JP3823851B2 - Optical wireless communication system - Google Patents

Optical wireless communication system Download PDF

Info

Publication number
JP3823851B2
JP3823851B2 JP2002057059A JP2002057059A JP3823851B2 JP 3823851 B2 JP3823851 B2 JP 3823851B2 JP 2002057059 A JP2002057059 A JP 2002057059A JP 2002057059 A JP2002057059 A JP 2002057059A JP 3823851 B2 JP3823851 B2 JP 3823851B2
Authority
JP
Japan
Prior art keywords
optical
optical wireless
light
signal
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002057059A
Other languages
Japanese (ja)
Other versions
JP2003258735A (en
Inventor
健男 坪岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2002057059A priority Critical patent/JP3823851B2/en
Publication of JP2003258735A publication Critical patent/JP2003258735A/en
Application granted granted Critical
Publication of JP3823851B2 publication Critical patent/JP3823851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光無線ハブと光無線ノードとの間で半二重光無線通信を行う光無線通信システムに関し、特に光無線ハブに対する光無線ノードの光軸調整に関する。
【0002】
【従来の技術】
一般に、PCやWSなどの情報端末(スイッチングハブを含む)に接続された光無線ノード(光無線通信端末)は、天井に取り付けられた光無線ハブ(光無線集配装置)との光軸合わせを正確に行うために、図9に示すような光無線ハブから送信されるパイロット光に対してサーボを用いた自動光軸合わせを行っている。
【0003】
図10、図11はそれぞれ従来の光無線ノードの構成、その光軸調整処理を示している。光無線ノード10aは受信手段11、通信データ処理手段12、光通信手続き処理手段13、光送信手段14、光受信手段15、送信手段16、パイロット光抽出手段17b、光軸合わせ制御手段18a、サーボ手段19を有している。ここで、光受信手段15(及び光送信手段14)は、水平(パン)角=0〜360度、傾き(チルト)角=垂直方向(0度)〜70度の範囲で回転して光無線ハブ20(図1参照)のパイロット光を探し出し、精度=5度以下に光軸合わせを行う。このように広い範囲から狭い光軸へ合わせ込むために、まず、パイロット光の有無を調べる「粗調」を行い(ステップS1〜S4)、次いでパイロット光の有る大まかな範囲からパイロット光の最も強い方向に合わせる「微調」を行う(ステップS5、S6)。
【0004】
「粗調」の段階では図12に示すように、光無線ノード10aの全サービス範囲を素早く操作するために、一定の粗い角度毎に光受信手段15の向きを変更してパイロット光の受光強度を観測する。ここで、光無線ハブ20が発するパイロット光は、本来の光無線通信を妨げることがないように、光無線通信の周波数より大きく低い一定の周波数で点滅する。光無線ノード10aは「粗調」の段階で閾値を超えるパイロット光を確認すると、「微調」の段階に移行する。光無線ノード10aの光受信手段15は2×2のセルに分割されたPDで構成され、2×2のセルの各受信強度が均等になるように、すなわちパイロット光が2×2のセルの中心になるように向きを合わせる。さらに、パイロット光の向きから通信可能な向きに任意の量だけ向きを修正し、さらに試験通信を行うことにより光無線リンクを確立する(ステップS7、S8)。
【0005】
【発明が解決しようとする課題】
しかしながら、パイロット光を用いた光軸合わせ方法では、パイロット光との判別が困難な外乱光によりパイロット光の方向への光軸合わせがいつまでも成功せず、実際の通信に移行することができないという問題点がある。すなわち、パイロット光を発する光無線ハブ20が設置される天井には、インバータ式蛍光灯も設置され、このインバータ式蛍光灯の点滅周波数がパイロット光に近い場合にはパイロット光の方向への光軸合わせがいつまでも成功しない。さらに、インバータ式蛍光灯の点滅周波数は製造者に応じて異なるので、全ての場合に対応可能なパイロット光の点滅周波数を決めたり、パイロット光抽出手段17bを設計することは困難である。
【0006】
本発明は上記従来例の問題点に鑑み、パイロット光の点滅周波数に近い外乱光がある環境下であっても光軸合わせを確実に、かつ早く行うことができる光無線通信システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、光無線ハブからの光通信信号及びパイロット光の受信状態に応じて粗調か微調かを選択して、選択された調整精度で光軸調整処理を行うようにしたものである。
すなわち本発明によれば、光無線ハブとパン方向及びチルト方向に所定角度単位で回動可能な光無線ノードとの間で半二重光無線通信を行う光無線通信システムであって、
前記光無線ハブは、
光通信信号及びパイロット光を前記光無線ノードに対して送出する光送出手段を有し、
前記光無線ノードは、
前記光無線ハブから送出された前記光通信信号及び前記パイロット光を受、前記パイロット光の受信強度を検出するとともに前記光通信信号の受信継続時間を検出するための受信検出手段と、
前記受信された前記パイロット光のスポット光に対して比較的粗い角度単位で当該光無線ノードの光軸粗調整処理を実行する粗調整処理手段と、
前記スポット光の範囲内で、その中心に対して比較的狭い角度単位で当該光無線ノードの光軸微調整処理を実行する微調整処理手段と、
前記受信検出手段において、前記光通信信号が検出されず、かつ前記パイロット光の受信強度が所定の閾値以下である場合は前記粗調整処理手段を選択する一方、前記光通信信号が検出されず、かつ前記パイロット光の受信強度が前記閾値よりも大きい場合、又は前記光通信信号が検出されて、かつ前記受信継続時間が所定の時間に満たない場合は前記微調整処理手段を選択して、この選択された手段により光軸調整処理を実行させる光軸調整制御手段とを、
有する光無線通信システムが提供される。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。図1は本発明に係る光無線通信システムの一実施形態の光無線ハブを示すブロック図、図2は本発明に係る光無線通信システムの一実施形態の光無線ノードを示すブロック図、図3は図2の通信光判定手段を詳しく示すブロック図、図4は図3の通信光判定手段における通信信号及びその判定処理を示す説明図、図5は図2の光軸合わせ判定・制御手段の処理を説明するためのフローチャート、図6は図5の光軸合わせ判定処理を詳しく説明するためのフローチャートである。
【0009】
図1に示す光無線ハブ20は、光受信手段21、通信データ処理手段22、光通信手続き処理手段23、送信手段24、受信手段25、光送信手段26、パイロット光発生手段27、パイロット光送信手段28を有している。光受信手段21は、図2に示す光無線ノード10から送信されてくる光無線信号を受信するPD(フォトディテクタ)などの受光素子と、この受光素子で受信した光信号を電気信号に変換する光電変換部とにより構成される。
【0010】
通信データ処理手段22は、光無線ノード10からの通信データを抽出して、光空間方向又は幹線方向の適切な方向に転送する。光通信手続き処理手段23は、光受信手段21で受信した光信号から光無線ノード10からの通信信号を抽出し、光無線通信のための制御を行う。送信手段24は、幹線などに対し送信すべき信号(通信データや衝突通知信号)を出力し、受信手段25は、幹線などと接続して通信データを受け取る。光送信手段26は、光空間に送信すべき通信信号(光通信手続き信号や通信データ)を光信号に変換して、発光ダイオードなどの発光手段により光無線ノード10に対して送信する。パイロット光発生手段27及びパイロット光送信手段28は、光無線ハブ20と光通信による接続を行おうとする光無線ノード10が光軸合わせを行うためにパイロット光を発生し、これを空間に放射する。
【0011】
図2に示す光無線ノード10は、受信手段11、通信データ処理手段12、光通信手続き処理手段13、光送信手段14、光受信手段15、送信手段16、通信光判定手段17a、パイロット光抽出手段17b、光軸合わせ判定・制御手段18、サーボ手段19を有している。
【0012】
受信手段11は、光無線ノード10に接続されているパーソナルコンピュータや(PC)ワークステーション(WS)などの外部機器(不図示)から送信されてくるデータを受信するためのインターフェイス機能を有する。通信データ処理手段12は、受信手段11で受信したデータを図1に示す光無線ハブ20に送信するために手続き処理を行う。光通信手続き処理手段13は、光無線ハブ20との光無線の通信手続きを行うための手続き処理を行う。
【0013】
光送信手段14は、光通信手続き処理手段13により生成された光通信の手続きを行うための通信信号、及び通信データ処理手段12によって処理された光無線ハブ20に送信すべき通信データに応じて発光素子を発光させて光信号に変換し、光無線ハブ20に送信する。光受信手段15は、光無線ハブ20から送信されてくる光信号をPD(フォトディテクタ)などの受光素子により受光して、光電変換して出力する。ここで、光送信手段14と光受信手段15は、光無線ハブ20との光軸合わせを行うためにパン、チルト可能に構成されている。送信手段16は、光受信手段15から出力され通信データ処理手段12によって処理された光無線ハブ20からの通信データを、自機に接続されているPC又はWSなどの外部機器に送信する。
【0014】
パイロット光抽出手段17bは、光受信手段15の出力する光受信信号から、光無線ハブ20のパイロット光を抽出し、通信光判定手段17aは図3、図4に詳しく示すように光受信手段15の出力する光受信信号から、光無線ハブ20の通信光を判定する。光軸合わせ判定・制御手段18は、パイロット光抽出手段17bにより抽出されたパイロット光と、通信光判定手段17aにより判定された通信光検出信号と、通信制御ブロック(12、13)との間で入出力する試験通信要求/結果信号を用いて、光無線ハブ20との光軸合わせを制御する。サーボ手段19は、光軸合わせ判定・制御手段18が出力するパン、チルトのサーボ機構用の制御信号を動力に変換し、光送信手段14及び光受信手段15の向きの変更を実行する。
【0015】
上記の構成を有する複数の光無線ノード10と光無線ハブ20の間で、スター型トポロジを構成するネットワークを形成し、光無線ハブ20を介して各光無線ノード10間で通信を行ったり、幹線と光無線ノード10間で通信を行う。
【0016】
図3、図4を参照して通信光判定手段17aについて詳しく説明する。光受信手段15の出力する光受信信号は検波回路101により検波され、次いで積分回路102により積分される。積分回路102の出力は比較器103により参照値電圧に応じて2値化され、比較器103の出力が判定回路104に送られて通信光の有無が判定される。図4は比較器103の出力を示し、図4(a)は通信光無し(無信号)の場合を示している。図4(b)は通信光が不十分な長さで検出される(不安定)の場合を示し、図4(c)は通信光が充分な長さで検出される(安定)の場合を示している。
