JP3823456B2 - Combustion device - Google Patents

Combustion device Download PDF

Info

Publication number
JP3823456B2
JP3823456B2 JP18938997A JP18938997A JP3823456B2 JP 3823456 B2 JP3823456 B2 JP 3823456B2 JP 18938997 A JP18938997 A JP 18938997A JP 18938997 A JP18938997 A JP 18938997A JP 3823456 B2 JP3823456 B2 JP 3823456B2
Authority
JP
Japan
Prior art keywords
combustion gas
discharge passage
gas discharge
combustion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18938997A
Other languages
Japanese (ja)
Other versions
JPH1137445A (en
Inventor
勝蔵 粉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18938997A priority Critical patent/JP3823456B2/en
Publication of JPH1137445A publication Critical patent/JPH1137445A/en
Application granted granted Critical
Publication of JP3823456B2 publication Critical patent/JP3823456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃焼により発生する高温ガスの熱を熱交換器を用いて利用する燃焼装置に関するものである。
【0002】
【従来の技術】
従来の燃焼により、発生した高温の燃焼ガスにより熱交換して熱を利用する熱交換器は、燃焼反応により生じる水分の凝縮を防止するため、熱交換器で熱交換した燃焼ガスの温度を露点温度以上に設定していた。この種の燃焼装置は特開平5−302712号公報に記載するものがある。この燃焼装置は、図8に示すように、バーナ1へ燃料を送り、燃焼室2で燃焼し、熱交換器3を通り排気口4より排出する。燃焼室2には燃焼空気を燃焼用送風機5により供給し、熱交換器3には対流用送風機6で熱交換空気を流し、排気路には温度検出器7を設けた構成としている。
【0003】
そして、排気温度を検出する温度検出器7が低温を検出すると、対流用送風機6を停止させて熱交換空気を低減し熱交換器3での熱交換量を少なくするとともに、燃焼用送風機5の回転数を通常より若干多くすることにより燃焼空気を多くして排気中の露点温度を低下させ結露を防止するようになっていた。
【0004】
【発明が解決しようとする課題】
上記従来の燃焼装置の構成では、排気温度が低くなると対流用送風機6を停止させて熱交換空気を低減し熱交換器3での熱交換量を少なくして排気温度を上昇させて結露を防止する為に、熱交換して利用できる熱量が低下する。このため、熱量不足による使用不具合と熱効率の低下を生じた。また、燃焼用送風機5の回転数を通常より若干多くすることにより燃焼空気を多くして排気中の露点温度を低下させ結露を防止するようになっていた。燃焼空気を多くすることは、熱交換器3を通過する排気の温度が低下し排気量が増加するため、熱交換器3での熱交換効率が低下するため、より多くの燃料を必要とするという課題があった。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するため、バーナーと伝熱フィンを設けた燃焼室と、前記燃焼室に連通して設けた燃焼ガス排出通路と、前記燃焼ガス排出通路に設けた熱交換器と、前記燃焼ガス排出通路は上がり勾配に構成し、この上がり勾配部に前記熱交換器を構成すると共に、前記燃焼室と前記熱交換器の間の前記燃焼ガス排出通路にトラップ部を構成し、このトラップ部に吸水性材料を配設し、前記吸水性材料はその一部を前記燃焼ガス通路内部に臨ませ他の一部を前記燃焼ガス排出通路の外部に臨ませた構成としてある。
【0006】
本発明によれば、燃焼によって生じた高温の燃焼ガスを熱交換器にて熱交換をさせ、排気の燃焼ガスが低温になり燃焼ガス排出通路中で凝縮した水分を燃焼ガス排出通路内部に臨ませた吸水性材料で吸水させるとともに、この吸水した水分を燃焼ガス排出通路外部に臨ませた吸水性材料部分から放出する。このため、排気ガスの結露による燃焼ガス排出通路を閉塞することが無く高効率に熱交換ができるものである。
