液の吐出量が増加するに従って、さらに気泡対策が重要となっている。これらの気泡対策として、ソフトに現像液が吐出されるような装置上の改良(サイエンスフォーラム社出版,ULSI製造コンタミネーションコントロール技術,41(1992)、参照)や溶存気体の脱気機構の付加により気泡の低減の試みがなされているものの十分満足できるレベルではない。
また、現像欠陥を低減するために、現像液中にノニオン系の界面活性剤を添加し、現像液の濡れ性を向上させ気泡脱離を促進する工夫やノボラック系のレジスト中の界面活性剤の種類と添加量を最適化することで親和性を向上させる試みがなされてきた(薄島ら;第42回応用物理学会講演予行集27p-ZW-7(1996))。
ところが、非芳香族系のポリマーを用いたArF用の化学増幅系レジストの現像欠陥を低減するためには、これらの方法では十分でないばかりか、むしろ、逆効果になる場合さえあり、現像欠陥を低減するためにどのように対処していいのか、これまで全く改良の指針がなかった。しかも現像欠陥を低減するために、レジストの親和性を向上させると残膜率やプロファイルが劣化する傾向があり両立化が極めて困難であった。
【0008】
さらに、従来の芳香族系のポリマーを用いたKrF用ポジ型化学増幅系レジストでは、例えばProoc.SPIE 1672,46,(1992)、Prooc.SPIE 2438,551,(1995)、Prooc.SPIE ,2438,563(1995)、Prooc.SPIE 1925,14,(1993)、J.Photopolym.Sci.Tech.Vol.8.No.4,535(1995)、J.Photopolym.Sci.Tech.Vol.5.No.1,207(1992)、J.Photopolym.Sci.Tech.Vol.8.No.4,561(1995)、Jpn.J.Appl.Phys.33,7023(1994)等に報告されているように、露光から熱処理(PEB)までの放置時間が長くなるに従い、発生した酸が拡散したり、また、雰囲気中の塩基性不純物によりレジスト表面部の酸が失活してしまい、感度や現像後のレジストパターンのプロファイルや線幅が変化してしまうという問題があった。
これらを解決する手段として、芳香族系のポリマーを用いた化学増幅系レジストにアミンを添加する技術が、特開昭63-149640号、特開平5-249662号、特開平5-127369号、特開平5-289322号、特開平5-249683号、特開平5-289340号、特開平5-232706号、特開平5-257282号、特開平6-242605号、特開平6-242606号、特開平6-266100号、特開平6-266110号、特開平6-317902号、特開平7-120929号、特開平7-146558号、特開平7-319163号、特開平7-508840号、特開平7-333844号、特開平7-219217号、特開平7-92678号、特開平7-28247号、特開平8-22120号、特開平8-110638号、特開平8-123030号、特開平9-274312号、特開平9-166871号、特開平9-292708号、特開平9-325496号、特表平7-508840号、USP5525453号、USP5629134号、USP5667938号等、記載の塩基性化合物等に多く開示されており公知である。
【0009】
しかしながらこれらのアミンを環状脂肪族炭化水素骨格構造を有する非芳香族系のポリマーを用いたArF用の化学増幅系レジストに添加すると確かに、非芳香族系のポリマーを用いた場合と同様、感度変化や現像後のレジストパターンのプロファイル変化や線幅変化に対して効果があるものの、前記現像欠陥が極めて劣る結果となりその対策が望まれていた。
【0010】
他方、感度向上やレジストパターンの形状改善を目的として、KrF用エキシマレーザー光用の化学増幅レジスト組成物にカルボン酸化合物を添加することが特開平7−92679号、特開平5−181279号公報に開示されている。また、特開平9−6001号公報には、アミンとカルボン酸化合物を添加し、感度、解像力に優れ、露光からPEBの間の引置経時安定性を改良する工夫がなされ公知である。
ところが、特開平9−6001号公報で好ましいと開示されている強塩基性で低沸点のアミン(例えばメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン)と芳香族カルボン酸(例えばサリチル酸、ニトロ安息香酸、フタル酸)を環状脂肪族炭化水素骨格を有する非芳香族系のポリマーを用いたArF用の化学増幅系レジストに添加すると、確かに非芳香族系のポリマーを用いたKrF用エキシマレーザー光用の化学増幅レジスト組成物の場合と同様、露光からPEBの間の引置経時安定性に対して効果が見られるものの、前記現像欠陥が極めて劣る結果となりその対策が望まれていた。
また、低沸点のアミンは、PEBの間に蒸発し易い傾向のためアミンの添加効果が全く発現しなくなったり、ホットプレート等の半導体製造に用いられる装置をアミンで汚染してしまうなどのプロセス上の問題を生じていた。
【0011】
【本発明が解決しょうとする課題】
本発明の目的は、露光光源として、深紫外線、特にArFエキシマレーザー光を用いた場合、現像欠陥の問題を生じないポジ型感光性樹脂組成物を提供することにある。
本発明の他の目的は、半導体製造プロセス上、安定性の優れたポジ型感光性樹脂組成物を提供することにある。
【0012】
【課題を解決するための手段】
本発明者等は、ポジ型化学増幅系レジスト組成物の構成材料を鋭意検討した結果、環状脂肪族炭化水素骨格を有する構造単位を含む重合体、光酸発生剤、分子量が1000以下の脂肪族有機カルボン酸及び/又はナフタレン環を有する有機カルボン酸、含窒素塩基性化合物、並びにフッ素系及び/又はシリコン系界面活性剤を組み合わせることによって目的が達成されることを知り本発明に至った。即ち、本発明は下記(1)〜(3)の構成の発明であり、上記目的が達成される。
(1)(A)環状脂肪族炭化水素骨格を有し、酸の作用により分解してアルカリ可溶性となる重合体、
(B)性光線により酸を発生する化合物、
(C)分子量が1000以下の環状脂肪族有機カルボン酸及び/又はナフタレン環を有する有機カルボン酸、
(D)含窒素塩基性化合物、並びに
(E)フッ素系及び/又はシリコン系界面活性剤
を含有することを特徴とするポジ型感光性樹脂組成物。
(2)分子量が2000以下であって、酸の作用により分解し得る基を有し、アルカリ溶解性が酸の作用により増大する低分子酸分解性化合物をさらに含有することを特徴とする請求項1に記載のポジ型感光性樹脂組成物。
(3)活性光線が220nm以下の遠紫外光であることを特徴とする請求項1又は2に記載のポジ型感光性樹脂組成物。
【0013】
【発明の実施の形態】
以下、本発明に使用する化合物について詳細に説明する。
まず、本発明における(A)環状脂肪族炭化水素骨格構造を有する、酸の作用により分解しアルカリ可溶性となる重合体としては、従来知られているものを用いることができるが、その重合体の具体例としては、例えば下記(a-1)〜(a-15)で表されるような主鎖に環状脂肪族炭化水素骨格単位を有し、酸の作用により分解する基(酸分解性基ともいう)を有する重合体や、側鎖に環状脂肪族炭化水素骨格を有する下記(b-1)〜(b-7)で表される繰り返し単位と、酸分解性基を有する重合体を挙げることができる。
また、下記(a-1)〜(a-15)、(b-1)〜(b-7)で表される構造単位等の環状脂肪族炭化水素骨格構造を有する構造単位は、本発明の関わる重合体には必須であるが、下記(c-1)〜(c-4)で表される構造単位を共重合成分として含んでもよい。
【0014】
【化1】

Figure 0003824288
【0015】
【化2】
Figure 0003824288
【0016】
【化3】
Figure 0003824288
【0017】
前記(a-1)〜(a-15)、(b-1)〜(b-7)で表される構造単位において、A、Bは各々独立に水素原子、水酸基、カルボキシル基、アルコキシカルボニル基、炭素数が1〜10個の置換もしくは非置換の、アルキル基、アルコキシ基又はアルケニル基を表し、AとBとが結合して環を形成してもよい。X、Yは、各々独立に酸の作用により分解する基を表す。
前記式(b-1)〜(b-7)、(c-1)〜(c-4)においてRは水素原子、メチル基等の炭素数1〜3個のアルキル基を表す。Zは水素原子、炭素数が1〜10の置換もしくは非置換のアルキル基、アルコキシカルボニル基もしくは酸の作用により分解する基を表す。)
【0018】
上記において、アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基等が挙げられる。
炭素数が1〜10個のアルキル基としては、置換されていてもよい、直鎖、分岐あるいは環状アルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基、ヒドロキシメチル基、ヒドロキシエチル基等が挙げられる。
炭素数が1〜10個のアルコキシ基としては、メトキシ基、エトキシ基、n−ブトキシ基、t−ブトキシ基、プロポキシ基、イソプロポキシ基等が挙げられる。炭素数が2〜10個のアルケニル基としては、アリル基、ビニル基、2−プロペニル基等が挙げられる。
AとBとが結合して形成する環としては、AとBが結合して
−C(=O)−O−C(=O)−、
−C(=O)−NH−C(=O)−、
−CH2 −C(=O)−O−C(=O)−、
等を形成して環となったものが挙げられる。
【0019】
酸の作用により分解する基としては、−(CH2 n −COORa基もしくは−(CH2 n −OCORb基が挙げられる。ここでRaは、炭素数2〜20個の炭化水素基を表し、その炭化水素基としては、t−ブチル基、ノルボルニル基、シクロデカニル基等が挙げられる。Rbとしては、テトラヒドロフラニル基、テトラヒドロピラニル基、エトキシエチル基、イソプロピルエチル基等のアルコキシエチル基、ラクトン基、又はシクロヘキシロキシエチル基を表す。nは0又は1を表す。
【0020】
上記各基における更なる置換基としては、ハロゲン原子、シアノ基、ニトロ基等が挙げられる。
【0021】
上記式(a−1)〜(a−6)で示される構造単位からなる重合体(A)は、例えば環状オレフィン類をメタセシス触媒の存在下、有機溶媒中、あるいは非有機溶媒中で開環重合し、引き続き水素化することによって得られる。開環(共)重合は、例えばW.L.Truettら;J.Am.Chem.Soc.,82,2337(1960)、A.Pacreau;Macromol.Chem.,188,2585(1987)、特開昭51-31800号、特開平1-197460号、特開平2-42094号、EP−0789278号等に記載の合成方法により容易に重合できる。ここで用いられるメタセシス触媒としては、例えば高分子学会編:高分子の合成と反応(1),共立出版p375-381(1992)、特開昭49-77999号に記載の化合物、具体的にはタングステン及び又はモリブデン系などの遷移金属のハロゲン化合物と有機アルミニウム化合物又はこれらと第三成分とからなる触媒系を挙げることができる。
【0022】
上記タングステン及びモリブデン化合物の具体例としては、五塩化モリブデン、六塩化タングステン及びタングステンオキシテトラクロライドが挙げられ、有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、ジエチルアルミニウムモノクロライド、ジ−n−ブチルアルミニウムモノクロライド、エチルアルミニウムセスキクロライド、ジエチルアルミニウムモノブトオキサイド及びトリエチルアルミニウム−水(モル比1:0.5)が挙げられる。開環重合をおこなうにあたり、上記タングステン又はモリブデン化合物1モルに対する有機アルミニウム化合物の使用割合は0.5モル以上が好ましい。
触媒の重合活性等を向上させるための第三成分としては、水、過酸化水素、酸素含有有機化合物、チッソ含有有機化合物、ハロゲン含有有機化合物、リン含有有機化合物、硫黄含有有機化合物、金属含有有機化合物が挙げられ、タングステン又はモリブデン化合物1モルに対して5モル以下の割合で併用される。単量体に対する触媒の使用割合は、それらの種類にもよるが通常、単量体100モルに対して0.1〜20モルの割合で使用される。
【0023】
開環(共)重合における重合温度は−40℃〜+150℃が好ましく、不活性ガス雰囲気中で行うのが望ましい。使用される溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;塩化メチレン、1,1−ジクロロエタン、1,2−ジクロロエチレン、1−クロロプロパン、1−クロロブタン、1−クロロペンタン、クロロベンゼン、ブロムベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン等のハロゲン化炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル系化合物が挙げられる。
【0024】
このような開環(共)重合により得られた重合体を水素化することにより、本発明に用いられる重合体(A)が得られる。水素化反応において用いられる触媒は通常のオレフィン性化合物の水素添加反応に用いられている不均一触媒あるいは均一触媒を使用することができる。
不均一触媒としては、例えばパラジウム、白金、ニッケル、ルテニウム、ロジウムなどの貴金属触媒をカーボン、シリカ、アルミナ、チタニアなどの担体に担持させた固体触媒などが挙げられる。また均一触媒としては、例えばナフテン酸ニッケル/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリエチルアルミニウム、オクテン酸コバルト/n-ブチルリチウム、チタノセンジクロリド/ジエチルアルミニウムモノクロリド、酢酸ロジウム、クロロトリス(トリフェニルホスフィン)ロジウムなどのロジウム触媒を挙げることができる。
これらの触媒のうち、不均一触媒は、反応活性が高く、反応後の触媒除去も容易であり、得られる重合体が着色しないので好都合である。
【0025】
水素化反応は、常圧〜300気圧、好ましくは3〜200気圧の水素ガス雰囲気下において、0〜200℃、好ましくは20〜180℃で行うことができる。水素添加率は通常50%以上、好ましくは70%以上、さらに好ましくは80%以上である。水素添加率が50%未満の場合には、レジストの熱安定性や経時安定性を悪化させるので好ましくない。
【0026】
上記式(a−7)〜(a−15)で示される構造単位からなる重合体は、例えばフリーラジカル重合開始剤の有効量の存在下に、環状脂肪族炭化水素モノマーのラジカル(共)重合により合成できる。具体的には、J.Macromol.Sci.Chem.A-5(3)491(1971)、同A-5(8)1339(1971)、Polym.Lett.Vol.2,469(1964)、USP3143533号、USP3261815号、USP3510461号、USP3793501号、USP3703501号、特開平2-146045号記載の方法により合成できる。