【0017】
判定回路104の判定結果は図2に示す光軸合わせ判定・制御手段18に送られ、光軸合わせ判定・制御手段18は図5、図6に示すように、この判定結果とパイロット光抽出結果に基づいて光軸合わせの判定・制御を行う。このときの通信光は、光無線通信のデータや、光無線ノード10が同期をとるための光リンク信号を用いる。
【0018】
図5において、まず、起動時などにサーボ手段19の位置情報の初期化を行い(ステップS11)、続くステップS12では図6に詳しく示す光軸合わせ判定を行う。図6において、まず、判定回路104の判定結果をチェックし(ステップS21)、図4(a)に示すような「無信号」の場合には、パイロット光の受光強度>閾値か否かをチェックする(ステップS22)。受光強度>閾値でない場合にはステップS23に進んで粗調が完了しているか否かをチェックし、完了していれば光軸合わせ失敗と判断し(ステップS24)、次いでステップS11に戻る。他方、ステップS23において粗調が完了していない場合には粗調サーボ処理(ステップS13)に進む。
【0019】
ステップS21において図4(b)に示すような「不安定」な場合と、ステップS22において受光強度>閾値の場合には、ステップS25に進んで微調が完了しているか否かをチェックし、完了していれば光軸合わせ失敗と判断し(ステップS24)、次いでステップS11に戻る。他方、ステップS25において微調が完了していない場合には微調サーボ処理(ステップS14)に進む。ステップS21において図4(c)に示すような「安定」な場合には、試験送信を行い(ステップS26)、次いで試験送信が成功したか否かをチェックする(ステップS27)。そして、成功しなければステップS25に進み、他方、成功した場合には、この光軸合わせを完了して無線リンクを確立する(ステップS28)。
【0020】
次に「粗調サーボ処理」について説明する。粗調サーボ処理は光無線ノード10の全サービス範囲から光無線ハブの存在の有無と方向を大まかに知るために、高速に走査する処理である。このため粗調サーボ処理では、図12に示すように大まかな一定の角度毎に向きを変える。粗調の初期状態は向きを特定の方向(原点方向)に戻す制御を行う。
【0021】
次に「微調サーボ処理」について説明する。微調サーボ処理は光無線ハブ10の方向がある程度判断できた後に、正確に光軸合わせを行うために行う。このため、微調のサーボ制御は図12に示すように細かな角度で向きを変える。さらにパイロット光の光軸中心に光軸合わせが行われたか毎回判定し、光軸合わせが成功した場合には、そこからさらに通信可能となる向きに修正する。この修正は光無線ハブ20のパイロット光送信手段(パイロット光源)28と光送信手段26、光受信手段21の方向がずれていることを補正する制御であり、その補正量は光無線ハブ20の形状、また、光無線ノード20と光無線ハブ10との距離や、光無線ノード20が向いた傾きによって異なる値となる。この補正量は、実験などによりあらかじめ明らかにされた値として利用する。
【0022】
次に「試験通信」について説明する。光無線ノード10は光伝送路の回線空き(送信可能な状態)を確認した上で、テストパケットを生成し、光無線ハブ20に向け光送信する。ここでテストパケットとは、光無線空間のみで有効な本システム独自のパケットであり、光無線ハブ20や全ての光無線ノード10がこれを受信した場合、これをテストパケットと認識できるようなパケット構造を持ち、各々受信した光無線機器10、20は幹線ネットワークやPCなどにはこのパケットを流さないよう光無線通信手続き処理手段13、23で処理するものとする。
【0023】
また、テストパケットにはそれぞれ固有な値を割り振り、送信した光無線ノード10が自己の送ったテストパケットかどうか識別可能であるようにしておく。光無線ハブ20ではテストパケットを受信した場合、これをそのまま光無線伝送路に折り返し光送信する(応答と呼ぶことにする)。この応答を受け取った光無線ノード10では、直前にテストパケットを送信している場合はパケットの内容を照合することで、自機が光無線ハブ20と通信可能かどうかを判定する。直前に送信を行っていない(無関係な)光無線ノード10は、テストパケットと判断した段階でこれを破棄すればよい。照合結果が一致した場合は光通信可能と判断できる(リンク成立)が、照合結果が一致しない場合や、光無線ハブからの応答そのものがない場合は、再度光軸合わせを行う必要がある。
【0024】
上記実施形態の光無線ハブ20では、図1に示すように実際の光通信データの送信を行う光送信手段26とパイロット光送信手段28を別々に設けているが、代わりに図7に示すように光送信手段26によりパイロット光を送信するようにしてもよい。この場合には、実際の光通信データの送信時の空いた時間にパイロット光を時分割多重化して送信し、また、各信号の点滅周波数が異なるようにする。また、上記実施形態の光無線ノード10では、図2に示すように光受信手段15を兼用して実際の光通信データの受信とパイロット光の受信を行うが、代わりに図8に示すようにパイロット光受信手段17cを光受信手段15とは別に設けてもよい。
【0025】
【発明の効果】
本発明によれば、光軸合わせの実行中に、たまたまであっても通信可能な向きとなればこれを知り、光軸合わせを終了することが可能なため、光軸合わせ時間の無駄を省くことができる。また、光無線通信を試験して通信状態を確認できるので確実に光軸を合わせることができ、また、パイロット光と区別することが難しい外乱光のある環境下でも、通信光によって光軸合わせすべき方向を向いているか、さらにはすでに通信可能かどうかを知ることができ、より確実な光軸合わせを実行できるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る光無線通信システムの一実施形態の光無線ハブを示すブロック図である。
【図2】本発明に係る光無線通信システムの一実施形態の光無線ノードを示すブロック図である。
【図3】図2の通信光判定手段を詳しく示すブロック図である。
【図4】図3の通信光判定手段における通信信号及びその判定処理を示す説明図である。
【図5】図2の光軸合わせ判定・制御手段の処理を説明するためのフローチャートである。
【図6】図5の光軸合わせ判定処理を詳しく説明するためのフローチャートである。
【図7】図1の光無線ハブの変形例を示すブロック図である。
【図8】図1の光無線ノードの変形例を示すブロック図である。
【図9】パイロット光とその受光レベルを示す説明図である。
【図10】従来の光無線ノードを示すブロック図である。
【図11】従来の光無線ノードの光軸合わせ処理を説明するためのフローチャートである。
【図12】粗調処理と微調処理を示す説明図である。
【符号の説明】
10 光無線ノード
15 光受信手段
17a 通信光判定手段
17b パイロット光抽出手段
18 光軸合わせ判定・制御手段
19 サーボ手段
20 光無線ハブ
27 パイロット光発生手段
28 パイロット光送信手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical wireless communication system that performs half-duplex optical wireless communication between an optical wireless hub and an optical wireless node, and more particularly to optical axis adjustment of an optical wireless node with respect to the optical wireless hub.
[0002]
[Prior art]
In general, an optical wireless node (optical wireless communication terminal) connected to an information terminal (including a switching hub) such as a PC or WS performs optical axis alignment with an optical wireless hub (optical wireless collection and distribution device) attached to the ceiling. In order to perform accurately, automatic optical axis alignment using servo is performed on pilot light transmitted from an optical wireless hub as shown in FIG.
[0003]
10 and 11 show the configuration of a conventional optical wireless node and its optical axis adjustment processing, respectively. The optical wireless node 10a includes a reception unit 11, a communication data processing unit 12, an optical communication procedure processing unit 13, an optical transmission unit 14, an optical reception unit 15, a transmission unit 16, a pilot light extraction unit 17b, an optical axis alignment control unit 18a, and a servo. Means 19 are provided. Here, the optical receiving means 15 (and the optical transmitting means 14) rotate in the range of horizontal (pan) angle = 0 to 360 degrees, tilt (tilt) angle = vertical direction (0 degrees) to 70 degrees, and optical wireless. The pilot light of the hub 20 (see FIG. 1) is searched for, and the optical axis is adjusted to an accuracy of 5 degrees or less. In order to adjust from such a wide range to a narrow optical axis, first, “coarse adjustment” for checking the presence or absence of pilot light is performed (steps S1 to S4), and then the strongest of the pilot light from the rough range where the pilot light exists “Fine adjustment” to match the direction is performed (steps S5 and S6).