【0007】
【発明の実施の形態】
本発明は各請求項に記載の形態で実施できるもので、請求項1記載のように、バーナーと伝熱フィンを設けた燃焼室と、前記燃焼室に連通して設けた燃焼ガス排出通路と、前記燃焼ガス排出通路に設けた熱交換器と、前記燃焼ガス排出通路は上がり勾配に構成し、この上がり勾配部に前記熱交換器を構成すると共に、前記燃焼室と前記熱交換器の間の前記燃焼ガス排出通路にトラップ部を構成し、このトラップ部に吸水性材料を配設し、前記吸水性材料はその一部を前記燃焼ガス通路内部に臨ませ他の一部を前記燃焼ガス排出通路の外部に臨ませた構成としてある。このため、排気ガスの結露による燃焼ガス排出通路を閉塞することが無く高効率に熱交換ができるものである。
【0008】
また、燃焼室と熱交換器の間の燃焼ガス排出通路にトラップ部を設け、このトラップ部は吸水性材料を配設することにより、排気ガスの結露した水分はこのトラップ部に集合し、吸水性材料によって燃焼ガス排出通路の外部に放出し易い。
【0009】
また、燃焼ガス排出通路を上がり勾配に構成することにより、燃焼ガス排出通路内で結露した排気ガスの水分を燃焼ガス排出通路から勾配に沿って速やかに流し、吸水性材料に溜めることになる。このため、吸水性材料によって燃焼ガス排出通路の外部に放出出来る。そして、この上がり勾配部に熱交換器を構成したため、排気ガスが結露し水分が発生する燃焼ガス排出通路の熱交換器部分から吸水性材料が存在する部分に至る燃焼ガス排出通路が全て上がり勾配となり、燃焼ガス排出通路が結露水により閉塞されることがない。
【0010】
また、請求項記載のように、吸水性材料を親水処理し、燃焼ガス排出通路内にウィックを設けることにより、燃焼ガス排出通路内で結露した排気ガスの水分はこのウィックに吸水される。そして、このウィックと吸水性材料の一部とが近接していて、ウィックに吸水した結露水分はウィックから吸水性材料に流れ、吸水性材料によって燃焼ガス排出通路の外部に放出するため、燃焼ガス排出通路の勾配に関わらず吸水性材料に水分を流すことができ構成の自由度の拡大と、燃焼ガス排出通路が結露水による閉塞を生じることを防止でき信頼性の高いシステムになる。
【0011】
また、吸水性材料を親水処理をしているので、吸水性材料の単位当たりの吸水処理性能が大きくなり、排気ガスの結露した水分は燃焼ガス排出通路から速やかに吸水性材料に吸水できる。
【0012】
【実施例】
以下、本発明の実施例について図面を用いて説明する。なお、図1ないし図7における符号は図8に示す従来例と同じ構成部分について同一符号を付与し、詳細な説明を省略する。
【0013】
(実施例1)
図1は、本発明の実施例1における燃焼装置を示す断面図である。
【0014】
1はバーナーであり燃焼室2内に設け、8は燃焼室2に連通して設けた燃焼ガス排出通路であり、排気口4に連通する。この燃焼ガス排出通路8には熱交換器9を設け、燃焼ガス排出通路8の少なくとも一部はガラス繊維、発泡性金属等のシートあるいは成形材料の吸水性材料10で構成してある。この吸水性材料10は一部を燃焼ガス通路8の内部に臨ませ他の一部は燃焼ガス排出通路8の外部に臨ませて構成してある。11は吸水性材料10の下部に設けたドレン配管であり、12は、燃焼装置を室内等に設置し室外に燃焼ガスを排出する構成として燃焼ガス排出通路8を設置した時の壁等の仕切部材である。13はバーナー1に燃料を供給するポンプであり、5は燃焼用空気を供給する燃焼用送風機である。14は、伝熱フィンであり対流用送風機6による空気で燃焼室2からの熱伝達を促進させる構成である。なお、燃焼ガス排出通路8内に吸水性材料10を設けてもよい。
【0015】
次に動作,作用について説明すると、バーナー1の燃焼によって発生した熱は、ほぼその顕熱分に相当する量を燃焼室2にて熱交換し空気の加熱に利用する。次に従来は使用できなかったバーナー1の燃焼によって発生した熱の潜熱分を熱交換器9で熱交換する。このため、燃焼ガスは内部に蒸気としてあった水分は液化する。吸水性材料10は一部を燃焼ガス排出通路8の内部に臨ませ一部を燃焼ガス排出通路8の外部に臨ませてあるため、バーナー1によって生じた高温の燃焼ガスを熱交換器9にて完全に熱交換させ、排気の燃焼ガスが低温になり燃焼ガス排出通路中で凝縮した水分は燃焼ガス排出通路8の内部に臨ませた吸水性材料10で吸水させるとともに、この吸水した水分を燃焼ガス排出通路8の外部に臨ませた吸水性材料10の部分から放出し、ドレン配管11を通り流下する。このため、排気ガスの結露による燃焼ガス排出通路8の閉塞等の不具合を生じることが無く高効率に熱交換ができるものである。また、熱交換器9から排気口4までの燃焼ガス排出通路8は低温にでき、断熱材を必要とせず、安全性の高いものである。また、吸水性材料10は水分を容易に吸水するが燃焼排気ガスは吸水すると水分が通路を塞ぐため通しにくくなり、吸水性材料10から燃焼ガスがもれ熱交換器9での熱交換効率の低下は生じない。