ラジカル(共)重合に用いられる好ましい開始剤は2,2’−アゾビス(2−メチルプロパンニトリル)や過酸化ベンゾイル,過酸化ジクミル等を挙げることができる。開始剤の濃度は、単量体の総重量に対して、通常0.01〜10重量%、好ましくは0.1〜5重量%である。重合温度は広範囲に変えられ、通常室温〜250℃の範囲、好ましくは40〜200℃の範囲、さらに好ましくは60〜160℃の範囲で重合が行われる。
【0027】
重合もしくは共重合は、有機溶剤中で行なうのが好ましい。所定の温度で単量体を溶解し、また生成重合体をも溶解する溶剤が好ましい。好ましい溶剤は共重合する単量体の種類によつても変わるが、例えばトルエン等の芳香族炭化水素類;酢酸エチル等の脂肪族;芳香族エステル類;テトラヒドロフラン等の脂肪族エーテル類を挙げることができる。
所定時間反応後、得られた重合体と未反応の単量体成分、溶剤等を分離する目的で減圧蒸留、精製を行うのが好ましい。
【0028】
(b−1)〜(b−7)の構造単位を有する重合体、あるいは共重合成分(c−1)〜(c−4)を含むものは、フリーラジカル開始剤の有効量存在下でラジカル(共)重合により合成できる。
重合体(A)中、環状脂肪族骨格を有する構造単位の含有量は、全構造単位の10モル%以上が好ましく、より好ましくは20モル%以上、更に好ましくは30モル%以上である。
また、重合体(A)中、酸分解性基を有する構造単位の含有量は、全構造単位の10〜90モル%であり、好ましくは15〜85モル%、更に好ましくは20〜80モル%である。
また、本発明に用いられる重合体中、(c−1)〜(c−4)で表される単位等の他の共重合成分の含有量は全単量体の繰り返し単位中3〜60モル%が好ましく、より好ましくは5〜55モル%、更に好ましくは10〜50モル%である。
【0029】
重合体(A)は、重量平均分子量が1500〜100000の範囲にあることが好ましく、さらに好ましくは2000〜70000の範囲、特に好ましくは3000〜50000の範囲である。分子量が1500未満では耐ドライエッチング耐性,耐熱性,基板との密着性が不十分であり、分子量が100000を越えるとレジスト感度が低下するため好ましくない。また、分子量分布(Mw/Mn)は好ましくは1.0〜6.0、より好ましくは1.0〜4.0であり小さいほど耐熱性、画像性能(レジストプロファイル、デフォーカスラチチュード等)が良好となる。
なお、重合(A)の重量平均分子量及び分子量分布(Mw/Mn)は、屈折率検知器をつけたゲルパーミエーションクロマトグラフィーで、ポリスチレン換算値として測定される。
【0030】
本発明のポジ型感光性樹脂組成物において、重合体(A)の含有量は、固形分換算で、50〜99.7重量%、好ましくは70〜99重量%である。
本発明のポジ型感光性樹脂組成物は、重合体(A)以外に、必要により他のポリマーを含有することができる。他のポリマーの含有量は、重合体(A)100重量部あたり、好ましくは30重量部以下、さらに好ましくは20重量部以下、特に好ましくは10重量部以下である。
【0031】
本発明のポジ型感光性樹脂組成物が含有することができる上記他のポリマーとして、本発明の脂環式ポリマーと相溶するものであればよく、ポリp−ヒドロキシエチレン、水素化ポリp−ヒドロキシエチレン、ノボラック樹脂等を挙げることができる。
【0032】
次に、本発明のポジ型感光性樹脂組成物に含有される(B)活性光線の照射により分解して酸を発生する化合物(以下、「(B)光酸発生剤」ともいう)について説明する。
本発明で使用される(B)光酸発生剤の例としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、又は紫外線、遠紫外線、KrFエキシマレーザー光、ArFエキシマレーザー光、電子線、X線、分子線、イオンビームなどにより酸を発生するマイクロフォトレジストで公知の光酸発生剤及びそれらの混合物を適宜に選択して使用することができる。
なお、本発明においては、活性光線は、上記した如く放射線を包含する広い概念で用いられる。
【0033】
(B)光酸発生剤は、本発明のポジ型感光性樹脂組成物に用いられる後述の有機溶剤に溶解するものであれば特に制限されないが、220nm以下の光で酸を発生する光酸発生剤であることが好ましい。また、単独でもしくは2種以上を組み合わせ用いてもよく、適当な増感剤と組み合わせて用いてもよい。
【0034】
使用可能な(B)光酸発生剤の例としては、例えばJ.Org.Chem.Vol.43,N0.15,3055(1978)に記載のトリフェニルスルホニウム塩誘導体及び特願平9-279071号に記載の他のオニウム塩(スルホニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、アンモニウム塩)も用いることができる。
オニウム塩の具体例としては、ジフェニルヨードニウムトリフレート、ジフェニルヨードニウムピレンスルホネート、ジフェニルヨードニウムドデシルベンゼンスルホネート、トリフェニルスルホニウムトリフレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムナフタレンスルホネート、トリフェニルスルホニユムカンファースルホニウム、(4−メトキシフェニル)フェニルヨードニウムトリフルオロメタンスルホネート、ビス(t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等を挙げることができる。
【0035】
また、特開平3-103854号、特開平3-103856号、特開平4-1210960号で示されるジアゾジスルホン類やジアゾケトスルホン類、特開昭64-18143号、特開平2-245756号に記載のイミノスルホネート類、特開平2-71270号に記載のジスルホン類も好適に用いることができる。更に、USP3849137号、特開昭63-26653号、特開昭62-69263号、特開昭63-146038号、特開昭63-163452号、特開昭62-153853号、特開昭63-146029号等に記載の光により酸を発生する基をポリマーの主鎖もしくは側鎖に導入した化合物も用いることができ、特開平7-25846号、特開平7-28237号、特開平7-92675号、特開平8-27120号記載の2−オキソシクロヘキシル基を有する脂肪族アルキルスルホニウム塩類、及びN−ヒドロキシスクシンイミドスルホネート類、さらにはJ.Photopolym.Sci.,Tech.,Vol.7,No.3,423(1994)に記載のスルホニウム塩なども好適に用いることができ、単独でもしくは2種以上の組み合わせで用いられる。
【0036】
これらの(B)活性光線の照射により分解して酸を発生する化合物の含有量は、感光性樹脂組成物の全重量(固形分)を基準として、通常0.001〜40重量%、好ましくは0.01〜20重量%、更に好ましくは0.1〜5重量%である。(B)光酸発生剤の量が0.001重量%より少ないと感度が低くなり、40重量%より多いとレジストの光吸収が高くなりすぎプロファイルの劣化やプロセスマージン、特にベークマージンが狭くなり好ましくない。
【0037】
次に本発明のポジ型感光性樹脂組成物に用いられる(C)分子量が1000以下の環状脂肪族有機カルボン酸化合物とナフタレン環を分子内に有する有機カルボン酸(以下、両者合わせて「(C)有機カルボン酸」ともいう)について説明する。
本発明の感光性樹脂組成物に(C)有機カルボン酸を配合することにより、現像欠陥が著しく低減する。
【0038】
(C)有機カルボン酸の分子量は1000以下であり、100〜800が好ましく、150〜700がさらに好ましい。分子量が1000を超えると上記効果が発揮できない。
【0039】
環状脂肪族カルボン酸化合物の例としては、例えばシクロヘキシルカルボン酸、1,2−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、シクロペンチル酢酸、1−アダマンタンカルボン酸、2−アダマンタンカルボン酸、3−ヒドロキシ−1−アダマンタンカルボン酸、1,3−アダマンタンジカルボン酸、3−メトキシ−1−アダマンタンカルボン酸、3−エトキシ−1−アダマンタンカルボン酸、3−ブトキシ−1−アダマンタンカルボン酸、3−アセトキシ−1−アダマンタンカルボン酸、アダマンチル酢酸、コール酸、デオキシコール酸、リトコール酸、カンファニックアシッド、2,3−ノルボルネンジカルボン酸、トリシクロデカンカルボン酸、アビエチン酸及び下記式−1で表されるリカシッドHBH(新日本理化(株)製)などを用いることもできる。
【0040】
【化4】
Figure 0003824288
【0041】
ナフタレン環を分子内に有するカルボン酸の例としては、1−ナフタレンカルボン酸、2−ナフタレンカルボン酸、1−ヒドロキシ2−ナフタレンカルボン酸、3−ヒドロキシ−2−ナフタレンカルボン酸、1−メトキシ−2−ナフタレンカルボン酸、3−メトキシ−2−ナフタレンカルボン酸、3−エトキシ−2−ナフタレンカルボン酸、1−アセトキシ−2−ナフタレンカルボン酸、8−メトキシカルボニル−1−ナフタレンカルボン酸、8−シクロヘキシロキシ−1−ナフタレンカルボン酸、3−アミノ−2−ナフトイツク酸等を挙げることができる。
【0042】
上記(C)有機カルボン酸は、1種単独であるいは2種以上を組み合わせて用いることができる。
【0043】
(C)有機カルボン酸の配合量は、本発明の感光性樹脂組成物(固形分)100重量部に対し、通常0.001〜15重量部、好ましくは0.01〜10重量部である。0.001重量部未満では添加効果が十分得られない。一方、15重量部を越えると残膜率が低下するので好ましくない。これらカルボン酸は2種以上混合して用いることもできる。
また、本発明の効果を損なわない範囲で、(C)有機カルボン酸以外の低分子の非環状脂肪族カルボン酸や芳香族カルボン酸を混合してもよい。しかし、カルボキシル基を有する重合体、例えばスチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体、カルボキシル基置換ノルボルネン重合体などのオリゴマーの添加は、レジストプロファイルを劣化させるので好ましくない。
【0044】
次に本発明のポジ型感光性樹脂組成物に用いられる(D)含窒素塩基性化合物について説明する。含窒素塩基性化合物としては、有機アミンや塩基性のアンモニウム塩、スルホニウム塩などが用いられ、昇華やレジスト性能を劣化させないものであればよい。室温で液体のアミンであれば、沸点150℃以上のものが好ましく、固体アミンであれば、融点が100℃以上のものが好ましい。
例えば特開昭63-149640号、特開平5-249662号、特開平5-127369号、特開平5-289322号、特開平5-249683号、特開平5-289340号、特開平5-232706号、特開平5-257282号、特開平6-242605号、特開平6-242606号、特開平6-266100号、特開平6-266110号、特開平6-317902号、特開平7-120929号、特開平7-146558号、特開平7-319163号、特開平7-508840号、特開平7-333844号、特開平7-219217号、特開平7-92678号、特開平7-28247号、特開平8-22120号、特開平8-110638号、特開平8-123030号、特開平9-274312号、特開平9-166871号、特開平9-292708号、特開平9-325496号、特表平7-508840号、USP5525453号、USP5629134号、USP5667938号等に記載の塩基性化合物を用いることができる。
【0045】
特に好ましくは、1,5−ジアザビシクロ[4.3.0]−5−ノネン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、1,4−ジアザビシクロ[2.2.2]オクタン、4−ジメチルアミノピリジン、1−ナフチルアミン、ピペリジン、ヘキサメチレンテトラミン、イミダゾール類、ヒドロキシピリジン類、ピリジン類、4,4’−ジアミノジフェニルエーテル、ピリジニウムp−トルエンスルホナート、2,4,6−トリメチルピリジニウムp−トルエンスルホナート、テトラメチルアンモニウムp−トルエンスルホナート、及びテトラブチルアンモニウムラクテート等が挙げられる。
(D)塩基性化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
【0046】
(D)含窒素塩基性化合物の含有量は、感光性樹脂組成物(固形分)100重量部に対し、通常、0.001〜10重量部、好ましくは0.01〜5重量部である。0.001重量部未満では効果が十分得られない。一方、10重量部を越えると感度の低下や非露光部の現像性が著しく悪化する傾向がある。
【0047】
次に本発明のポジ型感光性樹脂組成物に含有される(E)フッ素系界面活性剤とシリコン系界面活性剤について説明する。
本発明の感光性樹脂組成物には、フッ素系界面活性剤及びシリコン系界面活性剤のいずれか、あるいは両方を含有することができる。
これらの(E)界面活性剤として、例えば特開昭62-36663号、特開昭61-226746号、特開昭61-226745号、特開昭62-170950号、特開昭63-34540号、特開平7-230165号、特開平8-62834号、特開平9-54432号、特開平9-5988号記載の界面活性剤を挙げることができ、下記市販の界面活性剤をそのまま用いることもできる。
使用できる市販の界面活性剤として、例えばエフトップEF301、EF303、(新秋田化成(株)製)、フロラードFC430、431(住友スリーエム(株)製)、メガファックF171、F173、F176、F189、R08(大日本インキ(株)製)、サーフロンS−382、SC101、102、103、104、105、106(旭硝子(株)製)等のフッ素系界面活性剤又はシリコン系界面活性剤を挙げることができる。またポリシロキサンポリマーKP−341(信越化学工業(株)製)もシリコン系界面活性剤として用いることができる。
これらの界面活性剤のうち、フッ素原子とシリコン原子の両方を有する界面活性剤が、現像欠陥の改善の点で特に優れる。
【0048】
(E)界面活性剤の配合量は、本発明の組成物中の固形分100重量部当たり、通常0.01重量部〜2重量部、好ましくは0.01重量部〜1重量部である。
これらの界面活性剤は1種単独であるいは2種以上を組み合わせて用いることができる。
【0049】