[0004]
In the “coarse adjustment” stage, as shown in FIG. 12, in order to quickly operate the entire service range of the optical wireless node 10a, the direction of the light receiving means 15 is changed at every constant rough angle to receive the light intensity of the pilot light. Observe. Here, the pilot light emitted from the optical wireless hub 20 blinks at a constant frequency that is larger than the frequency of the optical wireless communication so as not to interfere with the original optical wireless communication. When the optical wireless node 10a confirms the pilot light exceeding the threshold at the “coarse adjustment” stage, the optical wireless node 10a proceeds to the “fine adjustment” stage. The optical receiver 15 of the optical wireless node 10a is composed of PDs divided into 2 × 2 cells so that the reception intensity of the 2 × 2 cells is equal, that is, the pilot light is 2 × 2 cells. Orient the center. Furthermore, the optical wireless link is established by correcting the direction by an arbitrary amount from the direction of the pilot light to a communicable direction and further performing test communication (steps S7 and S8).
[0005]
[Problems to be solved by the invention]
However, in the optical axis alignment method using the pilot light, the optical axis alignment in the direction of the pilot light does not succeed due to disturbance light that is difficult to distinguish from the pilot light, and it is not possible to shift to actual communication. There is a point. That is, an inverter type fluorescent lamp is also installed on the ceiling where the optical wireless hub 20 that emits pilot light is installed. When the blinking frequency of the inverter type fluorescent lamp is close to the pilot light, the optical axis in the direction of the pilot light. Matching will never succeed. Furthermore, since the blinking frequency of the inverter type fluorescent lamp differs depending on the manufacturer, it is difficult to determine the blinking frequency of pilot light that can be used in all cases and to design the pilot light extraction means 17b.
[0006]
The present invention provides an optical wireless communication system that can perform optical axis alignment surely and quickly even in an environment with disturbance light close to the blinking frequency of pilot light, in view of the problems of the conventional example. With the goal.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention selects coarse adjustment or fine adjustment according to the reception state of the optical communication signal and pilot light from the optical wireless hub, and performs the optical axis adjustment processing with the selected adjustment accuracy. It is what I did.
That is, according to the present invention, meet the row earthenware pots optical wireless communication system half-duplex optical wireless communications between the optical wireless hub and the pan direction and the tilt direction to be rotatable at a predetermined angle unit light wireless nodes,
The optical wireless hub is:
Optical transmission means for transmitting an optical communication signal and pilot light to the optical wireless node;
The optical wireless node is:
Said optical communication signal and the pilot light sent from the optical wireless hub to receive a reception detecting means for detecting the reception duration of the optical communication signal and detects the reception intensity of the pilot beam,
Coarse adjustment processing means for executing optical axis coarse adjustment processing of the optical wireless node in units of relatively coarse angles with respect to the received spot light of the pilot light;
Fine adjustment processing means for performing optical axis fine adjustment processing of the optical wireless node in a relatively narrow angle unit with respect to the center within the range of the spot light,
In the reception detection means, when the optical communication signal is not detected and the reception intensity of the pilot light is a predetermined threshold value or less, the coarse adjustment processing means is selected, while the optical communication signal is not detected, And when the reception intensity of the pilot light is larger than the threshold, or when the optical communication signal is detected and the reception duration is less than a predetermined time, the fine adjustment processing means is selected, and this Optical axis adjustment control means for executing optical axis adjustment processing by the selected means,
An optical wireless communication system is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 is a block diagram showing an optical wireless hub of an embodiment of the optical wireless communication system according to the present invention, FIG. 2 is a block diagram showing an optical wireless node of an embodiment of the optical wireless communication system according to the present invention, and FIG. 2 is a block diagram showing in detail the communication light determining means in FIG. 2, FIG. 4 is an explanatory diagram showing communication signals and their determination processing in the communication light determining means in FIG. 3, and FIG. 5 is an optical axis alignment determining / controlling means in FIG. FIG. 6 is a flowchart for explaining in detail the optical axis alignment determination process of FIG. 5.