【0016】
(実施例2)
図2は実施例2における燃焼装置の断面を示すもので、実施例1と異る点はパイプ状熱交換器9aとパイプ状伝熱フィン14aを備えている点である。従って空気熱交換に換えて液体熱交換とすることができる。
【0017】
(実施例3)
図3は、本発明の実施例3における燃焼装置である。実施例1と異なる点は、燃焼室2と熱交換器9の間の燃焼ガス排出通路8にトラップ部15を有しており、このトラップ部15を吸水性材料10で構成した点である。勿論トラップ部15の内面が吸水性材料であればよいので、吸水性のないトラップ部に吸水性材料を内張りする形態にしてもよい。
【0018】
次に動作,作用について説明すると、排気ガスの結露した水分は、燃焼ガス排出通路8を通りこのトラップ部15に集合し、吸水性材料10によって燃焼ガス排出通路8の外部に放出出来る。このため、燃焼ガス排出通路8に臨む吸水性材料10の面積は小さくても集中して結露水が流れるために吸水性材料10の小型化が可能となる。
【0019】
また、吸水性材料10を水の表面張力を低下させる効果のあるシリコン等の親水処理をする。これにより、吸水性材料10の単位当たりの吸水処理性能が大きくでき、排気ガスの結露した水分は燃焼ガス排出通路8から速やかに吸水性材料10に吸水できる。そして、燃焼ガス排出通路8から速やかに水分を排出できることは、燃焼ガス排出通路8の通路面積を安定して常に確保でき排気抵抗の増加による燃焼不良を生じなく信頼性を確保できる。
【0020】
(実施例4)
図4は、本発明の実施例4における燃焼装置である。実施例1と異なる点は、燃焼ガス排出通路8を上がり勾配に構成した点である。
【0021】
次に動作,作用について説明すると、燃焼ガス排出通路8内で結露した排気ガスの水分は燃焼ガス排出通路8から勾配に沿って速やかに流れ吸水性材料10に溜まる。このため、吸水性材料10によって完全に燃焼ガス排出通路8の外部に放出出来る。そして、この上がり勾配部に熱交換器9を構成したため、排気ガスが結露し水分が発生する燃焼ガス排出通路8の熱交換器9の部分から吸水性材料10に至る燃焼ガス排出通路8が全て上がり勾配となり、燃焼ガス排出通路8が結露水による閉塞等を生じることがない。また、燃焼ガスの潜熱分の熱交換により生じる水分を全て熱交換器8から勾配に沿って吸水性材料10に流すため、熱交換器9から排気口4に至る燃焼ガス排出通路8では水分が溜まることがないため曲がりや勾配を設置にあわせて自由に設計でき、また、熱交換器9から排気口4までの燃焼ガス排出通路8は低温にできるため、断熱材を必要とせず、安全性の高いものである。
【0022】
(実施例5)
図5は、本発明の実施例5における燃焼装置である。実施例1と異なる点は、吸水性材料10と燃焼室2の内壁部材16を近接させて構成させてある。
【0023】
次に動作,作用について説明すると、吸水性材料10はバーナー1の燃焼により高温となっている燃焼室2の内壁部材16から熱を受けている。このため、吸水性材料10は高温となり吸水した燃焼ガスの水分はこの熱で蒸発し外部に蒸気で放出できる。このことにより、ドレン用の配管が不要になり、部品が低減でき安価な装置を実現でき、設置の自由度と簡便を可能とする。
【0024】
(実施例6)
図6は、本発明の実施例6における燃焼装置である。実施例1と異なる点は、燃焼ガス排出通路8内にウィック17を設けてあるため、燃焼ガス排出通路8内で結露した排気ガスの水分はこのウィック17に吸水される。そして、このウィック17と吸水性材料10の一部とを近接して構成してある。
【0025】
次に動作,作用について説明すると、ウィック17に吸水した結露水分はウィック17から吸水性材料10に流れ、吸水性材料10によって燃焼ガス排出通路8の外部に放出するため、燃焼ガス排出通路8の勾配に関わらず吸水性材料10に水分を流すことができ構成の自由度の拡大と、燃焼ガス排出通路8が結露水による閉塞等を生じることを防止でき信頼性の高いシステムになる。
【0026】
(実施例7)
図7は、本発明の実施例7における燃焼装置である。実施例1と異なる点は、燃焼ガス排出通路8を熱伝導率の良い樹脂またはアルミニウム等の薄い金属管あるいはコルゲート等の表面積の大きい形状の材料で構成してある。
【0027】
次に動作,作用について説明すると、燃焼ガス排出通路8は外部へ熱を高効率で熱伝達し、燃焼ガス排出通路8に特別の熱交換が無くても排気中の水分を凝縮でき、システムを小型化かつ簡略化することによる高信頼性を実現できる。
【0028】
【発明の効果】
以上説明したように本発明によれば、排気ガスの結露による燃焼ガス排出通路を閉塞させる等の不具合を生じることが無く高効率に熱交換ができるという効果がある。
【0029】