本発明のポジ型感光性樹脂組成物が、前記記載の現像欠陥に対しなぜ特異的に優れるのかはよくわかっていないが、特定の(C)有機カルボン酸と(D)含窒素塩基性化合物と特定の(E)界面活性剤の組み合わせにより発現したものと思われる。例えば(D)含窒素塩基性化合物と本発明以外の界面活性剤の組み合わせ、例えばノニオン系の界面活性剤などとの組み合わせでは、現像欠陥は解消されない。
【0050】
本発明のポジ型感光性樹脂組成物は、必要に応じて、分子量が2000以下であって、酸の作用により分解し得る基を有し、アルカリ溶解性が酸の作用により増大する低分子酸分解性化合物を含むことができる。
例えばProc.SPIE,2724, 355(1996)、特開平8-15865号、USP5310619号、USP−5372912号、J.Photopolym.Sci.,Tech.,Vol.10,No.3,511(1997))に記載されている酸分解性基を含有するコール酸誘導体、デヒドロコール酸誘導体、デオキシコール酸誘導体、リトコール酸誘導体、ウルソコール酸誘導体、アビエチン酸誘導体等の脂環族化合物、酸分解性基を含有するナフタレン誘導体などの芳香族化合物を上記低分子酸分解性化合物として用いることができる。
さらに、特開平6-51519号記載の低分子の酸分解性溶解阻止化合物も220nmの透過性を悪化させないレベルの添加範囲で用いることもできるし、1,2−ナフトキノンジアジト化合物も使用できる。
本発明の感光性樹脂組成物に上記低分子酸分解性溶解阻止化合物を使用する場合、その含有量は感光性樹脂組成物の全重量(固形分)を基準として、通常1〜50重量%の範囲で用いられ、好ましくは3〜40重量%、更に好ましくは5〜30重量%の範囲で使用される。
これらの低分子酸分解性溶解阻止化合物を添加すると、前記現像欠陥がさらに改良されるばかりか耐ドライエッチング性が改良される。
【0051】
本発明のポジ型感光性樹脂組成物には、必要に応じて、さらに現像液に対する溶解促進性化合物、ハレーション防止剤、可塑剤、界面活性剤、光増感剤、接着助剤、架橋剤、光塩基発生剤等を含有することができる。
【0052】
本発明で使用できる現像液に対する溶解促進性化合物の例としては、例えば特開平3-206458号記載のフェノール性水酸基を2個以上含有する化合物、1−ナフトールなどのナフトール類又はカルボキシル基を1個以上有する化合物、カルボン酸無水物、スルホンアミド化合物やスルホニルイミド化合物などの分子量1000以下の低分子化合物等を挙げることができる。
これらの溶解促進性化合物の配合量としては、組成物全重量(固形分)に対して、好ましくは30重量%以下、より好ましくは20重量%以下である。
【0053】
好適なハレーション防止剤としては、照射する放射線を効率よく吸収する化合物が好ましく、フルオレン、9−フルオレノン、ベンゾフェノンのような置換ベンゼン類;アントラセン、アントラセン−9−メタノール、アントラセン−9−カルボキシエチル、フェナントレン、ペリレン、アジレンのような多環式芳香族化合物などが挙げられる。なかでも、多環式芳香族化合物が特に好ましい。これらのハレーション防止剤は基板からの反射光を低減し、レジスト膜内の多重反射の影響を少なくさせることで、定在波改良の効果を発現する。
【0054】
本発明の感光性樹脂組成物の塗布性を改良したり、現像性を改良する目的で、ノニオン系界面活性剤を併用することができる。
併用できるノニオン系界面活性剤として、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ポリオキシエチレンソルビタンモノステアレート、ソルビタンモノラウレート等が挙げられる。
【0055】
また露光による酸発生率を向上させるために、光増感剤を添加することができる。好適な光増感剤として、ベンゾフェノン、p,p'−テトラメチルジアミノベンゾフェノン、2−クロロチオキサントン、アントロン、9−エトキシアントラセン、ピレン、フェノチアジン、ベンジル、ベンゾフラビン、アセトフェノン、フェナントレン、ベンゾキノン、アントラキノン、1,2−ナフトキノン等を挙げることができるが、これらに限定されるものではない。これらの光増感剤は前記ハレーション防止剤としても使用可能である。
【0056】
本発明の感光性樹脂組成物は、上記各成分を溶解する溶媒に溶解した後、通常例えば孔径0.05μm〜0.2μm程度のフィルターで濾過することによって溶液として調製される。ここで使用される溶媒としては、例えばエチレングリコールモノエチルエーテルアセテート、シクロヘキサノン、2−ヘプタノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルアセテート、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、β−メトキシイソ酪酸メチル、酪酸エチル、酪酸プロピル、メチルイソブチルケトン、酢酸エチル、酢酸イソアミル、乳酸エチル、トルエン、キシレン、酢酸シクロヘキシル、ジアセトンアルコール、N−メチルピロリドン、N,N−ジメチルホルムアミド、γ−ブチロラクトン、N,N−ジメチルアセトアミドなどが挙げられる。これらの溶媒は単独もしくは組み合わせて用いられる。
溶媒の選択は、本発明の感光性樹脂組成物に対する溶解性や基板への塗布性、保存安定性等に影響するため重要である。また溶媒に含まれる水分はこれらの性能に影響するため、少ない方が好ましい。
【0057】
さらに本発明の感光性樹脂組成物は、メタル等の金属不純物やクロルイオンなどの不純物成分を100ppb以下に低減しておくことが好ましい。これらの不純物が多く存在すると、半導体デバイスを製造する上で動作不良、欠陥、収率低下を招いたりするので好ましくない。
【0058】
本発明の感光性樹脂組成物を基板上にスピナー、コーター等の適当な塗布方法により塗布後、プリベーク(露光前加熱)し、所定のマスクを通して220nm以下の波長の露光光で露光し、PEB(露光後ベーク)を行い現像することにより良好なレジストパターンを得ることができる。
ここで用いられる基板としては半導体装置その他の製造装置において通常用いられる基板であればよく、例えばシリコン基板、ガラス基板、非磁性セラミックス基板などが挙げられる。また、これらの基板上にさらに必要に応じて追加の層、例えばシリコン酸化物層、配線用金属層、層間絶縁膜、磁性膜、反射防止膜層などが存在してもよく、また各種の配線、回路などが作り込まれていてもよい。さらにまた、これらの基板はレジスト膜の密着性を高めるために、常法に従って疎水化処理されていてもよい。適当な疎水化処理剤としては、例えば1,1,1,3,3,3−ヘキサメチルジシラザン(HMDS)などが挙げられる。
【0059】
基板上に塗布されるレジスト膜厚は、約0.1〜10μmの範囲が好ましく、ArF露光の場合は、約0.1〜1.5μm厚が推奨される。
基板上に塗布されたレジスト膜は、約60〜160℃の温度で約30〜300秒間プリベークするのが好ましい。プリベークの温度が低く、時間が短かければレジスト膜中の残留溶剤が相対的に多くなり、密着性が劣化するなどの弊害を生じるので好ましくない。また、逆にプリベークの温度が高く、時間が長ければ、感光性樹脂組成物のバインダー、光酸発生剤などの構成成分が分解するなどの弊害が生じるので好ましくない。
【0060】
プリベーク後のレジスト膜を露光する装置としては市販の紫外線露光装置、X線露光装置、電子ビーム露光装置、KrFエキシマ露光装置、ArFエキシマ露光装置、F2 エキシマ露光装置等が用いられ、特に本発明ではArFエキシマレーザーを露光光源とする装置が好ましい。
露光後ベークは酸を触媒とする保護基の脱離を生じさせる目的や定在波を消失させる目的、酸発生剤などを膜中に拡散させる目的等で行われる。この露光後ベークは先のプリベークと同様にして行うことができる。例えば、ベーキング温度は約60〜160℃、好ましくは約90〜150℃である。
【0061】
本発明の感光性樹脂組成物の現像液としては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第一アミン類、ジエチルアミン、ジ−n−ブチルアミン等の第2アミン類、トリエチルアミン、メチルジエチルアミン等の第3アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、トリメチルヒドロキシメチルアンモニウムヒドロキシド、トリエチルヒドロキシメチルアンモニウムヒドロキシド、トリメチルヒドロキシエチルアンモニウムヒドロキシド等の第4級アンモニウム塩、ピロール、ピペリジン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノナン等の環状アミン類等のアルカリ水溶液を使用することができる。
【0062】
更に、上記アルカリ性水溶液にアルコール類やケトン類などの親水性の有機溶剤やノニオン系や陰イオン性界面活性剤及び陽イオン性界面活性剤や消泡剤等を適当量添加しても使用することができる。これらの添加剤は、レジストの性能を向上させる目的以外にも基板との密着性を高めたり、現像液の使用量を低減させたり、現像時の気泡に起因する欠陥を低減させる目的等でアルカリ性水溶液に添加される。
【0063】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明がこれにより限定されるものではない。
【0064】
合成例1(重合体Aの合成)
特開平9−244247号公報、第4例に記載のノルボルネン誘導体の開環重合体の水素化物(繰り返し構造単位を下記する)を、EP0789278号明細書記載の方法に従って合成した。(重量平均分子量22000)
【0065】
【化5】
Figure 0003824288
【0066】
合成例2(重合体Bの合成)
特開平9−244247号公報、第1例に記載のノルボルネン誘導体の開環重合体の水素化物(繰り返し構造単位を下記する)をEP0789278号明細書記載の方法に従って合成した。(重量平均分子量17000)
【0067】
【化6】
Figure 0003824288
【0068】
合成例3(重合体Cの合成)
ノルボルネン、無水マレイン酸、アクリル酸t−ブチル及びアクリル酸の共重合体(繰り返し構造単位を下記する)を特開平10−10739号公報、第7例に記載の方法に従って合成した。(重量平均分子量17000、各繰り返し単位のモル比50/25/25)
【0069】
【化7】
Figure 0003824288
【0070】
合成例4(重合体Dの合成)
メタクリル酸アダマンチルとアクリル酸t−ブチルの共重合体(繰り返し構造単位を下記する)を特開平7−234511号公報、第1例に記載の方法に従って合成した。
【0071】
【化8】
Figure 0003824288
【0072】
合成例5(酸分解性低分子化合物aの合成)
コール酸122.7g(0.3モル)とチオニルクロライド120mlの混合物を1時間還流した。過剰のチオニルクロリドを除去し、得られた固体をテトラヒドロフラン150mlに溶かし、カリウム−t−ブシトキシド40g(0.35モル)を徐々に加え、反応混合物を6時間還流した後、冷却し、水中に注いだ。得られた固体を濾過して集め、水で洗い減圧下で乾燥した。この粗製物をn−ヘキサンで再結晶し70%の収率でコール酸−t−ブチル(下記式)を得た。
【0073】
【化9】
Figure 0003824288
【0074】
実施例1〜6、比較例1〜5
(感光性樹脂組成物の調製)
感光性樹脂成分を調製するに当たって、表1に記載した成分、即ち、合成例1〜4で合成した重合体A、B、C、D、光酸発生剤としてトリフェニルスルホニウムトリフレート(PAG−1)、有機カルボン酸、合成例5で合成した酸分解性低分子化合物(化合物a)、含窒素塩基性化合物、界面活性剤、及び溶剤としてプロピレングリコールモノメチルエーテルアセテートの各成分を用いた。表1で点線が付されているものは、その成分を用いなかったことを意味する。
各成分を混合後、0.1μmのテフロンフィルターにより濾過して感光性樹脂組成物を調製した。
用いられた場合の各成分の量は、下記の通りである。
重合体A,B,C,D 10g
光酸発生剤 0.06g
有機カルボン酸 0.25g
酸分解性低分子化合物 0.5g
含窒素塩基性化合物 0.10g
界面活性剤 0.05g
溶剤 57.4g
このように調製された感光性樹脂組成物につき、下記方法により現像欠陥数を測定した。現像欠陥数の測定結果を表2に示した。
【0075】
(現像欠陥数の評価方法)
(1)現像欠陥数−I
感光性樹脂組成物をスピンコーターによりヘキサメチルジシラザン処理を施したシリコン基板上に均一に塗布し、120℃で90秒間ホットプレート上で加熱、乾燥を行い、0.50μmのレジスト膜を形成した。このレジスト膜を、マスクを通してArFエキシマレーザー光で露光し、露光後直ぐに110℃で90秒間ホットプレート上で加熱した。更に2.38重量%濃度のテトラメチルアンモニウムヒドロキシド水溶液で23℃で60秒間現像し、30秒間純水にてリンスした後、乾燥した。このようにして得られたコンタクトホールパターンの形成されたサンプルを、KLA2112機(KLAテンコール(株)製)により現像欠陥数を測定した(Threshold12、Pixcel Size=0.39)。
(2)現像欠陥数−II
上記(1)現像欠陥数−Iにおいて、露光しない以外は、加熱、現像、リンス、乾燥したサンプルについて同様に行い現像欠陥数を測定した。
【0076】
【表1】
Figure 0003824288
【0077】
表1中の各記号は、下記の通りである。
PAG−1:トリフェニルスルホニウムトリフレート
C−1:1−アダマンタンカルボン酸
C−2:1,4−シクロヘキサンジカルボン酸
C−3:1−ナフタレンカルボン酸
C−4:リカシッドHBH(新日本理化(株)製)
C−5:サリチル酸
C−6:ニトロ安息香酸
N−1:ヘキサメチレンテトラミン
N−2:1,5−ジアザビシクロ[4.3.0]−5−ノネン
N−3:1,8−ジアザビシクロ[5.4.0]−7−ウンデセン
N−4:1,4−ジアザビシクロ[2.2.2]オクタン
N−5:トリエチルアミン
W−1:メガファックF176(大日本インキ(株)製)
W−2:メガファックR08(大日本インキ(株)製)
W−3:ポリシロキサンポリマーKP−341(信越化学工業(株)製)
S−1:プロピレングリコールモノメチルエーテルアセテート
【0078】
【表2】
Figure 0003824288
【0079】
表2の結果から明らかなように、本発明の感光性樹脂組成物は、いづれも現像欠陥が極めて少なかった。
一方、(C)有機カルボン酸、(D)含窒素塩基性化合物、及び(E)界面活性剤を用いない比較例1、(D)含窒素塩基性化合物と(E)界面活性剤を用いたものの、(C)有機カルボン酸を用いない比較例2、(C)有機カルボン酸と(D)含窒素塩基性化合物を用いたものの、(C)界面活性剤を用いない比較例3は、いずれも現像欠陥数が多かった。また、有機カルボン酸として、芳香族カルボン酸を用いた比較例4及び5も、現像欠陥が多かった。