[0009]
The optical wireless hub 20 shown in FIG. 1 includes an optical receiver 21, a communication data processor 22, an optical communication procedure processor 23, a transmitter 24, a receiver 25, an optical transmitter 26, a pilot light generator 27, and a pilot optical transmitter. Means 28 are provided. The optical receiving means 21 includes a light receiving element such as a PD (photo detector) that receives an optical wireless signal transmitted from the optical wireless node 10 shown in FIG. 2, and a photoelectric element that converts the optical signal received by the light receiving element into an electrical signal. And a conversion unit.
[0010]
The communication data processing means 22 extracts the communication data from the optical wireless node 10 and transfers it in an appropriate direction of the optical space direction or the trunk line direction. The optical communication procedure processing means 23 extracts a communication signal from the optical wireless node 10 from the optical signal received by the optical receiving means 21, and performs control for optical wireless communication. The transmission unit 24 outputs a signal (communication data or a collision notification signal) to be transmitted to the main line or the like, and the reception unit 25 is connected to the main line or the like and receives the communication data. The optical transmission means 26 converts a communication signal (optical communication procedure signal or communication data) to be transmitted to the optical space into an optical signal, and transmits the optical signal to the optical wireless node 10 by a light emitting means such as a light emitting diode. The pilot light generating means 27 and the pilot light transmitting means 28 generate pilot light for the optical wireless node 10 to be connected to the optical wireless hub 20 by optical communication to perform optical axis alignment, and radiate it into space. .
[0011]
2 includes a receiving unit 11, a communication data processing unit 12, an optical communication procedure processing unit 13, an optical transmitting unit 14, an optical receiving unit 15, a transmitting unit 16, a communication light determining unit 17a, and a pilot light extracting unit. Means 17b, optical axis alignment determination / control means 18, and servo means 19 are provided.
[0012]
The receiving means 11 has an interface function for receiving data transmitted from an external device (not shown) such as a personal computer or a (PC) workstation (WS) connected to the optical wireless node 10. The communication data processing means 12 performs procedural processing to transmit the data received by the receiving means 11 to the optical wireless hub 20 shown in FIG. The optical communication procedure processing means 13 performs a procedure process for performing an optical wireless communication procedure with the optical wireless hub 20.
[0013]
The optical transmission unit 14 is responsive to the communication signal for performing the optical communication procedure generated by the optical communication procedure processing unit 13 and the communication data to be transmitted to the optical wireless hub 20 processed by the communication data processing unit 12. The light emitting element is caused to emit light and converted into an optical signal, which is transmitted to the optical wireless hub 20. The optical receiving means 15 receives an optical signal transmitted from the optical wireless hub 20 by a light receiving element such as a PD (photo detector), photoelectrically converts it, and outputs it. Here, the optical transmission unit 14 and the optical reception unit 15 are configured to be able to pan and tilt in order to align the optical axis with the optical wireless hub 20. The transmission unit 16 transmits the communication data from the optical wireless hub 20 output from the optical reception unit 15 and processed by the communication data processing unit 12 to an external device such as a PC or WS connected to the own device.
[0014]
The pilot light extracting means 17b extracts the pilot light of the optical wireless hub 20 from the optical reception signal output from the optical receiving means 15, and the communication light determining means 17a is shown in detail in FIGS. The communication light of the optical wireless hub 20 is determined from the optical reception signal output by The optical axis alignment determination / control means 18 is between the pilot light extracted by the pilot light extraction means 17b, the communication light detection signal determined by the communication light determination means 17a, and the communication control block (12, 13). The optical axis alignment with the optical wireless hub 20 is controlled using the test communication request / result signal to be input / output. The servo unit 19 converts the pan / tilt servo mechanism control signal output from the optical axis alignment determination / control unit 18 into power, and changes the orientation of the optical transmission unit 14 and the optical reception unit 15.