また、燃焼室と熱交換器の間の燃焼ガス排出通路にトラップ部を有し、このトラップ部には吸水性材料が配設してあるので、排気ガスの結露した水分はこのトラップ部に集合し、吸水性材料によって燃焼ガス排出通路の外部に効率的に放出ができる。
【0030】
また、燃焼ガス排出通路を上がり勾配に構成しているので、燃焼ガス排出通路内で結露した排気ガスの水分は燃焼ガス排出通路から勾配に沿って速やかに流れ吸水性材料中に溜まる。このため、水分は吸水性材料によって燃焼ガス排出通路の外部に効率的に放出できる。そして、この上がり勾配部に熱交換器を構成したため、排気ガスが結露し水分が発生する燃焼ガス排出通路の熱交換器部分から吸水性材料に至る燃焼ガス排出通路が全て上がり勾配となり、燃焼ガス排出通路が結露水による閉塞等を生じることがないという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施例1における燃焼装置の断面図
【図2】 本発明の実施例2における燃焼装置の断面図
【図3】 本発明の実施例3における燃焼装置の断面図
【図4】 本発明の実施例4における燃焼装置の断面図
【図5】 本発明の実施例5における燃焼装置の断面図
【図6】 本発明の実施例6における燃焼装置の断面図
【図7】 本発明の実施例7における燃焼装置の断面図
【図8】 従来の冷媒加熱機の外観断面図
【符号の説明】
1 バーナー
2 燃焼室
8 燃焼ガス排出通路
9 熱交換器
9a パイプ状熱交換器
10 吸水性材料
11 ドレイン配管
14 伝熱フィン
14a パイプ状伝熱フィン
15 トラップ部
16 内壁部材
17 ウィック
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion apparatus that uses heat of a hot gas generated by combustion using a heat exchanger.
[0002]
[Prior art]
In a heat exchanger that uses heat by exchanging heat with the high-temperature combustion gas generated by conventional combustion, the dew point is the temperature of the combustion gas heat-exchanged in the heat exchanger in order to prevent condensation of moisture generated by the combustion reaction. It was set above the temperature. A combustion apparatus of this type is described in Japanese Patent Laid-Open No. 5-302712. As shown in FIG. 8, this combustion apparatus sends fuel to the burner 1, burns it in the combustion chamber 2, passes through the heat exchanger 3, and discharges it from the exhaust port 4. Combustion air is supplied to the combustion chamber 2 by a combustion blower 5, heat exchange air is passed to the heat exchanger 3 by a convection blower 6, and a temperature detector 7 is provided in the exhaust path.
[0003]
When the temperature detector 7 for detecting the exhaust temperature detects a low temperature, the convection blower 6 is stopped to reduce the heat exchange air and reduce the amount of heat exchange in the heat exchanger 3. By increasing the number of revolutions slightly more than usual, the combustion air is increased to reduce the dew point temperature in the exhaust gas and prevent condensation.