【0080】
【発明の効果】
本発明のポジ型感光性樹脂組成物は、現像欠陥が極めて少ない。このため特にArFエキシマレーザー光を露光光源とする半導体素子製造に必要な微細パターンの形成に有効に用いることができる。しかも本発明のポジ型感光性樹脂組成物は、半導体製造プロセス上、安定性に優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive photosensitive resin composition used in a semiconductor manufacturing process such as an IC, a circuit board such as a liquid crystal or a thermal head, and other photofabrication processes. More particularly, the present invention relates to a positive photosensitive resin composition suitably used for fine processing of a semiconductor element using short-wavelength light energy rays such as far ultraviolet rays, X-rays, and electron beams, and particularly a semiconductor using an ArF excimer laser. It is a positive photosensitive resin composition suitably used for microfabrication of an element.
[0002]
[Prior art]
In recent years, semiconductor integrated circuits have been highly integrated, LSIs and VLSIs have been put into practical use, and the minimum pattern width of integrated circuits has reached the sub-half micron region, and further miniaturization has progressed.
For this reason, the demand for a photolithography technique for forming a fine pattern is becoming stricter. As one of means for miniaturizing a pattern, it is known to shorten the wavelength of exposure light used for forming a resist pattern.
For example, in the production of a DRAM having a degree of integration up to 64 Mbits, i-line (365 nm) of a high-pressure mercury lamp has been used as a light source until now. In the mass production process of 256Mbit DRAM, KrF excimer laser (248nm) has been put into practical use as an exposure light source instead of i-line, and light sources with shorter wavelengths have been studied for the purpose of manufacturing DRAM with 1Gbit or higher integration. It is considered that the use of ArF excimer laser (193 nm), F2 excimer laser (157 nm), X-rays and electron beams is effective (Takumi Ueno, “Short Wavelength Photoresist Material-Toward ULSI Fine processing- ", Bunshin Publishing, 1988).
[0003]
In particular, ArF excimer laser is positioned as the next-generation exposure technique, and development of a resist having high sensitivity, high resolution, and excellent dry etching resistance for ArF excimer laser exposure is desired.
As resist materials for conventional i-line and KrF excimer laser exposure, resists containing aromatic polymers are widely used in order to obtain high dry etching resistance. For example, novolak resin-based resists or polyvinylphenol-based chemicals are used. Amplified resists are known. However, since the aromatic ring introduced for the purpose of imparting dry etching resistance hardly transmits light in the wavelength range of ArF excimer laser light, it is difficult to expose to the bottom of the resist film. A pattern having a good cross-sectional shape could not be obtained.
[0004]
As one of the solutions to the problem of resist transparency, it is known to use an aliphatic polymer containing no aromatic ring, such as polymethyl methacrylate (J. Vac. Sci. Technol., B9, 3357 (1991)). However, such a polymer cannot be put into practical use because sufficient dry etching resistance cannot be expected. As described above, in developing a resist material for ArF excimer laser exposure, the greatest challenge is to achieve both improved transparency and high dry etching resistance.
Therefore, Proc. SPIE, 1672, 66 (1992) shows that a resist containing an alicyclic hydrocarbon group instead of an aromatic ring exhibits the same dry etching resistance as an aromatic group and has a small absorption at 193 nm. In recent years, the use of the polymer has been actively researched.
[0005]
Originally, attempts to apply a polymer containing an alicyclic hydrocarbon group to a resist have been made for a long time. For example, in Japanese Patent Laid-Open Nos. 60-195542, 1-217453, and 2-59751, a norbornene-based polymer is used. A polymer is disclosed, and JP-A-2-46045 discloses various alkali-soluble resins having a cyclic aliphatic hydrocarbon skeleton and a maleic anhydride unit.
Further, JP-A-5-80515 discloses a copolymer of norbornene and an acrylic ester protected with an acid-decomposable group, JP-A-4-39665, JP-A-5-265212, JP-A-5-80515, JP-A-7-234511 discloses a copolymer having an adamantane skeleton in the side chain, and JP-A-7-252324 and JP-A-9-221526 have 7 to 12 carbon atoms having a bridged cyclic hydrocarbon group. A compound in which the aliphatic cyclic hydrocarbon group is linked to the side chain of the polymer, for example, tricyclo [5.2.1.02.6] decandimethylene group, tricyclo [5.2.1.02.6] decandiyl group, norbornanediyl Group, norbornanedimethyl group and adamantanediyl group are disclosed, and JP-A 7-199467 discloses tricyclodecanyl group, dicyclopentenyl group, dicyclopentenyloxyethyl group, norbornyl group, and cyclohexyl group as side chains of the polymer. The compound linked to It is shown.
[0006]
Further, JP-A-9-325498 discloses polymers having cyclohexane and isobornyl skeletons in the main chain, and further JP-A-9-230595, JP-A-9-244247, JP-A-10-10739, WO97-33198, EP 794458 and EP 789278 disclose polymers in which various cyclic olefins such as dicycloolefin are introduced into the main chain, and JP-A-8-82925 and JP-A-9-230597 disclose a menthyl group in the terpenoid skeleton. Alternatively, it is disclosed that a compound having a menthyl derivative group is preferable.
[0007]
Apart from the resist performance as described above, the generation of defects (voids) due to the lithography process has become one of the major causes of yield reduction, and has recently become a particularly important problem.
For example, it is said that development defects are generally caused by bubbles at the time of liquid buildup and microbubbles caused by dissolved gas in the developer (Hirano et al .; Proceedings of the 42nd JSAP Meeting 27p- ZW-9 (1996)), countermeasures against air bubbles are becoming more important as the diameter of the wafer increases and the amount of developer discharged increases. As countermeasures for these bubbles, improvements have been made on the device that allows the developer to be discharged softly (see Science Forum, ULSI Manufacturing Contamination Control Technology, 41 (1992)) and the addition of a degassing mechanism for dissolved gas. Although attempts have been made to reduce bubbles, the level is not satisfactory.