[0015]
A network forming a star topology is formed between the plurality of optical wireless nodes 10 having the above-described configuration and the optical wireless hub 20, and communication is performed between the optical wireless nodes 10 via the optical wireless hub 20, Communication is performed between the trunk line and the optical wireless node 10.
[0016]
The communication light determination unit 17a will be described in detail with reference to FIGS. The optical reception signal output from the optical reception means 15 is detected by the detection circuit 101 and then integrated by the integration circuit 102. The output of the integration circuit 102 is binarized by the comparator 103 according to the reference value voltage, and the output of the comparator 103 is sent to the determination circuit 104 to determine the presence or absence of communication light. FIG. 4 shows the output of the comparator 103, and FIG. 4 (a) shows the case of no communication light (no signal). FIG. 4B shows a case where communication light is detected with an insufficient length (unstable), and FIG. 4C shows a case where communication light is detected with a sufficient length (stable). Show.
[0017]
The determination result of the determination circuit 104 is sent to the optical axis alignment determination / control unit 18 shown in FIG. 2, and the optical axis alignment determination / control unit 18 as shown in FIG. 5 and FIG. Based on the above, the optical axis alignment is determined and controlled. As the communication light at this time, data of optical wireless communication and an optical link signal for synchronizing the optical wireless node 10 are used.
[0018]
In FIG. 5, first, the position information of the servo means 19 is initialized at the time of activation or the like (step S11), and in the subsequent step S12, the optical axis alignment determination detailed in FIG. 6 is performed. In FIG. 6, first, the determination result of the determination circuit 104 is checked (step S21), and in the case of “no signal” as shown in FIG. 4A, it is checked whether or not the received light intensity of the pilot light> the threshold value. (Step S22). If the received light intensity is not greater than the threshold value, the process proceeds to step S23 to check whether or not the rough adjustment is completed. If completed, it is determined that the optical axis alignment has failed (step S24), and then the process returns to step S11. On the other hand, if coarse adjustment is not completed in step S23, the process proceeds to coarse adjustment servo processing (step S13).
[0019]
If "unstable" as shown in FIG. 4B in step S21 and if the received light intensity> threshold value in step S22, the process proceeds to step S25 to check whether fine adjustment is completed and complete. If so, it is determined that the optical axis alignment has failed (step S24), and then the process returns to step S11. On the other hand, if fine adjustment is not completed in step S25, the process proceeds to fine adjustment servo processing (step S14). If “stable” as shown in FIG. 4C in step S21, test transmission is performed (step S26), and then it is checked whether the test transmission is successful (step S27). If not successful, the process proceeds to step S25. If successful, on the other hand, the optical axis alignment is completed and a wireless link is established (step S28).
[0020]
Next, “rough adjustment servo processing” will be described. The coarse adjustment servo process is a process of scanning at high speed so as to roughly know the presence and direction of the optical wireless hub from the entire service range of the optical wireless node 10. For this reason, in the coarse adjustment servo process, the direction is changed at each roughly constant angle as shown in FIG. In the initial state of coarse adjustment, control is performed to return the direction to a specific direction (origin direction).
[0021]
Next, “fine servo processing” will be described. The fine adjustment servo processing is performed to accurately align the optical axis after the direction of the optical wireless hub 10 can be determined to some extent. For this reason, the direction of fine servo control is changed by a fine angle as shown in FIG. Further, it is determined every time whether the optical axis is aligned with the optical axis center of the pilot light, and when the optical axis alignment is successful, the direction is adjusted so that further communication is possible from there. This correction is a control for correcting that the directions of the pilot light transmitting means (pilot light source) 28 of the optical wireless hub 20 and the optical transmitting means 26 and the optical receiving means 21 are shifted. The value varies depending on the shape, the distance between the optical wireless node 20 and the optical wireless hub 10, and the inclination of the optical wireless node 20. This correction amount is used as a value that has been clarified in advance through experiments or the like.