[0004]
[Problems to be solved by the invention]
In the configuration of the conventional combustion apparatus described above, when the exhaust gas temperature becomes low, the convection blower 6 is stopped to reduce heat exchange air, and the heat exchange amount in the heat exchanger 3 is reduced to increase the exhaust gas temperature to prevent dew condensation. Therefore, the amount of heat that can be used through heat exchange decreases. For this reason, the use malfunction and thermal efficiency fall by the shortage of heat occurred. Further, by increasing the rotational speed of the combustion blower 5 slightly more than usual, the combustion air is increased to reduce the dew point temperature in the exhaust gas, thereby preventing condensation. Increasing the amount of combustion air requires more fuel because the temperature of the exhaust gas passing through the heat exchanger 3 decreases and the amount of exhaust gas increases, so the heat exchange efficiency in the heat exchanger 3 decreases. There was a problem.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a combustion chamber provided with a burner and heat transfer fins, a combustion gas discharge passage provided in communication with the combustion chamber, a heat exchanger provided in the combustion gas discharge passage, The combustion gas discharge passage is configured as an upward gradient, and the heat exchanger is configured in the upward gradient portion, and a trap portion is configured in the combustion gas exhaust passage between the combustion chamber and the heat exchanger, A water-absorbing material is disposed in the trap portion, and a part of the water-absorbing material faces the inside of the combustion gas passage and the other part faces the outside of the combustion gas discharge passage .
[0006]
According to the present invention, the high-temperature combustion gas generated by the combustion is subjected to heat exchange in the heat exchanger, and moisture condensed in the combustion gas discharge passage is exposed to the inside of the combustion gas discharge passage due to the low temperature of the exhaust combustion gas. The water absorption material absorbs the water, and the absorbed water is discharged from the water absorption material portion facing the outside of the combustion gas discharge passage. For this reason, heat exchange can be performed with high efficiency without closing the combustion gas discharge passage due to the condensation of the exhaust gas.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be implemented in the form described in each claim. As in claim 1, a combustion chamber provided with a burner and heat transfer fins, a combustion gas discharge passage provided in communication with the combustion chamber, The heat exchanger provided in the combustion gas discharge passage and the combustion gas discharge passage are configured in an upward gradient, and the heat exchanger is configured in the upward gradient portion, and between the combustion chamber and the heat exchanger. A trap portion is formed in the combustion gas discharge passage, and a water-absorbing material is disposed in the trap portion, and a part of the water-absorbing material faces the inside of the combustion gas passage and the other portion is the combustion gas. It is configured to face the outside of the discharge passage . For this reason, heat exchange can be performed with high efficiency without closing the combustion gas discharge passage due to the condensation of the exhaust gas.
[0008]
Further, provided the trap portion to the combustion gas discharge passage between the combustion chamber and the heat exchanger, by the trap portion to dispose the water absorbing material, condensation moisture in the exhaust gas is set to the trap portion, It is easy to discharge to the outside of the combustion gas discharge passage by the water absorbing material.
[0009]
Further, by forming the slope up to the combustion gas discharge passage, rapidly flowing along the slope of moisture in the exhaust gas condensation in the combustion gas discharge passage from the combustion gas discharge passage, so that the accumulated water-absorbing material . For this reason, it can discharge | release to the exterior of a combustion gas discharge channel with a water absorbing material. And since the heat exchanger is configured in this upward gradient portion, all the combustion gas discharge passages extending from the heat exchanger portion of the combustion gas discharge passage where the exhaust gas is condensed and moisture is generated to the portion where the water-absorbing material exists are all inclined upward. Thus, the combustion gas discharge passage is not blocked by condensed water.
[0010]
According to the second aspect of the present invention, the water-absorbing material is subjected to a hydrophilic treatment , and a wick is provided in the combustion gas discharge passage, whereby moisture of the exhaust gas condensed in the combustion gas discharge passage is absorbed by the wick. The wick and a part of the water-absorbing material are close to each other, and the condensed water absorbed in the wick flows from the wick to the water-absorbing material and is released to the outside of the combustion gas discharge passage by the water-absorbing material. Regardless of the gradient of the discharge passage, moisture can flow through the water-absorbing material, so that the degree of freedom of configuration can be increased and the combustion gas discharge passage can be prevented from being blocked by condensed water, resulting in a highly reliable system.
[0011]
Further, since the water-absorbing material is subjected to a hydrophilic treatment, the water-absorbing performance per unit of the water-absorbing material is increased, and moisture condensed from the exhaust gas can be quickly absorbed into the water-absorbing material from the combustion gas discharge passage.
[0012]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. 1 to 7, the same components as those in the conventional example shown in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0013]
Example 1
FIG. 1 is a cross-sectional view showing a combustion apparatus in Embodiment 1 of the present invention.