In addition, in order to reduce development defects, nonionic surfactants are added to the developer to improve the wettability of the developer and promote bubble detachment, and surfactants in novolak resists. Attempts have been made to improve the affinity by optimizing the type and the amount added (Awashima et al .; 42nd JSAP lecture presentation 27p-ZW-7 (1996)).
However, these methods are not sufficient to reduce the development defects of chemically amplified resists for ArF using non-aromatic polymers. Rather, the development defects may be adversely affected. Until now, there was no guideline for improvement on how to deal with the reduction. Moreover, if the affinity of the resist is improved in order to reduce development defects, the remaining film rate and profile tend to deteriorate, making it difficult to achieve compatibility.
[0008]
Furthermore, in the positive chemical amplification system resist for KrF using a conventional aromatic polymer, for example, Prooc.SPIE 1672,46, (1992), Prooc.SPIE 2438,551, (1995), Prooc.SPIE, 2438 , 563 (1995), Prooc.SPIE 1925,14, (1993), J.Photopolym.Sci.Tech.Vol.8.No.4,535 (1995), J.Photopolym.Sci.Tech.Vol.5.No. 1,207 (1992), J. Photopolym. Sci. Tech. Vol. 8, No. 4, 561 (1995), Jpn. J. Appl. Phys. 33, 7023 (1994), etc. As the standing time until (PEB) becomes longer, the generated acid diffuses, or the acid on the resist surface is deactivated by basic impurities in the atmosphere, and the sensitivity and profile of the resist pattern after development There was a problem that the line width would change.
As means for solving these problems, a technique of adding an amine to a chemically amplified resist using an aromatic polymer is disclosed in JP-A-63-149640, JP-A-5-249662, JP-A-5-127369, Kaihei 5-289322, JP 5-249683, JP 5-289340, JP 5-232706, JP 5-257282, JP 6-224055, JP 6-242606, JP JP-A-6-266100, JP-A-62-166110, JP-A-6-317902, JP-A-7-120929, JP-A-7-65558, JP-A-7-319163, JP-A-7-508840, JP-A-7 -333844, JP-A-7-219217, JP-A-7-92678, JP-A-7-28247, JP-A-8-22120, JP-A-8110638, JP-A8-123030, JP-A-9- 274312, JP-A-9-66871, JP-A-9-292708, JP-A-9-325496, JP 7-508840, USP5525453, USP5629134, USP5667938, etc. It is disclosed and known.
[0009]
However, when these amines are added to a chemically amplified resist for ArF using a non-aromatic polymer having a cycloaliphatic hydrocarbon skeleton structure, the sensitivity is certainly the same as in the case of using a non-aromatic polymer. Although effective against changes in the resist pattern profile and line width after development, the development defects are extremely inferior, and countermeasures have been desired.
[0010]
On the other hand, for the purpose of improving sensitivity and resist pattern shape, adding a carboxylic acid compound to a chemically amplified resist composition for excimer laser light for KrF is disclosed in JP-A-7-92679 and JP-A-5-181279. It is disclosed. Japanese Patent Application Laid-Open No. 9-6001 discloses a technique in which an amine and a carboxylic acid compound are added to improve sensitivity and resolving power and improve the aging stability between exposure and PEB.
However, strong basic and low boiling point amines (for example, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine) and aromatic carboxylic acids (for example, salicylic acid, nitro) disclosed in Japanese Patent Application Laid-Open No. 9-6001 are preferable. When benzoic acid or phthalic acid is added to a chemically amplified resist for ArF using a non-aromatic polymer having a cyclic aliphatic hydrocarbon skeleton, an excimer laser for KrF using a non-aromatic polymer is surely obtained. As in the case of the chemically amplified resist composition for light, although an effect is seen with respect to the stability over time between exposure and PEB, the development defects are extremely inferior, and countermeasures have been desired.
In addition, amines with low boiling points tend to evaporate during PEB, so that the effect of adding amine does not appear at all, and equipment used for semiconductor manufacturing such as hot plates is contaminated with amines. Was causing problems.
[0011]
[Problems to be solved by the present invention]
An object of the present invention is to provide a positive photosensitive resin composition that does not cause a problem of development defects when deep ultraviolet light, particularly ArF excimer laser light is used as an exposure light source.
Another object of the present invention is to provide a positive photosensitive resin composition having excellent stability in a semiconductor manufacturing process.
[0012]
[Means for Solving the Problems]
As a result of intensive studies on the constituent materials of the positive chemically amplified resist composition, the present inventors have found that a polymer containing a structural unit having a cyclic aliphatic hydrocarbon skeleton, a photoacid generator, an aliphatic having a molecular weight of 1000 or less Knowing that the object is achieved by combining an organic carboxylic acid and / or an organic carboxylic acid having a naphthalene ring, a nitrogen-containing basic compound, and a fluorine-based and / or silicon-based surfactant, the present invention has been achieved. That is, this invention is invention of the structure of following (1)-(3), and the said objective is achieved.
(1) (A) a polymer having a cyclic aliphatic hydrocarbon skeleton, which is decomposed by the action of an acid and becomes alkali-soluble,
(B) Life A compound capable of generating an acid by actinic rays,
(C) a cyclic aliphatic organic carboxylic acid having a molecular weight of 1000 or less and / or an organic carboxylic acid having a naphthalene ring,
(D) a nitrogen-containing basic compound, and
(E) Fluorine-based and / or silicon-based surfactant
A positive-type photosensitive resin composition comprising:
(2) The invention further comprises a low molecular acid decomposable compound having a molecular weight of 2000 or less, having a group capable of decomposing by the action of an acid, and increasing alkali solubility by the action of an acid. 2. The positive photosensitive resin composition according to 1.
(3) The positive photosensitive resin composition according to claim 1 or 2, wherein the actinic ray is far ultraviolet light of 220 nm or less.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the compounds used in the present invention will be described in detail.
First, as the polymer (A) having a cycloaliphatic hydrocarbon skeleton structure in the present invention, which is decomposed by the action of an acid and becomes alkali-soluble, conventionally known polymers can be used. As specific examples, for example, groups having a cyclic aliphatic hydrocarbon skeleton unit in the main chain as represented by the following (a-1) to (a-15) and decomposing by the action of an acid (acid-decomposable group) And polymers having a repeating unit represented by the following (b-1) to (b-7) having a cyclic aliphatic hydrocarbon skeleton in the side chain, and an acid-decomposable group. be able to.
Further, structural units having a cyclic aliphatic hydrocarbon skeleton structure such as structural units represented by the following (a-1) to (a-15) and (b-1) to (b-7) Although essential for the polymer concerned, structural units represented by the following (c-1) to (c-4) may be included as a copolymerization component.
[0014]
[Chemical 1]
Figure 0003824288
[0015]
[Chemical 2]
Figure 0003824288
[0016]
[Chemical Formula 3]
Figure 0003824288
[0017]
In the structural units represented by (a-1) to (a-15) and (b-1) to (b-7), A and B are each independently a hydrogen atom, a hydroxyl group, a carboxyl group, or an alkoxycarbonyl group. Represents a substituted or unsubstituted alkyl group, alkoxy group or alkenyl group having 1 to 10 carbon atoms, and A and B may combine to form a ring. X and Y each independently represent a group that decomposes by the action of an acid.
In the formulas (b-1) to (b-7) and (c-1) to (c-4), R represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms such as a methyl group. Z represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an alkoxycarbonyl group or a group capable of decomposing by the action of an acid. )
[0018]
In the above, examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, and a butoxycarbonyl group.
Examples of the alkyl group having 1 to 10 carbon atoms include a linear, branched or cyclic alkyl group which may be substituted. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, n -Butyl group, t-butyl group, cyclopentyl group, cyclohexyl group, hydroxymethyl group, hydroxyethyl group and the like can be mentioned.
Examples of the alkoxy group having 1 to 10 carbon atoms include a methoxy group, an ethoxy group, an n-butoxy group, a t-butoxy group, a propoxy group, and an isopropoxy group. Examples of the alkenyl group having 2 to 10 carbon atoms include allyl group, vinyl group, and 2-propenyl group.
The ring formed by combining A and B includes A and B
-C (= O) -OC (= O)-,
-C (= O) -NH-C (= O)-,
-CH 2 -C (= O) -OC (= O)-,
Etc. to form a ring.
[0019]
As the group capable of decomposing by the action of an acid, — (CH 2 ) n -COORa group or-(CH 2 ) n -OCORb group. Here, Ra represents a hydrocarbon group having 2 to 20 carbon atoms, and examples of the hydrocarbon group include a t-butyl group, a norbornyl group, and a cyclodecanyl group. Rb represents a tetrahydrofuranyl group, a tetrahydropyranyl group, an alkoxyethyl group such as an ethoxyethyl group or an isopropylethyl group, a lactone group, or a cyclohexyloxyethyl group. n represents 0 or 1.
[0020]
Examples of the further substituent in each of the above groups include a halogen atom, a cyano group, and a nitro group.
[0021]
The polymer (A) comprising the structural units represented by the above formulas (a-1) to (a-6) is, for example, ring-opening a cyclic olefin in an organic solvent or a non-organic solvent in the presence of a metathesis catalyst. Obtained by polymerization and subsequent hydrogenation. Ring-opening (co) polymerization is described in, for example, WL Truett et al .; J. Am. Chem. Soc., 82, 2337 (1960), A. Pacreau; Macromol. Chem., 188, 2585 (1987), JP-A-51-31800. No. 1, JP-A-1-197460, JP-A-2-42094, EP-0789278 and the like. Examples of the metathesis catalyst used here include compounds described in, for example, the Society of Polymer Science: Polymer Synthesis and Reaction (1), Kyoritsu Shuppan p375-381 (1992), JP-A-49-77999, specifically Mention may be made of halogenated transition metal compounds such as tungsten and / or molybdenum and organoaluminum compounds or catalyst systems comprising these and third components.
[0022]
Specific examples of the tungsten and molybdenum compounds include molybdenum pentachloride, tungsten hexachloride and tungsten oxytetrachloride. Examples of the organoaluminum compounds include triethylaluminum, triisobutylaluminum, trihexylaluminum, diethylaluminum monochloride, -N-butylaluminum monochloride, ethylaluminum sesquichloride, diethylaluminum monobutoxide and triethylaluminum-water (molar ratio 1: 0.5). In carrying out the ring-opening polymerization, the use ratio of the organoaluminum compound with respect to 1 mol of the tungsten or molybdenum compound is preferably 0.5 mol or more.
As the third component for improving the polymerization activity of the catalyst, water, hydrogen peroxide, oxygen-containing organic compound, nitrogen-containing organic compound, halogen-containing organic compound, phosphorus-containing organic compound, sulfur-containing organic compound, metal-containing organic Compounds, and are used together at a ratio of 5 mol or less per 1 mol of tungsten or molybdenum compound. The ratio of the catalyst used relative to the monomer is usually 0.1 to 20 mol with respect to 100 mol of the monomer, although it depends on the type of the catalyst.
[0023]
The polymerization temperature in the ring-opening (co) polymerization is preferably −40 ° C. to + 150 ° C., and is desirably performed in an inert gas atmosphere. Solvents used include aliphatic hydrocarbons such as pentane, hexane, heptane and octane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; methylene chloride, 1, Halogenated hydrocarbons such as 1-dichloroethane, 1,2-dichloroethylene, 1-chloropropane, 1-chlorobutane, 1-chloropentane, chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene; diethyl ether, tetrahydrofuran, etc. Examples include ether compounds.
[0024]
The polymer (A) used in the present invention is obtained by hydrogenating the polymer obtained by such ring-opening (co) polymerization. The catalyst used in the hydrogenation reaction may be a heterogeneous catalyst or a homogeneous catalyst used in the usual hydrogenation reaction of olefinic compounds.