[0022]
Next, “test communication” will be described. The optical wireless node 10 generates a test packet after confirming that the optical transmission line is free (in a state where transmission is possible), and optically transmits the test packet to the optical wireless hub 20. Here, the test packet is a packet unique to the present system that is effective only in the optical wireless space. When the optical wireless hub 20 or all the optical wireless nodes 10 receive the packet, the packet can be recognized as a test packet. Assume that the optical wireless devices 10 and 20 having the structure are processed by the optical wireless communication procedure processing means 13 and 23 so as not to flow this packet to the trunk network or PC.
[0023]
In addition, a unique value is assigned to each test packet so that the transmitted optical wireless node 10 can be identified as a test packet sent by itself. When the optical wireless hub 20 receives the test packet, it returns the optical packet to the optical wireless transmission path as it is (referred to as a response). When receiving the response, the optical wireless node 10 determines whether or not the own device can communicate with the optical wireless hub 20 by checking the contents of the packet when the test packet is transmitted immediately before. The optical wireless node 10 that has not transmitted (irrelevant) immediately before may discard this when it is determined as a test packet. If the collation results match, it can be determined that optical communication is possible (link establishment). However, if the collation results do not match or there is no response from the optical wireless hub, it is necessary to perform optical axis alignment again.
[0024]
In the optical wireless hub 20 of the above embodiment, as shown in FIG. 1, an optical transmission means 26 and a pilot optical transmission means 28 for transmitting actual optical communication data are separately provided. Instead, as shown in FIG. Alternatively, the pilot light may be transmitted by the optical transmission means 26. In this case, the pilot light is time-division multiplexed and transmitted at the time when the actual optical communication data is transmitted, and the blinking frequency of each signal is made different. In the optical wireless node 10 of the above embodiment, as shown in FIG. 2, the optical receiving means 15 is also used to receive actual optical communication data and pilot light, but instead, as shown in FIG. The pilot light receiving unit 17 c may be provided separately from the light receiving unit 15.
[0025]
【The invention's effect】
According to the present invention, during execution of optical axis alignment, it is possible to know this if it is possible to communicate even if it happens, and the optical axis alignment can be completed, so that waste of optical axis alignment time is saved. be able to. In addition, since optical wireless communication can be tested to check the communication status, the optical axis can be reliably aligned, and the optical axis can be aligned with communication light even in environments with disturbance light that is difficult to distinguish from pilot light. It is possible to know whether it is facing the power direction or whether communication is already possible, and there is an effect that more reliable optical axis alignment can be executed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an optical wireless hub of an embodiment of an optical wireless communication system according to the present invention.
FIG. 2 is a block diagram showing an optical wireless node of an embodiment of an optical wireless communication system according to the present invention.
FIG. 3 is a block diagram showing in detail a communication light determination unit in FIG. 2;
4 is an explanatory diagram showing a communication signal and its determination processing in the communication light determination means of FIG. 3. FIG.
5 is a flowchart for explaining processing of an optical axis alignment determination / control unit in FIG. 2;
6 is a flowchart for explaining in detail the optical axis alignment determination processing of FIG. 5;
7 is a block diagram showing a modification of the optical wireless hub in FIG. 1. FIG.
8 is a block diagram showing a modification of the optical wireless node in FIG. 1. FIG.
FIG. 9 is an explanatory diagram showing pilot light and its light reception level.
FIG. 10 is a block diagram showing a conventional optical wireless node.
FIG. 11 is a flowchart for explaining optical axis alignment processing of a conventional optical wireless node.
FIG. 12 is an explanatory diagram showing coarse adjustment processing and fine adjustment processing;
[Explanation of symbols]
10 optical wireless node 15 optical receiving means 17a communication light determining means 17b pilot light extracting means 18 optical axis alignment determining / controlling means 19 servo means 20 optical wireless hub 27 pilot light generating means 28 pilot light transmitting means