[0014]
Reference numeral 1 is a burner provided in the combustion chamber 2, and 8 is a combustion gas discharge passage provided in communication with the combustion chamber 2, which is in communication with the exhaust port 4. The combustion gas discharge passage 8 is provided with a heat exchanger 9, and at least a part of the combustion gas discharge passage 8 is composed of a sheet of glass fiber, foamable metal or the like or a water-absorbing material 10 of a molding material. This water-absorbing material 10 is configured such that a part thereof faces the inside of the combustion gas passage 8 and the other part faces the outside of the combustion gas discharge passage 8. 11 is a drain pipe provided in the lower part of the water-absorbing material 10, and 12 is a partition such as a wall when the combustion gas discharge passage 8 is installed as a configuration in which the combustion device is installed indoors and the combustion gas is discharged outside the room. It is a member. 13 is a pump for supplying fuel to the burner 1, and 5 is a combustion blower for supplying combustion air. Reference numeral 14 denotes a heat transfer fin, which is configured to promote heat transfer from the combustion chamber 2 with air from the convection blower 6. A water absorbing material 10 may be provided in the combustion gas discharge passage 8.
[0015]
Next, the operation and action will be described. The heat generated by the combustion of the burner 1 is exchanged in the combustion chamber 2 for an amount substantially corresponding to the sensible heat and used for heating the air. Next, the heat exchanger 9 heat-exchanges the latent heat generated by the combustion of the burner 1 that could not be used conventionally. For this reason, the moisture contained in the combustion gas as vapor is liquefied. Since a part of the water-absorbing material 10 faces the inside of the combustion gas discharge passage 8 and a part of the water absorbent material 10 faces the outside of the combustion gas discharge passage 8, the high-temperature combustion gas generated by the burner 1 is passed to the heat exchanger 9. Then, the water that is completely exchanged in heat and condensed in the combustion gas discharge passage when the temperature of the exhaust gas becomes low is absorbed by the water-absorbing material 10 facing the inside of the combustion gas discharge passage 8 and the absorbed water is removed. The water is discharged from the portion of the water absorbent material 10 facing the outside of the combustion gas discharge passage 8 and flows down through the drain pipe 11. For this reason, heat exchange can be performed with high efficiency without causing problems such as blockage of the combustion gas discharge passage 8 due to condensation of exhaust gas. Further, the combustion gas discharge passage 8 from the heat exchanger 9 to the exhaust port 4 can be made low temperature, does not require a heat insulating material, and has high safety. Further, the water-absorbing material 10 easily absorbs water, but if the combustion exhaust gas absorbs water, the water closes the passage so that it becomes difficult to pass through, so that the combustion gas leaks from the water-absorbing material 10 and the heat exchange efficiency in the heat exchanger 9 There is no decline.
[0016]
(Example 2)
FIG. 2 shows a cross section of the combustion apparatus according to the second embodiment. The difference from the first embodiment is that a pipe-shaped heat exchanger 9a and pipe-shaped heat transfer fins 14a are provided. Accordingly, liquid heat exchange can be used instead of air heat exchange.
[0017]
Example 3
FIG. 3 shows a combustion apparatus according to Embodiment 3 of the present invention. The difference from the first embodiment is that a trap portion 15 is provided in the combustion gas discharge passage 8 between the combustion chamber 2 and the heat exchanger 9, and the trap portion 15 is formed of a water absorbent material 10. Of course, since the inner surface of the trap part 15 should just be a water absorptive material, you may make it the form which linings a water absorptive material to the trap part which does not absorb water.
[0018]
Next, the operation and action will be described. Moisture condensed from the exhaust gas passes through the combustion gas discharge passage 8, collects in the trap portion 15, and can be discharged to the outside of the combustion gas discharge passage 8 by the water absorbent material 10. For this reason, even if the area of the water absorbent material 10 facing the combustion gas discharge passage 8 is small, the condensed water flows in a concentrated manner, so that the water absorbent material 10 can be downsized.
[0019]
Further, the water-absorbing material 10 is subjected to a hydrophilic treatment such as silicon which has an effect of reducing the surface tension of water. Thereby, the water absorption performance per unit of the water absorbent material 10 can be increased, and moisture condensed from the exhaust gas can be quickly absorbed into the water absorbent material 10 from the combustion gas discharge passage 8. The fact that moisture can be quickly discharged from the combustion gas discharge passage 8 can ensure the passage area of the combustion gas discharge passage 8 stably and always, and can ensure reliability without causing combustion failure due to an increase in exhaust resistance.
[0020]
Example 4
FIG. 4 shows a combustion apparatus according to Embodiment 4 of the present invention. The difference from the first embodiment is that the combustion gas discharge passage 8 is configured to have a rising slope.