Examples of the heterogeneous catalyst include a solid catalyst in which a noble metal catalyst such as palladium, platinum, nickel, ruthenium, or rhodium is supported on a carrier such as carbon, silica, alumina, or titania. Examples of homogeneous catalysts include nickel naphthenate / triethylaluminum, nickel acetylacetonate / triethylaluminum, cobalt octenoate / n-butyllithium, titanocene dichloride / diethylaluminum monochloride, rhodium acetate, chlorotris (triphenylphosphine) rhodium, etc. The rhodium catalyst can be mentioned.
Among these catalysts, the heterogeneous catalyst is advantageous because it has high reaction activity, is easy to remove after the reaction, and the resulting polymer is not colored.
[0025]
The hydrogenation reaction can be performed at 0 to 200 ° C., preferably 20 to 180 ° C. in a hydrogen gas atmosphere of normal pressure to 300 atm, preferably 3 to 200 atm. The hydrogenation rate is usually 50% or more, preferably 70% or more, and more preferably 80% or more. When the hydrogenation rate is less than 50%, the thermal stability and temporal stability of the resist are deteriorated.
[0026]
The polymer composed of the structural units represented by the above formulas (a-7) to (a-15) is, for example, radical (co) polymerization of a cyclic aliphatic hydrocarbon monomer in the presence of an effective amount of a free radical polymerization initiator. Can be synthesized. Specifically, J. Macromol. Sci. Chem. A-5 (3) 491 (1971), A-5 (8) 1339 (1971), Polym. Lett. Vol. 2,469 (1964), USP 3143533, It can be synthesized by the methods described in USP3261815, USP3510461, USP3793501, USP3703501, and JP-A-2-46045.
Preferable initiators used for radical (co) polymerization include 2,2′-azobis (2-methylpropanenitrile), benzoyl peroxide, dicumyl peroxide and the like. The concentration of the initiator is usually 0.01 to 10% by weight, preferably 0.1 to 5% by weight, based on the total weight of the monomers. The polymerization temperature can be varied over a wide range, and the polymerization is usually carried out in the range of room temperature to 250 ° C, preferably in the range of 40 to 200 ° C, more preferably in the range of 60 to 160 ° C.
[0027]
The polymerization or copolymerization is preferably performed in an organic solvent. A solvent that dissolves the monomer at a predetermined temperature and also dissolves the produced polymer is preferable. The preferred solvent varies depending on the type of monomer to be copolymerized, and examples thereof include aromatic hydrocarbons such as toluene; aliphatics such as ethyl acetate; aromatic esters; and aliphatic ethers such as tetrahydrofuran. Can do.
After the reaction for a predetermined time, it is preferable to perform distillation under reduced pressure and purification for the purpose of separating the obtained polymer from unreacted monomer components, solvents and the like.
[0028]
Polymers having the structural units (b-1) to (b-7) or those containing the copolymer components (c-1) to (c-4) are free radicals in the presence of an effective amount of a free radical initiator. It can be synthesized by (co) polymerization.
In the polymer (A), the content of the structural unit having a cycloaliphatic skeleton is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30 mol% or more of the total structural units.
In the polymer (A), the content of the structural unit having an acid-decomposable group is 10 to 90 mol%, preferably 15 to 85 mol%, more preferably 20 to 80 mol%, based on all structural units. It is.
Moreover, in the polymer used for this invention, content of other copolymerization components, such as a unit represented by (c-1)-(c-4), is 3-60 mol in the repeating unit of all the monomers. % Is preferable, more preferably 5 to 55 mol%, still more preferably 10 to 50 mol%.
[0029]
The polymer (A) preferably has a weight average molecular weight in the range of 1500 to 100,000, more preferably in the range of 2000 to 70000, and particularly preferably in the range of 3000 to 50000. If the molecular weight is less than 1500, dry etching resistance, heat resistance, and adhesion to the substrate are insufficient, and if the molecular weight exceeds 100,000, the resist sensitivity is lowered, which is not preferable. The molecular weight distribution (Mw / Mn) is preferably 1.0 to 6.0, more preferably 1.0 to 4.0. The smaller the molecular weight distribution, the better the heat resistance and image performance (resist profile, defocus latitude, etc.). It becomes.
The weight average molecular weight and molecular weight distribution (Mw / Mn) of the polymerization (A) are measured as polystyrene equivalent values by gel permeation chromatography equipped with a refractive index detector.
[0030]
In the positive photosensitive resin composition of the present invention, the content of the polymer (A) is 50 to 99.7% by weight, preferably 70 to 99% by weight, in terms of solid content.
The positive photosensitive resin composition of the present invention can contain other polymers as required in addition to the polymer (A). The content of the other polymer is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, and particularly preferably 10 parts by weight or less per 100 parts by weight of the polymer (A).
[0031]
As said other polymer which the positive photosensitive resin composition of this invention can contain, what is compatible with the alicyclic polymer of this invention should just be sufficient, poly p-hydroxyethylene, hydrogenated poly p-- Hydroxyethylene, novolac resin and the like can be mentioned.
[0032]
Next, (B) a compound (hereinafter also referred to as “(B) a photoacid generator”) that decomposes upon irradiation with actinic rays and generates an acid contained in the positive photosensitive resin composition of the present invention will be described. To do.
Examples of the photoacid generator (B) used in the present invention include a photoinitiator for photocationic polymerization, a photoinitiator for photoradical polymerization, a photodecolorant for dyes, a photochromic agent, or ultraviolet light, A well-known photoacid generator and a mixture thereof are appropriately selected and used for micro photoresists that generate acid by ultraviolet rays, KrF excimer laser light, ArF excimer laser light, electron beam, X-ray, molecular beam, ion beam, etc. can do.
In the present invention, actinic rays are used in a broad concept including radiation as described above.
[0033]
(B) The photoacid generator is not particularly limited as long as it dissolves in the organic solvent described later used in the positive photosensitive resin composition of the present invention, but generates a photoacid that generates an acid with light of 220 nm or less. It is preferable that it is an agent. Moreover, you may use individually or in combination of 2 or more types, and may be used in combination with a suitable sensitizer.
[0034]
Examples of usable photoacid generator (B) include triphenylsulfonium salt derivatives described in J. Org. Chem. Vol. 43, N0.15, 3055 (1978) and Japanese Patent Application No. 9-279071. Other onium salts described in (1) (sulfonium salt, iodonium salt, phosphonium salt, diazonium salt, ammonium salt) can also be used.
Specific examples of onium salts include diphenyliodonium triflate, diphenyliodonium pyrenesulfonate, diphenyliodonium dodecylbenzenesulfonate, triphenylsulfonium triflate, triphenylsulfonium hexafluoroantimonate, diphenyliodonium hexafluoroantimonate, triphenylsulfonium naphthalenesulfonate , Triphenylsulfonium camphorsulfonium, (4-methoxyphenyl) phenyliodonium trifluoromethanesulfonate, bis (t-butylphenyl) iodonium trifluoromethanesulfonate, and the like.
[0035]
Also described in JP-A-3-103854, JP-A-3-103856, JP-A-4-210960, diazodisulfones and diazoketosulfones, JP-A-64-18143, JP-A-2-245756 And the disulfones described in JP-A-2-71270 can also be suitably used. Further, USP 3849137, JP 63-26653, JP 62-69263, JP 63-146038, JP 63-163452, JP 62-153853, JP 63-63. A compound in which a group capable of generating an acid by light described in No. 146029 or the like is introduced into the main chain or side chain of a polymer can also be used. JP-A-7-25846, JP-A-7-28237, JP-A-7-92675 No., JP-A-8-27120, aliphatic alkylsulfonium salts having a 2-oxocyclohexyl group, and N-hydroxysuccinimide sulfonates, as well as J. Photopolym. Sci., Tech., Vol. 7, No. 3,423. The sulfonium salt described in (1994) can also be used suitably, and it is used alone or in combination of two or more.
[0036]
The content of these (B) compounds that decompose upon irradiation with actinic rays to generate an acid is usually 0.001 to 40% by weight, preferably based on the total weight (solid content) of the photosensitive resin composition, 0.01 to 20% by weight, more preferably 0.1 to 5% by weight. (B) If the amount of the photoacid generator is less than 0.001% by weight, the sensitivity will be low, and if it is more than 40% by weight, the light absorption of the resist will be too high, resulting in profile deterioration and process margins, especially bake margins. It is not preferable.
[0037]
Next, (C) a cyclic aliphatic organic carboxylic acid compound having a molecular weight of 1000 or less and an organic carboxylic acid having a naphthalene ring in the molecule (hereinafter referred to as “(C ) Organic carboxylic acid ”).
By incorporating (C) the organic carboxylic acid into the photosensitive resin composition of the present invention, development defects are significantly reduced.
[0038]
(C) The molecular weight of the organic carboxylic acid is 1000 or less, preferably 100 to 800, and more preferably 150 to 700. If the molecular weight exceeds 1000, the above effect cannot be exhibited.
[0039]
Examples of cycloaliphatic carboxylic acid compounds include, for example, cyclohexyl carboxylic acid, 1,2-cyclohexane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, cyclopentyl acetic acid, 1-adamantane carboxylic acid, 2-adamantane carboxylic acid, 3-hydroxy -1-adamantane carboxylic acid, 1,3-adamantane dicarboxylic acid, 3-methoxy-1-adamantane carboxylic acid, 3-ethoxy-1-adamantane carboxylic acid, 3-butoxy-1-adamantane carboxylic acid, 3-acetoxy-1 -Adamantane carboxylic acid, adamantyl acetic acid, cholic acid, deoxycholic acid, lithocholic acid, camphanic acid, 2,3-norbornene dicarboxylic acid, tricyclodecane carboxylic acid, abietic acid and ricacid HBH represented by the following formula-1 New Japan Chemical Co., Ltd.), or the like can be used.
[0040]
[Formula 4]
Figure 0003824288
[0041]
Examples of carboxylic acids having a naphthalene ring in the molecule include 1-naphthalene carboxylic acid, 2-naphthalene carboxylic acid, 1-hydroxy 2-naphthalene carboxylic acid, 3-hydroxy-2-naphthalene carboxylic acid, 1-methoxy-2 -Naphthalenecarboxylic acid, 3-methoxy-2-naphthalenecarboxylic acid, 3-ethoxy-2-naphthalenecarboxylic acid, 1-acetoxy-2-naphthalenecarboxylic acid, 8-methoxycarbonyl-1-naphthalenecarboxylic acid, 8-cyclohexyloxy Examples thereof include -1-naphthalenecarboxylic acid and 3-amino-2-naphthoic acid.
[0042]
The (C) organic carboxylic acid may be used alone or in combination of two or more.
[0043]
(C) The compounding quantity of organic carboxylic acid is 0.001-15 weight part normally with respect to 100 weight part of photosensitive resin compositions (solid content) of this invention, Preferably it is 0.01-10 weight part. If it is less than 0.001 part by weight, the effect of addition cannot be sufficiently obtained. On the other hand, if the amount exceeds 15 parts by weight, the remaining film ratio decreases, which is not preferable. Two or more of these carboxylic acids can be used in combination.
Moreover, you may mix low molecular non-cyclic aliphatic carboxylic acid and aromatic carboxylic acid other than (C) organic carboxylic acid in the range which does not impair the effect of this invention. However, addition of an oligomer such as a polymer having a carboxyl group, for example, a styrene-acrylic acid copolymer, a styrene-methacrylic acid copolymer, or a carboxyl group-substituted norbornene polymer is not preferable because the resist profile is deteriorated.
[0044]
Next, the (D) nitrogen-containing basic compound used in the positive photosensitive resin composition of the present invention will be described. As the nitrogen-containing basic compound, an organic amine, a basic ammonium salt, a sulfonium salt, or the like is used as long as it does not deteriorate sublimation or resist performance. If it is a liquid amine at room temperature, a boiling point of 150 ° C. or higher is preferable, and if it is a solid amine, a melting point of 100 ° C. or higher is preferable.