Claims (2)

光無線ハブとパン方向及びチルト方向に所定角度単位で回動可能な光無線ノードとの間で半二重光無線通信を行う光無線通信システムであって、
前記光無線ハブは、
光通信信号及びパイロット光を前記光無線ノードに対して送出する光送出手段を有し、
前記光無線ノードは、
前記光無線ハブから送出された前記光通信信号及び前記パイロット光を受、前記パイロット光の受信強度を検出するとともに前記光通信信号の受信継続時間を検出するための受信検出手段と、
前記受信された前記パイロット光のスポット光に対して比較的粗い角度単位で当該光無線ノードの光軸粗調整処理を実行する粗調整処理手段と、
前記スポット光の範囲内で、その中心に対して比較的狭い角度単位で当該光無線ノードの光軸微調整処理を実行する微調整処理手段と、
前記受信検出手段において、前記光通信信号が検出されず、かつ前記パイロット光の受信強度が所定の閾値以下である場合は前記粗調整処理手段を選択する一方、前記光通信信号が検出されず、かつ前記パイロット光の受信強度が前記閾値よりも大きい場合、又は前記光通信信号が検出されて、かつ前記受信継続時間が所定の時間に満たない場合は前記微調整処理手段を選択して、この選択された手段により光軸調整処理を実行させる光軸調整制御手段とを、
有する光無線通信システム。
Met row earthenware pots optical wireless communication system half-duplex optical wireless communications between the optical wireless hub and the pan direction and the tilt direction to be rotatable at a predetermined angle unit light wireless nodes,
The optical wireless hub is:
Optical transmission means for transmitting an optical communication signal and pilot light to the optical wireless node;
The optical wireless node is:
Said optical communication signal and the pilot light sent from the optical wireless hub to receive a reception detecting means for detecting the reception duration of the optical communication signal and detects the reception intensity of the pilot beam,
Coarse adjustment processing means for executing optical axis coarse adjustment processing of the optical wireless node in units of relatively coarse angles with respect to the received spot light of the pilot light;
Fine adjustment processing means for performing optical axis fine adjustment processing of the optical wireless node in a relatively narrow angle unit with respect to the center within the range of the spot light,
In the reception detection means, when the optical communication signal is not detected and the reception intensity of the pilot light is a predetermined threshold value or less, the coarse adjustment processing means is selected, while the optical communication signal is not detected, And when the reception intensity of the pilot light is larger than the threshold, or when the optical communication signal is detected and the reception duration is less than a predetermined time, the fine adjustment processing means is selected, and this Optical axis adjustment control means for executing optical axis adjustment processing by the selected means,
Optical wireless communication system that Yusuke.
前記光無線ノードは、
識別子を含む光テスト信号を前記光無線ハブに送信し、前記光テスト信号に対する前記光無線ハブからの応答信号を受信して、前記応答信号に含まれる識別子が当該光無線ノードの識別子である場合に、前記光通信信号の光軸が光無線通信可能な状態に調整されたと判断する光軸確認処理を実行するテスト手段を有し、
前記光無線ハブは、
前記光無線ノードから送信された前記光テスト信号を受信した場合、この受信された光テスト信号を前記応答信号として送出する応答信号送出手段を有し、
前記光無線ノードの前記光軸調整制御手段が、前記受信検出手段において前記光通信信号が検出されて、かつ前記受信継続時間が所定の時間分を経過した場合は、前記テスト手段を選択して前記光軸確認処理を実行させるように構成したことを特徴とする請求項1に記載の光無線通信システム。
The optical wireless node is:
When an optical test signal including an identifier is transmitted to the optical wireless hub, a response signal is received from the optical wireless hub with respect to the optical test signal, and the identifier included in the response signal is an identifier of the optical wireless node In addition, it has a test means for executing an optical axis confirmation process for determining that the optical axis of the optical communication signal has been adjusted to a state capable of optical wireless communication,
The optical wireless hub is:
A response signal sending means for sending the received optical test signal as the response signal when the optical test signal transmitted from the optical wireless node is received;
The optical axis adjustment control unit of the optical wireless node selects the test unit when the optical communication signal is detected by the reception detection unit and the reception duration has passed a predetermined time. The optical wireless communication system according to claim 1, wherein the optical axis confirmation process is performed .
JP2002057059A 2002-03-04 2002-03-04 Optical wireless communication system Expired - Lifetime JP3823851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057059A JP3823851B2 (en) 2002-03-04 2002-03-04 Optical wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057059A JP3823851B2 (en) 2002-03-04 2002-03-04 Optical wireless communication system

Publications (2)

Publication Number Publication Date
JP2003258735A JP2003258735A (en) 2003-09-12
JP3823851B2 true JP3823851B2 (en) 2006-09-20

Family

ID=28667420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057059A Expired - Lifetime JP3823851B2 (en) 2002-03-04 2002-03-04 Optical wireless communication system

Country Status (1)

Country Link
JP (1) JP3823851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674103B2 (en) * 2010-09-10 2015-02-25 独立行政法人情報通信研究機構 Optical wireless communication device

Also Published As

Publication number Publication date
JP2003258735A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
EP1469619A2 (en) Wireless power transmission
JP2019508983A (en) Beacon transmission method and apparatus and network access method and apparatus
US7133617B2 (en) Reflection detection in an optical wireless link
EP1446857A1 (en) Wireless power transmission
JP2007537665A (en) Method and apparatus for optimized routing in a network including free space directional links
US20150173154A1 (en) Commissioning method and apparatus
KR100219100B1 (en) Infrared spatial communication
JP3823851B2 (en) Optical wireless communication system
CN107294595A (en) A kind of detection method for growing luminous optical network unit, device and optical line terminal
US8630201B2 (en) Call control system, call controller, terminal device, and call control method
CN116527128A (en) PCIe optical interconnection link establishment method, device, equipment, medium and system
JP2004235899A (en) Spatial optical communication system
JP3812817B2 (en) Optical axis adjustment method in optical wireless communication terminal
WO2018186772A1 (en) System for monitoring optical cable connections
US20030219251A1 (en) Wireless optical system and method for point-to-point high bandwidth communications
CN112152716B (en) LiFi communication control method and system for mobile terminal
JP3832738B2 (en) Optical wireless communication system
CN112152711A (en) LiFi communication control method and system for mobile terminal
JPH10229368A (en) Optical space transmitter
US20230275660A1 (en) An optical wireless communication receiving unit, system and method
KR102447590B1 (en) Heterogeneous protocol automatic connection system of building energy management system and method thereof
CN110932782B (en) Adaptive system and adaptive method for optical fiber transmission standard
JP2006148342A (en) Channel control method in wireless communication system
KR101597646B1 (en) System for sensing for detached the optical connector from the du and ru of optical repeater and method therefor
KR101948226B1 (en) Optical transceiver module and control method for light power using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R151 Written notification of patent or utility model registration

Ref document number: 3823851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

EXPY Cancellation because of completion of term