[0021]
Next, the operation and action will be described. Moisture of the exhaust gas condensed in the combustion gas discharge passage 8 flows quickly from the combustion gas discharge passage 8 along the gradient and accumulates in the water absorbent material 10. For this reason, the water absorbent material 10 can completely discharge the combustion gas discharge passage 8 to the outside. Further, since the heat exchanger 9 is configured in this upward slope portion, all of the combustion gas discharge passage 8 from the heat exchanger 9 portion of the combustion gas discharge passage 8 where the exhaust gas is condensed and moisture is generated to the water absorbent material 10 is formed. Ascending slope is obtained, and the combustion gas discharge passage 8 is not blocked by the condensed water. Further, since all the moisture generated by heat exchange of the latent heat of the combustion gas flows from the heat exchanger 8 to the water absorbent material 10 along the gradient, the moisture is passed through the combustion gas discharge passage 8 from the heat exchanger 9 to the exhaust port 4. Since it does not accumulate, it can be designed freely according to installation, and the combustion gas discharge passage 8 from the heat exchanger 9 to the exhaust port 4 can be made low temperature. Is high.
[0022]
(Example 5)
FIG. 5 shows a combustion apparatus according to Embodiment 5 of the present invention. The difference from the first embodiment is that the water absorbing material 10 and the inner wall member 16 of the combustion chamber 2 are arranged close to each other.
[0023]
Next, the operation and action will be described. The water-absorbing material 10 receives heat from the inner wall member 16 of the combustion chamber 2 that is at a high temperature due to combustion of the burner 1. For this reason, the water-absorbing material 10 becomes high temperature, and the moisture of the absorbed combustion gas evaporates with this heat and can be discharged to the outside with steam. This eliminates the need for drain piping, reduces the number of components and realizes an inexpensive device, and allows for freedom and ease of installation.
[0024]
(Example 6)
FIG. 6 shows a combustion apparatus according to Embodiment 6 of the present invention. The difference from the first embodiment is that a wick 17 is provided in the combustion gas discharge passage 8, so that moisture of the exhaust gas condensed in the combustion gas discharge passage 8 is absorbed by the wick 17. The wick 17 and a part of the water-absorbing material 10 are configured close to each other.
[0025]
Next, the operation and action will be described. The condensed water absorbed in the wick 17 flows from the wick 17 to the water absorbent material 10 and is released to the outside of the combustion gas discharge passage 8 by the water absorbent material 10. Regardless of the gradient, moisture can be passed through the water-absorbing material 10 and the degree of freedom of configuration can be increased, and the combustion gas discharge passage 8 can be prevented from being clogged with dew condensation water, resulting in a highly reliable system.
[0026]
(Example 7)
FIG. 7 shows a combustion apparatus according to Embodiment 7 of the present invention. The difference from the first embodiment is that the combustion gas discharge passage 8 is made of a material having a large surface area such as a resin having a good thermal conductivity, a thin metal tube such as aluminum, or a corrugate.
[0027]
Next, the operation and action will be described. The combustion gas discharge passage 8 transfers heat to the outside with high efficiency, and the moisture in the exhaust gas can be condensed without any special heat exchange in the combustion gas discharge passage 8. High reliability can be realized by miniaturization and simplification.
[0028]
【The invention's effect】
According to the present invention described above, there is an effect that it is without a high efficiency heat exchanger in causing problems such as to occlude the combustion gas discharge passage due to condensation of the exhaust gas.
[0029]
Also has a trap portion in the combustion gas discharge passage between the combustion chamber and heat exchanger, since the water-absorbing material in the trap portion are arranged, condensed moisture in the exhaust gas in the trap portion They gather and can be efficiently discharged to the outside of the combustion gas discharge passage by the water absorbing material.