For example, JP-A-63-149640, JP-A-5-249662, JP-A-5-127369, JP-A-5-289322, JP-A-5-249683, JP-A-5-289340, JP-A-5-232706 JP-A-5-257282, JP-A-62-242605, JP-A-6-242606, JP-A-6-266100, JP-A-6-266110, JP-A-6-317902, JP-A-7-120929, JP-A-7-65558, JP-A-7-319163, JP-A-7-508840, JP-A-7-333844, JP-A-7-219217, JP-A-7-92678, JP-A-7-28247, Special Kaihei 8-22120, JP-A-8110638, JP-A8-123030, JP-A-9-274312, JP-A-9-66871, JP-A-9-292708, JP-A-9-325496, Special table Basic compounds described in JP-A-7-508840, USP5525453, USP5629134, USP5667938 and the like can be used.
[0045]
Particularly preferably, 1,5-diazabicyclo [4.3.0] -5-nonene, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,4-diazabicyclo [2.2.2]. Octane, 4-dimethylaminopyridine, 1-naphthylamine, piperidine, hexamethylenetetramine, imidazoles, hydroxypyridines, pyridines, 4,4'-diaminodiphenyl ether, pyridinium p-toluenesulfonate, 2,4,6-trimethyl Examples thereof include pyridinium p-toluenesulfonate, tetramethylammonium p-toluenesulfonate, and tetrabutylammonium lactate.
(D) A basic compound can be used individually by 1 type or in combination of 2 or more types.
[0046]
(D) Content of a nitrogen-containing basic compound is 0.001-10 weight part normally with respect to 100 weight part of photosensitive resin compositions (solid content), Preferably it is 0.01-5 weight part. If it is less than 0.001 part by weight, the effect cannot be sufficiently obtained. On the other hand, when the amount exceeds 10 parts by weight, the sensitivity is lowered and the developability of the non-exposed part tends to be remarkably deteriorated.
[0047]
Next, the (E) fluorine-based surfactant and silicon-based surfactant contained in the positive photosensitive resin composition of the present invention will be described.
The photosensitive resin composition of the present invention can contain either or both of a fluorine-based surfactant and a silicon-based surfactant.
As these (E) surfactants, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950, JP-A-63-34540 , JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, and the following commercially available surfactants may be used as they are. it can.
Examples of commercially available surfactants that can be used include F-top EF301 and EF303 (made by Shin-Akita Kasei Co., Ltd.), Florard FC430 and 431 (made by Sumitomo 3M Ltd.), MegaFuck F171, F173, F176, F189 and R08. (Dainippon Ink Co., Ltd.), Surflon S-382, SC101, 102, 103, 104, 105, 106 (Asahi Glass Co., Ltd.) etc. it can. Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used as a silicon surfactant.
Of these surfactants, surfactants having both fluorine atoms and silicon atoms are particularly excellent in improving development defects.
[0048]
(E) The compounding quantity of surfactant is 0.01 weight part-2 weight part normally per 100 weight part of solid content in the composition of this invention, Preferably it is 0.01 weight part-1 weight part.
These surfactants can be used alone or in combination of two or more.
[0049]
Although it is not well understood why the positive photosensitive resin composition of the present invention is specifically superior to the development defects described above, a specific (C) organic carboxylic acid and (D) a nitrogen-containing basic compound It seems that it was expressed by a specific (E) surfactant combination. For example, the development defect is not eliminated by a combination of (D) a nitrogen-containing basic compound and a surfactant other than the present invention, for example, a nonionic surfactant.
[0050]
The positive photosensitive resin composition of the present invention has a molecular weight of 2000 or less as necessary, a group having a group that can be decomposed by the action of an acid, and an alkali solubility that is increased by the action of an acid. Degradable compounds can be included.
For example, described in Proc. SPIE, 2724, 355 (1996), JP-A-8-15865, USP5310619, USP-5372912, J. Photopolym. Sci., Tech., Vol. 10, No. 3, 511 (1997)). Alicyclic compounds containing acid-decomposable groups such as cholic acid derivatives, dehydrocholic acid derivatives, deoxycholic acid derivatives, lithocholic acid derivatives, ursocholic acid derivatives and abietic acid derivatives, naphthalene containing acid-decomposable groups Aromatic compounds such as derivatives can be used as the low-molecular acid-decomposable compound.
Further, the low-molecular acid-decomposable dissolution inhibiting compounds described in JP-A-6-51519 can also be used in an addition range at a level that does not deteriorate the transmittance at 220 nm, and 1,2-naphthoquinone diazite compounds can also be used.
When the low molecular acid decomposable dissolution inhibiting compound is used in the photosensitive resin composition of the present invention, the content thereof is usually 1 to 50% by weight based on the total weight (solid content) of the photosensitive resin composition. It is used in a range, preferably 3 to 40% by weight, more preferably 5 to 30% by weight.
Addition of these low molecular acid decomposable dissolution inhibiting compounds not only further improves the development defects, but also improves dry etching resistance.
[0051]
In the positive photosensitive resin composition of the present invention, if necessary, further a dissolution accelerating compound for a developer, an antihalation agent, a plasticizer, a surfactant, a photosensitizer, an adhesion assistant, a crosslinking agent, A photobase generator and the like can be contained.
[0052]
Examples of the dissolution promoting compound that can be used in the present invention include compounds containing two or more phenolic hydroxyl groups described in JP-A-3-206458, one naphthol such as 1-naphthol, or one carboxyl group. Examples thereof include low molecular compounds having a molecular weight of 1000 or less, such as compounds having the above, carboxylic acid anhydrides, sulfonamide compounds and sulfonylimide compounds.
The blending amount of these dissolution promoting compounds is preferably 30% by weight or less, more preferably 20% by weight or less, based on the total weight (solid content) of the composition.
[0053]
As a suitable antihalation agent, a compound that efficiently absorbs irradiated radiation is preferable, and substituted benzenes such as fluorene, 9-fluorenone, and benzophenone; anthracene, anthracene-9-methanol, anthracene-9-carboxyethyl, phenanthrene , Polycyclic aromatic compounds such as perylene and azylene. Of these, polycyclic aromatic compounds are particularly preferred. These antihalation agents exhibit the effect of improving standing waves by reducing the reflected light from the substrate and reducing the influence of multiple reflection in the resist film.
[0054]
A nonionic surfactant can be used in combination for the purpose of improving the coating property of the photosensitive resin composition of the present invention or improving developability.
Nonionic surfactants that can be used in combination include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, polyoxyethylene sorbitan mono Examples include stearate and sorbitan monolaurate.
[0055]
Moreover, in order to improve the acid generation rate by exposure, a photosensitizer can be added. Suitable photosensitizers include benzophenone, p, p′-tetramethyldiaminobenzophenone, 2-chlorothioxanthone, anthrone, 9-ethoxyanthracene, pyrene, phenothiazine, benzyl, benzoflavine, acetophenone, phenanthrene, benzoquinone, anthraquinone, 1 , 2-naphthoquinone and the like, but are not limited thereto. These photosensitizers can also be used as the antihalation agent.
[0056]
The photosensitive resin composition of the present invention is usually prepared as a solution by dissolving it in a solvent that dissolves each of the above components and then filtering with a filter having a pore size of about 0.05 μm to 0.2 μm. Examples of the solvent used here include ethylene glycol monoethyl ether acetate, cyclohexanone, 2-heptanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether acetate, 3 -Methyl methoxypropionate, ethyl 3-ethoxypropionate, methyl β-methoxyisobutyrate, ethyl butyrate, propyl butyrate, methyl isobutyl ketone, ethyl acetate, isoamyl acetate, ethyl lactate, toluene, xylene, cyclohexyl acetate, diacetone alcohol, N -Methylpyrrolidone, N, N-dimethylformamide, γ-butyrolactone, N, N-dimethylacetamide, etc. It is. These solvents are used alone or in combination.
The selection of the solvent is important because it affects the solubility in the photosensitive resin composition of the present invention, the coating property to the substrate, the storage stability, and the like. Moreover, since the water | moisture content contained in a solvent affects these performances, the one where it is less is preferable.
[0057]
Furthermore, in the photosensitive resin composition of the present invention, it is preferable to reduce metal impurities such as metal and impurity components such as chloro ions to 100 ppb or less. The presence of a large amount of these impurities is not preferable because it causes malfunctions, defects, and a decrease in yield in manufacturing a semiconductor device.
[0058]
The photosensitive resin composition of the present invention is applied onto a substrate by an appropriate application method such as a spinner or a coater, pre-baked (heated before exposure), exposed to exposure light having a wavelength of 220 nm or less through a predetermined mask, and PEB ( A good resist pattern can be obtained by developing after baking after exposure.
The substrate used here may be any substrate that is usually used in semiconductor devices and other manufacturing apparatuses, and examples thereof include a silicon substrate, a glass substrate, and a nonmagnetic ceramic substrate. Further, an additional layer such as a silicon oxide layer, a wiring metal layer, an interlayer insulating film, a magnetic film, an antireflection film layer, or the like may be present on these substrates as necessary. Circuits etc. may be built in. Furthermore, these substrates may be subjected to a hydrophobic treatment according to a conventional method in order to improve the adhesion of the resist film. Examples of suitable hydrophobizing agents include 1,1,1,3,3,3-hexamethyldisilazane (HMDS).
[0059]
The resist film thickness applied on the substrate is preferably in the range of about 0.1 to 10 μm. In the case of ArF exposure, a thickness of about 0.1 to 1.5 μm is recommended.
The resist film applied on the substrate is preferably pre-baked at a temperature of about 60 to 160 ° C. for about 30 to 300 seconds. If the pre-baking temperature is low and the time is short, the residual solvent in the resist film becomes relatively large, which causes an adverse effect such as deterioration of adhesion, which is not preferable. On the other hand, if the pre-baking temperature is high and the time is long, it is not preferable because the components such as the binder and the photoacid generator of the photosensitive resin composition are decomposed.
[0060]
As a device for exposing the pre-baked resist film, a commercially available ultraviolet exposure device, X-ray exposure device, electron beam exposure device, KrF excimer exposure device, ArF excimer exposure device, F 2 An excimer exposure apparatus or the like is used. In the present invention, an apparatus using an ArF excimer laser as an exposure light source is particularly preferable.
The post-exposure baking is performed for the purpose of causing elimination of a protecting group using an acid as a catalyst, the purpose of eliminating standing waves, the purpose of diffusing an acid generator or the like into the film, and the like. This post-exposure bake can be performed in the same manner as the previous pre-bake. For example, the baking temperature is about 60 to 160 ° C, preferably about 90 to 150 ° C.
[0061]
Examples of the developer for the photosensitive resin composition of the present invention include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, and aqueous ammonia, primary amines such as ethylamine and n-propylamine, and diethylamine. Secondary amines such as di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), quaternary ammonium salts such as trimethylhydroxymethylammonium hydroxide, triethylhydroxymethylammonium hydroxide, trimethylhydroxyethylammonium hydroxide, pyrrole, piperidine, 1,8 Diazabicyclo - [5.4.0] -7-undecene, 1,5-diazabicyclo - [4.3.0] -5-alkaline aqueous solution of a cyclic amine such as nonane or the like can be used.
[0062]
Furthermore, it should be used even if an appropriate amount of a hydrophilic organic solvent such as alcohols or ketones, a nonionic or anionic surfactant, a cationic surfactant or an antifoaming agent is added to the alkaline aqueous solution. Can do. In addition to the purpose of improving the resist performance, these additives are alkaline for the purpose of improving adhesion to the substrate, reducing the amount of developer used, and reducing defects caused by bubbles during development. Add to aqueous solution.
[0063]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by this.
[0064]
Synthesis Example 1 (Synthesis of Polymer A)
A hydride of a ring-opening polymer of a norbornene derivative described in JP-A-9-244247 and Example 4 (repeating structural units are described below) was synthesized according to the method described in EP0789278. (Weight average molecular weight 22000)
[0065]
[Chemical formula 5]
Figure 0003824288
[0066]
Synthesis Example 2 (Synthesis of Polymer B)
A hydride of a ring-opening polymer of a norbornene derivative described in JP-A-9-244247 and Example 1 (repeating structural units are described below) was synthesized according to the method described in EP0789278. (Weight average molecular weight 17000)
[0067]
[Chemical 6]
Figure 0003824288
[0068]
Synthesis Example 3 (Synthesis of Polymer C)
A copolymer of norbornene, maleic anhydride, t-butyl acrylate and acrylic acid (repeating structural units are described below) was synthesized according to the method described in JP-A-10-10739, Example 7. (Weight average molecular weight 17000, molar ratio of each repeating unit 50/25/25)
[0069]
[Chemical 7]
Figure 0003824288
[0070]
Synthesis Example 4 (Synthesis of Polymer D)
A copolymer of adamantyl methacrylate and t-butyl acrylate (repeated structural units are described below) was synthesized according to the method described in JP-A-7-234511, Example 1.
[0071]
[Chemical 8]
Figure 0003824288
[0072]
Synthesis Example 5 (Synthesis of acid-decomposable low molecular weight compound a)
A mixture of 122.7 g (0.3 mol) of cholic acid and 120 ml of thionyl chloride was refluxed for 1 hour. Excess thionyl chloride was removed, the resulting solid was dissolved in 150 ml of tetrahydrofuran, 40 g (0.35 mol) of potassium-t-bucitoxide was gradually added, the reaction mixture was refluxed for 6 hours, cooled and poured into water. It is. The resulting solid was collected by filtration, washed with water and dried under reduced pressure. This crude product was recrystallized with n-hexane to obtain tert-butyl cholate (the following formula) in a yield of 70%.
[0073]
[Chemical 9]
Figure 0003824288
[0074]
Examples 1-6, Comparative Examples 1-5
(Preparation of photosensitive resin composition)
In preparing the photosensitive resin component, the components listed in Table 1, that is, the polymers A, B, C, and D synthesized in Synthesis Examples 1 to 4, triphenylsulfonium triflate (PAG-1) as a photoacid generator ), An organic carboxylic acid, the acid-decomposable low-molecular compound synthesized in Synthesis Example 5 (compound a), a nitrogen-containing basic compound, a surfactant, and each component of propylene glycol monomethyl ether acetate as a solvent. In Table 1, the dotted line means that the component was not used.
Each component was mixed and then filtered through a 0.1 μm Teflon filter to prepare a photosensitive resin composition.
The amount of each component when used is as follows.
Polymer A, B, C, D 10g
Photoacid generator 0.06g
Organic carboxylic acid 0.25g
Acid-decomposable low molecular weight compound 0.5g
Nitrogen-containing basic compound 0.10 g
Surfactant 0.05g
Solvent 57.4g
About the photosensitive resin composition prepared in this way, the number of development defects was measured by the following method. The measurement results of the number of development defects are shown in Table 2.
[0075]
(Evaluation method for the number of development defects)
(1) Number of development defects -I
The photosensitive resin composition was uniformly applied on a silicon substrate subjected to hexamethyldisilazane treatment by a spin coater, and heated and dried on a hot plate at 120 ° C. for 90 seconds to form a 0.50 μm resist film. . This resist film was exposed with ArF excimer laser light through a mask, and immediately after the exposure, it was heated on a hot plate at 110 ° C. for 90 seconds. Further, the resist film was developed with an aqueous 2.38 wt% tetramethylammonium hydroxide solution at 23 ° C. for 60 seconds, rinsed with pure water for 30 seconds, and then dried. The number of development defects of the sample with the contact hole pattern thus obtained was measured using a KLA2112 machine (manufactured by KLA Tencor) (Threshold12, Pixcel Size = 0.39).
(2) Number of development defects-II
The number of development defects was measured in the same manner for the heated, developed, rinsed, and dried samples except for not exposing in (1) Number of developed defects -I.
[0076]
[Table 1]
Figure 0003824288
[0077]
Each symbol in Table 1 is as follows.
PAG-1: Triphenylsulfonium triflate
C-1: 1-adamantanecarboxylic acid
C-2: 1,4-cyclohexanedicarboxylic acid
C-3: 1-Naphthalenecarboxylic acid
C-4: Ricacid HBH (manufactured by Shin Nippon Rika Co., Ltd.)
C-5: Salicylic acid
C-6: Nitrobenzoic acid
N-1: Hexamethylenetetramine
N-2: 1,5-diazabicyclo [4.3.0] -5-nonene
N-3: 1,8-diazabicyclo [5.4.0] -7-undecene
N-4: 1,4-diazabicyclo [2.2.2] octane
N-5: Triethylamine
W-1: Megafuck F176 (Dainippon Ink Co., Ltd.)
W-2: Megafuck R08 (Dainippon Ink Co., Ltd.)
W-3: Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.)
S-1: Propylene glycol monomethyl ether acetate
[0078]
[Table 2]
Figure 0003824288
[0079]
As is clear from the results in Table 2, all of the photosensitive resin compositions of the present invention had very few development defects.
On the other hand, (C) an organic carboxylic acid, (D) a nitrogen-containing basic compound, and (E) Comparative Example 1 not using a surfactant, (D) a nitrogen-containing basic compound and (E) a surfactant were used. However, (C) Comparative Example 2 using no organic carboxylic acid, (C) Comparative Example 3 using (C) an organic carboxylic acid and (D) a nitrogen-containing basic compound, but not using (C) a surfactant, There were many development defects. Further, Comparative Examples 4 and 5 using aromatic carboxylic acids as organic carboxylic acids also had many development defects.
[0080]
【The invention's effect】
The positive photosensitive resin composition of the present invention has very few development defects. Therefore, it can be effectively used for forming a fine pattern necessary for manufacturing a semiconductor device using ArF excimer laser light as an exposure light source. Moreover, the positive photosensitive resin composition of the present invention is excellent in stability in the semiconductor manufacturing process.

Claims (4)

(A)環状脂肪族炭化水素骨格を有し、酸の作用により分解してアルカリ可溶性となる重合体、
(B)活性光線により酸を発生する化合物、
(C)分子量が1000以下の環状脂肪族有機カルボン酸及び/又はナフタレン環を有する有機カルボン酸、
(D)含窒素塩基性化合物、並びに
(E)フッ素系及び/又はシリコン系界面活性剤
を含有することを特徴とするポジ型感光性樹脂組成物。
(A) a polymer having a cyclic aliphatic hydrocarbon skeleton, which is decomposed by the action of an acid and becomes alkali-soluble,
(B) a compound that generates an acid by actinic rays,
(C) a cyclic aliphatic organic carboxylic acid having a molecular weight of 1000 or less and / or an organic carboxylic acid having a naphthalene ring,
A positive photosensitive resin composition comprising (D) a nitrogen-containing basic compound and (E) a fluorine-based and / or silicon-based surfactant.
分子量が2000以下であって、酸の作用により分解し得る基を有し、アルカリ溶解性が酸の作用により増大する低分子酸分解性化合物をさらに含有することを特徴とする請求項1に記載のポジ型感光性樹脂組成物。 The low molecular weight acid-decomposable compound having a molecular weight of 2000 or less, having a group that can be decomposed by the action of an acid, and having an alkali solubility increased by the action of an acid. A positive photosensitive resin composition. 活性光線が220nm以下の遠紫外光であることを特徴とする請求項1又は2に記載のポジ型感光性樹脂組成物。 The positive photosensitive resin composition according to claim 1, wherein the active light is far ultraviolet light having a wavelength of 220 nm or less. 請求項1〜3のいずれかに記載のポジ型感光性樹脂組成物により膜を形成し、当該膜を露光、現像することを特徴とするパターン形成方法。  A pattern forming method comprising: forming a film from the positive photosensitive resin composition according to claim 1; and exposing and developing the film.
JP14443798A 1998-05-26 1998-05-26 Positive photosensitive resin composition Expired - Lifetime JP3824288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14443798A JP3824288B2 (en) 1998-05-26 1998-05-26 Positive photosensitive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14443798A JP3824288B2 (en) 1998-05-26 1998-05-26 Positive photosensitive resin composition

Publications (2)

Publication Number Publication Date
JPH11338150A JPH11338150A (en) 1999-12-10
JP3824288B2 true JP3824288B2 (en) 2006-09-20

Family

ID=15362196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14443798A Expired - Lifetime JP3824288B2 (en) 1998-05-26 1998-05-26 Positive photosensitive resin composition

Country Status (1)

Country Link
JP (1) JP3824288B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430028B2 (en) * 1998-09-08 2003-07-28 松下電器産業株式会社 Pattern formation method
JP2002006483A (en) * 2000-06-20 2002-01-09 Sumitomo Chem Co Ltd Photoresist composition
JP4190167B2 (en) * 2000-09-26 2008-12-03 富士フイルム株式会社 Positive resist composition
JP4199914B2 (en) * 2000-11-29 2008-12-24 富士フイルム株式会社 Positive resist composition
JP3874092B2 (en) 2001-12-26 2007-01-31 信越化学工業株式会社 Polymer compound, resist material, and pattern forming method
AU2003230727A1 (en) * 2002-03-22 2003-10-13 Triad Therapeutics, Inc. Common ligand mimics: naphtoates
JP3912516B2 (en) 2002-08-09 2007-05-09 信越化学工業株式会社 Polymer compound, resist material, and pattern forming method
JP4511383B2 (en) 2005-02-23 2010-07-28 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
JP2007079552A (en) * 2005-08-17 2007-03-29 Jsr Corp Radiation-sensitive resin composition
JP4991326B2 (en) * 2006-01-24 2012-08-01 富士フイルム株式会社 Positive photosensitive composition and pattern forming method using the same
TWI477909B (en) 2006-01-24 2015-03-21 Fujifilm Corp Positive photosensitive composition and method of forming pattern using the same
EP2447773B1 (en) 2010-11-02 2013-07-10 Fujifilm Corporation Method for producing a pattern, method for producing a MEMS structure, use of a cured film of a photosensitive composition as a sacrificial layer or as a component of a MEMS structure
JP5635449B2 (en) 2011-03-11 2014-12-03 富士フイルム株式会社 Resin pattern and manufacturing method thereof, MEMS structure manufacturing method, semiconductor element manufacturing method, and plating pattern manufacturing method

Also Published As

Publication number Publication date
JPH11338150A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
KR100601078B1 (en) Positive photosensitive resin composition
EP1610179B1 (en) Protective film-forming composition for immersion exposure and pattern-forming method using the same
EP0967522B1 (en) Positive photosensitive resin composition
JP3824288B2 (en) Positive photosensitive resin composition
JP3922673B2 (en) Positive photosensitive resin composition and pattern forming method
JP3901342B2 (en) Positive photosensitive resin composition
JP3851440B2 (en) Positive photosensitive composition
JP4524154B2 (en) Chemically amplified resist composition and pattern forming method using the same
JP3922672B2 (en) Positive photosensitive resin composition and pattern forming method
JP3934259B2 (en) Positive photosensitive resin composition
JP3832790B2 (en) Positive photosensitive resin composition
JP3841379B2 (en) Positive photosensitive resin composition
JPH11338151A (en) Positive type photosensitive composition
JP3925882B2 (en) Positive photosensitive resin composition
JPH11327144A (en) Positive photosensitive composition
JP3810219B2 (en) Positive photosensitive resin composition
JP2002131914A (en) Positive photosensitive resin composition
JP2002072481A (en) Positive type photosensitive resin composition
JP3770694B2 (en) Resist material and resist pattern forming method
JP2000010286A (en) Positive type photosensitive resin composition
JP2002006499A (en) Positive photosensitive resin composition
JP2000098614A (en) Positive type photosensitive composition
JP2002131913A (en) Positive photosensitive resin composition
JP2000066398A (en) Positive photosensitive resin composition
JP2000019733A (en) Positive photosensitive resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term