[0030]
Further, since the arrangement to the gradient up to combustion gas discharge passage, the moisture of the exhaust gas condensed in the combustion gas discharge passage is rapidly accumulated in the stream water absorbent material along the slope from the combustion gas discharge passage. For this reason, moisture can be efficiently discharged to the outside of the combustion gas discharge passage by the water absorbing material. And since the heat exchanger is configured in this upward gradient portion, all the combustion gas discharge passages from the heat exchanger portion of the combustion gas discharge passage where the exhaust gas is condensed and moisture is generated to the water-absorbing material have an upward gradient, and the combustion gas There is an effect that the discharge passage is not blocked by the condensed water.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a combustion apparatus according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of a combustion apparatus according to a second embodiment of the present invention. 4] Cross-sectional view of the combustion apparatus in the fourth embodiment of the present invention [Fig. 5] Cross-sectional view of the combustion apparatus in the fifth embodiment of the present invention [Figure 6] Cross-sectional view of the combustion apparatus in the sixth embodiment of the present invention [Fig. Sectional view of combustion apparatus in Embodiment 7 of the present invention [FIG. 8] Cross-sectional view of appearance of conventional refrigerant heater [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Burner 2 Combustion chamber 8 Combustion gas discharge passage 9 Heat exchanger 9a Pipe-shaped heat exchanger 10 Water-absorbing material 11 Drain piping 14 Heat transfer fin 14a Pipe-shaped heat transfer fin 15 Trap part 16 Inner wall member 17 Wick

Claims (2)

バーナーと伝熱フィンを設けた燃焼室と、前記燃焼室に連通して設けた燃焼ガス排出通路と、前記燃焼ガス排出通路に設けた熱交換器と、前記燃焼ガス排出通路は上がり勾配に構成し、この上がり勾配部に前記熱交換器を構成すると共に、前記燃焼室と前記熱交換器の間の前記燃焼ガス排出通路にトラップ部を構成し、このトラップ部に吸水性材料を配設し、前記吸水性材料はその一部を前記燃焼ガス通路内部に臨ませ他の一部を前記燃焼ガス排出通路の外部に臨ませた燃焼装置。Combustion chamber provided with a burner and heat transfer fins , a combustion gas discharge passage provided in communication with the combustion chamber, a heat exchanger provided in the combustion gas discharge passage, and the combustion gas discharge passage configured in an upward gradient In addition, the heat exchanger is formed in the rising slope portion, and a trap portion is formed in the combustion gas discharge passage between the combustion chamber and the heat exchanger, and a water absorbing material is disposed in the trap portion. The combustion apparatus wherein a part of the water-absorbing material faces the inside of the combustion gas passage and the other part faces the outside of the combustion gas discharge passage. 吸水性材料を親水処理し、燃焼ガス排出通路内にウィックを設け、このウィックと吸水性材料の一部とを近接した請求項1記載の燃焼装置。The combustion apparatus according to claim 1 , wherein the water-absorbing material is subjected to a hydrophilic treatment, a wick is provided in the combustion gas discharge passage, and the wick and a part of the water-absorbing material are close to each other .
JP18938997A 1997-07-15 1997-07-15 Combustion device Expired - Fee Related JP3823456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18938997A JP3823456B2 (en) 1997-07-15 1997-07-15 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18938997A JP3823456B2 (en) 1997-07-15 1997-07-15 Combustion device

Publications (2)

Publication Number Publication Date
JPH1137445A JPH1137445A (en) 1999-02-12
JP3823456B2 true JP3823456B2 (en) 2006-09-20

Family

ID=16240498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18938997A Expired - Fee Related JP3823456B2 (en) 1997-07-15 1997-07-15 Combustion device

Country Status (1)

Country Link
JP (1) JP3823456B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461269B2 (en) * 2010-03-29 2014-04-02 三洋電機株式会社 Exhaust gas outlet chimney structure of exhaust gas heat recovery unit

Also Published As

Publication number Publication date
JPH1137445A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
US7946112B2 (en) Exhaust heat recovery device
US7360535B2 (en) Hot water apparatus
JP2009517622A (en) Dew point cooling system
JP2007278623A (en) Exhaust heat recovery system
JP2007181812A (en) Gas drying system
JP2008249313A (en) Hot water heating system
JP4710471B2 (en) Exhaust top and hot water supply apparatus provided with the same
JP4710470B2 (en) Exhaust top and hot water supply apparatus provided with the same
JP3823456B2 (en) Combustion device
JP5152564B2 (en) Water heater
CN208901641U (en) A kind of full pre-mix condensing heat-exchanger rig
JPS6135902Y2 (en)
CN109297040A (en) A kind of dehumidification by condensation disappears white integral system
JP2007170299A (en) Exhaust heat recovery system
JP3308647B2 (en) Air conditioner
KR100437667B1 (en) condensing Gas boiler using uptrend combustion type for withdraw latent heat
JP2544150B2 (en) Heat transfer tube for latent heat recovery
JPH09222244A (en) Humidify control air conditioner
JPS6215661Y2 (en)
KR100213780B1 (en) Water supply system of absortion type cooler
JP5445827B2 (en) Water heater
JP2521489B2 (en) Latent heat recovery unit
JPS59210234A (en) Hot air heater
KR0130652Y1 (en) Small absorption type cooling/heating device by heat pipe
CN214620560U (en) Prevent strong wind heat pump drying-machine of evaporimeter frosting

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees