JP3823158B2 - Method for detecting excess air ratio in cylinder of 4-stroke diesel engine with supercharger - Google Patents

Method for detecting excess air ratio in cylinder of 4-stroke diesel engine with supercharger Download PDF

Info

Publication number
JP3823158B2
JP3823158B2 JP2003406476A JP2003406476A JP3823158B2 JP 3823158 B2 JP3823158 B2 JP 3823158B2 JP 2003406476 A JP2003406476 A JP 2003406476A JP 2003406476 A JP2003406476 A JP 2003406476A JP 3823158 B2 JP3823158 B2 JP 3823158B2
Authority
JP
Japan
Prior art keywords
cylinder
mass
exhaust gas
supercharger
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003406476A
Other languages
Japanese (ja)
Other versions
JP2005163727A (en
Inventor
喜雄 高杉
正英 高木
惠以子 石村
正晃 菊池
潔 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2003406476A priority Critical patent/JP3823158B2/en
Publication of JP2005163727A publication Critical patent/JP2005163727A/en
Application granted granted Critical
Publication of JP3823158B2 publication Critical patent/JP3823158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、過給機付4ストロークディーゼル機関の気筒内における空気の過剰率を検出する方法に関する。   The present invention relates to a method for detecting an excess ratio of air in a cylinder of a supercharged four-stroke diesel engine.

従来、ディーゼル機関から発生する排ガス中の窒素酸化物を始めとする大気汚染物質の生成は燃焼に由来するところが多いが、過給機付4サイクルディーゼル機関では、直接、燃焼に関与する気筒内の空気過剰率が明らかではなく、燃焼の解析を行う上で不便であった。一般に、無過給ディーゼル機関の燃焼の解析を行う際には、排出ガス中の残存酸素濃度を計測し、吹き抜け吸気がないとして空気過剰率を算出している。そして、過給機付4サイクルディーゼル機関においても、これと同様の方法が採られていた。   Conventionally, the generation of air pollutants such as nitrogen oxides in exhaust gas generated from a diesel engine is often caused by combustion. However, in a 4-cycle diesel engine with a supercharger, directly in the cylinders involved in combustion. The excess air ratio was not clear and it was inconvenient to analyze the combustion. Generally, when analyzing the combustion of a non-supercharged diesel engine, the residual oxygen concentration in the exhaust gas is measured, and the excess air ratio is calculated on the assumption that there is no blow-by intake. And the same method was adopted also in the 4-cycle diesel engine with a supercharger.

ところで、通常、過給機付4サイクルディーゼル機関では、吸気弁と排気弁が同時に開いているオーバラップ期間があり、この期間に吸気の一部が排気弁から吹き抜けるので、排出ガス中の酸素濃度から求めた空気過剰率は、気筒内の空気過剰率を正確に表してはいない。このため、気筒内ガスについて酸素濃度を計測し、空気過剰率を計算する方法が考えられるが、この計測には高度の技術が必要とされるので、この方法は一般的な方法であるとは言えない。   By the way, normally, in a 4-cycle diesel engine with a supercharger, there is an overlap period in which the intake valve and the exhaust valve are open at the same time, and during this period, part of the intake air blows out from the exhaust valve, so the oxygen concentration in the exhaust gas The excess air ratio obtained from the above does not accurately represent the excess air ratio in the cylinder. For this reason, a method of measuring the oxygen concentration of the gas in the cylinder and calculating the excess air ratio can be considered, but since this technique requires advanced technology, this method is a general method. I can not say.

そこで本発明は、排出ガス中の酸素濃度から求める空気過剰率よりも高い精度で空気過剰率を求めることができ、計測するのに格別に高度の技術が必要とされない一般的に行われている計測によって得られた計測値を用いて簡単に空気過剰率を検出することができるような、過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法を提供しようとするものである。   Therefore, the present invention can generally determine the excess air ratio with higher accuracy than the excess air ratio determined from the oxygen concentration in the exhaust gas, and is generally performed without requiring a particularly advanced technique for measurement. An object of the present invention is to provide a method for detecting an excess air ratio in a cylinder of a 4-stroke diesel engine with a supercharger that can easily detect an excess air ratio using a measurement value obtained by measurement.

本発明の過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法は、過給機付4ストロークディーゼル機関を流れるガスの状態からシリンダ内の残留ガスの質量、吹き抜け吸気の質量、排出ガスの質量を未知数とし、上記排出ガスによって駆動される上記過給機のタービンの出力とブロアの仕事との釣り合い、圧縮工程における気筒の容積および排出ガスの組成から方程式をたて、同方程式に代入する計測値のうち上記タービンの出口の排出ガスの温度を助変数とし、求めた解の値の範囲のうち上記未知数の値が物理的に意味のある値となる助変数の中で最も高い温度を特定して正解を求め、この正解から圧縮工程中の上記気筒内のガスの成分のうち、空気に相当する量を求め、これと理論空気比及び供給された燃料の質量の関係から上記気筒内の空気過剰率を求めることを特徴としている。   The method for detecting the excess air ratio in a cylinder of a 4-stroke diesel engine with a supercharger according to the present invention is based on the state of the gas flowing through the 4-stroke diesel engine with a supercharger, the mass of residual gas in the cylinder, the mass of blow-in intake air, and the exhaust gas. The mass of the cylinder is unknown, and an equation is constructed from the balance between the output of the turbocharger turbine driven by the exhaust gas and the work of the blower, the volume of the cylinder in the compression process and the composition of the exhaust gas, and substituted into the equation Among the measured values, the temperature of the exhaust gas at the outlet of the turbine is the auxiliary variable, and the highest temperature among the auxiliary variables in which the unknown value is a physically meaningful value in the range of the solution values obtained. From the correct answer, the amount corresponding to air is obtained from the correct solution, and the relationship between the theoretical air ratio and the mass of the supplied fuel is obtained. It is characterized by determining the excess air ratio Luo within the cylinder.

また、本発明の過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法は、上記過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法において、上記過給機付4ストロークディーゼル機関を、吹き抜け吸気が無い状態とし、上記未知数である吹き抜け吸気の質量をゼロであるとして上記方程式を解いて正解を得るに当たり、上記タービンの出口の排出ガスの温度を、上記方程式の解の値が物理的に意味のある値となるような温度の中で最も高い温度に特定して、正解を得るようにしたことを特徴としている。   In addition, the method for detecting an excess air ratio in a cylinder of a four-stroke diesel engine with a supercharger according to the present invention is the above-described method for detecting an excess air ratio in a cylinder of a four-stroke diesel engine with a supercharger. In order to obtain a correct answer by solving the above equation assuming that the engine is in a state where there is no blow-through intake and the mass of the blow-through intake, which is the unknown, is zero, the temperature of the exhaust gas at the outlet of the turbine is the value of the solution of the above equation. It is characterized in that the correct answer is obtained by specifying the highest temperature among the temperatures at which becomes a physically meaningful value.

本発明の過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法によれば、以下のような効果が得られる。すなわち、気筒内の空気過剰率を排出ガス中の酸素濃度から求める空気過剰率よりも高い精度で簡単に明らかにすることができ、計測するのに格別に高度の技術が必要とされない一般的に行われている計測によって得られた計測値を用いて簡単に空気過剰率を算出することができ、窒素酸化物を始めとする大気汚染物質の削減のための方策を立てる上で大いに有効な手段として活用することができる。   According to the method for detecting an excess air ratio in a cylinder of a 4-stroke diesel engine with a supercharger according to the present invention, the following effects can be obtained. In other words, the excess air ratio in the cylinder can be easily clarified with higher accuracy than the excess air ratio obtained from the oxygen concentration in the exhaust gas, and generally no advanced technology is required for measurement. The excess air ratio can be easily calculated using the measurement values obtained by the measurement being performed, and it is a very effective means for formulating measures to reduce air pollutants such as nitrogen oxides. Can be used as

本発明の過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法によれば、排出ガス中の酸素濃度から求める空気過剰率よりも高い精度で空気過剰率を求めることができ、計測するのに格別に高度の技術が必要とされない一般的に行われている計測によって得られた計測値を用いて簡単に空気過剰率を算出することができるようにするという目的を、過給機付4ストロークディーゼル機関を流れるガスの状態からシリンダ内の残留ガスの質量、吹き抜け吸気の質量、排出ガスの質量を未知数とし、上記排出ガスによって駆動される上記過給機のタービンの出力とブロアの仕事との釣り合い、圧縮工程における気筒の容積および排出ガスの組成から方程式をたて、同方程式に代入する計測値のうち上記タービンの出口の排出ガスの温度を助変数とし、求めた解の値の範囲のうち上記未知数の値が物理的に意味のある値となる助変数の中で最も高い温度を特定して正解を求め、この正解から、圧縮工程中の上記気筒内のガスの成分のうち、空気に相当する量を求め、これと理論空気比及び供給された燃料の質量の関係から上記気筒内の空気過剰率を求めるようにしたことによって実現した。   According to the method for detecting the excess air ratio in a cylinder of a 4-stroke diesel engine with a supercharger according to the present invention, the excess air ratio can be obtained and measured with higher accuracy than the excess air ratio obtained from the oxygen concentration in the exhaust gas. However, with the aim of making it possible to easily calculate the excess air ratio using measured values obtained by commonly performed measurements that do not require exceptionally advanced technology. From the state of the gas flowing through the 4-stroke diesel engine, the mass of the residual gas in the cylinder, the mass of the blow-in intake air, and the mass of the exhaust gas are unknown, and the output of the turbocharger turbine driven by the exhaust gas and the work of the blower The equation of the cylinder volume and the composition of the exhaust gas in the compression process and the temperature of the exhaust gas at the outlet of the turbine among the measured values to be substituted into the equation Is used as the auxiliary variable, and the correct temperature is determined by specifying the highest temperature among the auxiliary variables in which the above unknown value is a physically meaningful value within the range of the calculated solution values. This is achieved by determining the amount of air corresponding to air among the gas components in the cylinder and determining the excess air ratio in the cylinder from the relationship between this and the theoretical air ratio and the mass of fuel supplied. did.

以下、図面により本発明の一実施例について説明する。
図1は、過給機付4ストロークディーゼル機関のガスの流れを説明するための全体概念図、図2は、吹き抜け吸気の質量と過給機のタービンの出口における排出ガスの温度との関係を示すグラフである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an overall conceptual diagram for explaining the gas flow of a 4-stroke diesel engine with a supercharger, and FIG. 2 shows the relationship between the mass of blow-through intake air and the temperature of exhaust gas at the turbine outlet of the turbocharger. It is a graph to show.

先ず、図1において、過給機付4ストロークディーゼル機関における過給機及び4ストロークディーゼル機関におけるガスの流れについて説明する。大気は、過給機1のブロワ(またはコンプレッサ)2により吸入圧縮された後、吸気としてインタークーラ4で冷却され、さらに吸気マニホルドを経て、各気筒5,6,7にそれぞれ供給される。これら各気筒5,6,7から排出されたすべてのガスは排出ガス(いわゆる排ガス)となって過給機1のタービン3に導かれ、エネルギーを回収された後、排気管11から大気中へと放出される。   First, in FIG. 1, the gas flow in a supercharger in a 4-stroke diesel engine with a supercharger and a 4-stroke diesel engine will be described. The air is sucked and compressed by the blower (or compressor) 2 of the supercharger 1, then cooled by the intercooler 4 as intake air, and further supplied to each of the cylinders 5, 6, and 7 through the intake manifold. All the gas discharged from each of the cylinders 5, 6 and 7 becomes exhaust gas (so-called exhaust gas), is led to the turbine 3 of the supercharger 1, and after energy is recovered, the exhaust pipe 11 enters the atmosphere. And released.

次に、吸入行程における気筒内ガスの流れについて説明する。図1において、第3気筒7に示すように、吸入行程では吸気弁8が開いているので吸気は気筒7内に導かれる。しかし、吸気弁8と排気弁9とが同時に開いている期間があるので、吸気は気筒7に留まる気筒内吸気と吸気弁8から排気弁9に通り抜ける吹き抜け吸気とに分かれる。   Next, the flow of in-cylinder gas in the intake stroke will be described. In FIG. 1, as shown in the third cylinder 7, since the intake valve 8 is open in the intake stroke, the intake air is guided into the cylinder 7. However, since there is a period in which the intake valve 8 and the exhaust valve 9 are open at the same time, the intake air is divided into in-cylinder intake air that remains in the cylinder 7 and blow-through intake air that passes from the intake valve 8 to the exhaust valve 9.

続いて、圧縮行程における気筒内ガスについて説明する。図1における第2気筒6に示すように、圧縮行程が始まると早い時期に吸気弁8が閉じ、圧縮が始まる。この時の気筒6内のガスは、気筒内吸気と残留ガスとによって構成される。   Next, the in-cylinder gas in the compression stroke will be described. As shown in the second cylinder 6 in FIG. 1, when the compression stroke starts, the intake valve 8 closes early and compression starts. The gas in the cylinder 6 at this time is composed of the cylinder intake air and the residual gas.

そして、膨張行程における気筒内ガスについて説明する。図1の第1気筒5に示すように、膨張行程の初期に燃料が噴射され、燃焼が行われる。これに伴い気筒内ガスは燃焼ガスとなる。   Then, the in-cylinder gas in the expansion stroke will be described. As shown in the first cylinder 5 of FIG. 1, fuel is injected at the initial stage of the expansion stroke, and combustion is performed. Along with this, the in-cylinder gas becomes combustion gas.

さらに、排気行程におけるガスの流れについて説明する。図1において、膨張行程の終わりに近づいたとき排気弁9が開き、燃焼ガスの大部分は気筒外へ排出されるが、一部が気筒内に残り残留ガスとなる。気筒外へ排出された燃料ガスは、吹き抜け吸気と排気マニホルド10内で混合し、排出ガスとなって過給機1のタービン3に至る。   Further, the gas flow in the exhaust stroke will be described. In FIG. 1, when the end of the expansion stroke is approached, the exhaust valve 9 is opened, and most of the combustion gas is discharged outside the cylinder, but a part remains in the cylinder and becomes residual gas. The fuel gas discharged to the outside of the cylinder is mixed in the blow-in air intake and the exhaust manifold 10 to become exhaust gas and reach the turbine 3 of the supercharger 1.

次に、未知数について説明する。気筒5,6,7内の空気過剰率を求めるために、ここで、残留ガス質量、吹き抜け吸気質量、排出ガス質量を未知数として、次に示す記号で表すこととする。
ret : 残留ガス質量
short: 吹き抜け吸気質量
exh : 排出ガス質量
Next, the unknown will be described. In order to obtain the excess air ratio in the cylinders 5, 6, and 7, the residual gas mass, the blow-in intake mass, and the exhaust gas mass are represented as unknowns by the following symbols.
G ret : Residual gas mass G short : Blow-in intake mass G exh : Exhaust gas mass

過給機1のタービン3の出力とブロア2の仕事との関係について説明する。過給機1について、タービン3を流れる排出ガスの変化からタービン3の出力を求め、ブロア2を流れる吸気の変化から仕事を求めることができる。タービン3の出力はブロア2の仕事であるので、[数1]式が成立する。

Figure 0003823158
ここで、
f : 供給された燃料質量
o : 大気温度
b : 過給機1のブロア2の出口における吸気の温度
t : 過給機1のタービン3の入口における排出ガスの温度
se : タービン3の出口における排出ガスの温度
s : 吸気管の入口における空気の温度を用いた空気の比熱比
t : タービン3の入口における排出ガスの温度を用いた排出ガスの比熱比 The relationship between the output of the turbine 3 of the supercharger 1 and the work of the blower 2 will be described. For the supercharger 1, the output of the turbine 3 can be obtained from the change in the exhaust gas flowing through the turbine 3, and the work can be obtained from the change in the intake air flowing through the blower 2. Since the output of the turbine 3 is the work of the blower 2, the formula [1] is established.
Figure 0003823158
here,
M f : supplied fuel mass T o : atmospheric temperature T b : intake air temperature at the outlet of the blower 2 of the turbocharger T t : exhaust gas temperature at the inlet of the turbine 3 of the turbocharger T se : turbine Exhaust gas temperature at outlet 3 K s : Specific heat ratio of air using air temperature at inlet of intake pipe K t : Specific heat ratio of exhaust gas using temperature of exhaust gas at inlet of turbine 3

次に、気筒5,6,7内のガスの質量を求める式について説明する。圧縮行程において吸気弁が閉じた瞬間の気筒体積は計算により求められる。また、気筒5,6,7内の圧力は吸気圧力であり、気筒5,6,7内には、気筒5,6,7内の吸気と残留ガスとがあるので、気筒5,6,7内のガスの質量は[数2]式で表すことができる。

Figure 0003823158
ここで、
b : 吸気の圧力
s : 気筒5,6,7の入口における吸気の温度
s : 空気のガス定数
cl : 吸気弁8が閉時の気筒5,6,7の体積 Next, an equation for obtaining the mass of gas in the cylinders 5, 6, and 7 will be described. The cylinder volume at the moment when the intake valve is closed in the compression stroke is obtained by calculation. Further, the pressure in the cylinders 5, 6, and 7 is the intake pressure, and the cylinders 5, 6, and 7 have the intake air and the residual gas in the cylinders 5, 6, and 7, so the cylinders 5, 6, and 7 The mass of the gas inside can be expressed by the formula [2].
Figure 0003823158
here,
P b : Intake pressure T s : Intake air temperature at the inlets of cylinders 5, 6, 7 R s : Gas constant of air V cl : Volume of cylinders 5, 6, 7 when intake valve 8 is closed

また、気筒内の燃焼時における関係式について説明すると以下の通りである。膨張行程における燃焼では、燃料は炭素と水素のみで構成され、かつ、完全燃焼が行われるとすれば、燃焼の前後について[数3]に示す化学反応が行われる。

Figure 0003823158
ここで、
nm : 燃料が単一の分子からなるとしたときの化学記号
CO2 : 二酸化炭素の化学記号
2 : 酸素分子の化学記号
2 : 窒素分子の化学記号
FrCO2 : 残留ガス中の二酸化炭素の質量分率
FrH2O : 残留ガス中の水分の質量分率
FrN2 : 残留ガス中の窒素の質量分率
Fra : 残留ガス中の空気の質量分率
m : 燃料が単一の分子からなるとしたときの分子に含まれる水素原子の数 n : 燃料が単一の分子からなるとしたときの分子に含まれる炭素原子の数 mf : 燃料の分子量
CO2 : 二酸化炭素の分子量
H2O : 水分の分子量
a : 空気の分子量
N2 : 窒素の分子量
3.773は空気中の酸素モル数を1とした時の窒素モル数
4.773は空気中の酸素モル数を1とした時の空気モル数 The relational expression at the time of combustion in the cylinder will be described as follows. In the combustion in the expansion stroke, if the fuel is composed of only carbon and hydrogen and complete combustion is performed, the chemical reaction shown in [Formula 3] is performed before and after the combustion.
Figure 0003823158
here,
C n H m : Chemical symbol when fuel is composed of a single molecule CO 2 : Chemical symbol of carbon dioxide O 2 : Chemical symbol of oxygen molecule N 2 : Chemical symbol of nitrogen molecule Fr CO2 : Dioxide in residual gas Mass fraction of carbon Fr H2O : Mass fraction of moisture in residual gas Fr N2 : Mass fraction of nitrogen in residual gas Fr a : Mass fraction of air in residual gas m: Fuel from a single molecule The number of hydrogen atoms contained in the molecule when n is n: The number of carbon atoms contained in the molecule when the fuel is composed of a single molecule m f : The molecular weight of the fuel m CO2 : The molecular weight of carbon dioxide m H2O : Water Molecular weight of m a : molecular weight of air m N2 : molecular weight of nitrogen 3.773 is the number of moles of nitrogen when the number of moles of oxygen in air is 1. 4.773 is the air when the number of moles of oxygen in air is 1. Number of moles

次に、残留ガス中の二酸化炭素、水分、空気、窒素の質量分率を表す式について説明する。膨張行程で生成された燃焼ガスの組成は、圧縮行程で存在していた残留ガスの組成と同一であるとの観点から、二酸化炭素、水分、空気、窒素の質量分率は、[数3]式の右辺の二酸化炭素、水分、空気、窒素分質量を燃焼ガス質量で除したものであり、以下の[数4],[数5],[数6]及び[数7]式で表される。

Figure 0003823158
Figure 0003823158
Figure 0003823158
Figure 0003823158
Next, a formula representing mass fractions of carbon dioxide, moisture, air, and nitrogen in the residual gas will be described. From the viewpoint that the composition of the combustion gas generated in the expansion stroke is the same as the composition of the residual gas existing in the compression stroke, the mass fraction of carbon dioxide, moisture, air, and nitrogen is The right side of the equation is obtained by dividing the mass of carbon dioxide, moisture, air, and nitrogen by the mass of the combustion gas, and is expressed by the following [Equation 4], [Equation 5], [Equation 6], and [Equation 7]. The
Figure 0003823158
Figure 0003823158
Figure 0003823158
Figure 0003823158

さらに、排出ガスの酸素濃度と組成の関係式について説明する。排出ガスの酸素濃度は排気管で計測される。また、排出ガスは燃焼ガスの内、圧縮行程の始めに存在した残留ガスの質量と同等の燃焼ガスを気筒内に残したものと吹き抜け吸気とからなるので、排出ガスの組成が求められる。さらに、排出ガスの酸素濃度は、排出ガスと酸素の体積比であるので、次の[数8]式が成り立つ。

Figure 0003823158
ここで、
γ : 排出ガス中の酸素濃度
Figure 0003823158
Further, a relational expression between the oxygen concentration of the exhaust gas and the composition will be described. The oxygen concentration of the exhaust gas is measured by the exhaust pipe. Further, since the exhaust gas is composed of the combustion gas in which the combustion gas equivalent to the mass of the residual gas existing at the beginning of the compression stroke is left in the cylinder and the blow-in air, the composition of the exhaust gas is required. Further, since the oxygen concentration of the exhaust gas is the volume ratio of the exhaust gas and oxygen, the following equation (8) is established.
Figure 0003823158
here,
γ: Oxygen concentration in exhaust gas
Figure 0003823158

以上の連立方程式より解を求める手順について説明する。[数8]式に[数4]式、[数5]式、[数6]式及び[数7]式を代入すると、未知数である残留ガス質量、吹き抜け吸気質量、排出ガス質量を含む式となる。従って、[数1]式、[数2]式、[数8]式から解を求めることができる。   A procedure for obtaining a solution from the above simultaneous equations will be described. Substituting [Equation 4], [Equation 5], [Equation 6] and [Equation 7] into [Equation 8], an equation including residual gas mass, blow-by intake mass, and exhaust gas mass which are unknown numbers It becomes. Accordingly, a solution can be obtained from the [Equation 1], [Equation 2], and [Equation 8] equations.

次に、方程式を構成する記号について説明する。方程式において使用される記号で表された項目の内、未知数であるGres、Gshort、Gexh以外の、γ、To、Tb、Tt、Tse、Pb、Pt、Ts、Mfは、計測値あるいは計測値から計算により求められた値を使用することができる。また、Vclは機関の寸法および吸気弁の閉時期から、計算によりその値を求めることができる。m、n、mfは燃料の分析結果で得られた既知数であり、ks、kt、Rtは空気あるいは排出ガスの物性値であり、mCO2、mH2O、ma、mN2 は各種ガスの分子量であり既知数である。以上、すべてが具体的な数値で示されるので、定数とみなしうる。 Next, symbols constituting the equation will be described. Of the items represented by the symbols used in the equations, γ, T o , T b , T t , T se , P b , P t , T s other than the unknowns G res , G short , G exh. , M f can be a measured value or a value obtained by calculation from the measured value. Further, V cl can be obtained by calculation from the dimensions of the engine and the closing timing of the intake valve. m, n, and m f are known numbers obtained from the analysis results of the fuel, k s , k t , and R t are physical properties of air or exhaust gas. m CO2 , m H2O , m a , m N2 Is the molecular weight of various gases and is a known number. Since all of the above are shown by specific numerical values, they can be regarded as constants.

さて、助変数の設定について説明する。方程式の記号に具体的数値を代入すれば解は得られるが、計測値は誤差を含むため、未知数の解が物理的に意味ある値、即ちゼロもしくは正の値を取るとは限らない。そこで、方程式を解く上で過給機1のタービン3の入口における排出ガスの温度と出口における排出ガスの温度との差が重要であるため、タービン3の入口における排出ガスの温度を定数とみなし、タービン3の出口における排出ガスの温度を助変数とすると、ある範囲の助変数に対して残留ガス質量、吹き抜け吸気質量、排出ガス質量は、物理的に意味のある値をとる。従って、正解を得るためには助変数の値を特定する必要がある。   Now, setting of auxiliary variables will be described. A solution can be obtained by substituting a specific numerical value for the symbol of the equation. However, since the measured value includes an error, the solution of the unknown does not always take a physically meaningful value, that is, zero or a positive value. Therefore, in solving the equation, since the difference between the temperature of the exhaust gas at the inlet of the turbine 3 of the turbocharger 1 and the temperature of the exhaust gas at the outlet is important, the temperature of the exhaust gas at the inlet of the turbine 3 is regarded as a constant. Assuming that the temperature of the exhaust gas at the outlet of the turbine 3 is an auxiliary variable, the residual gas mass, the blow-in intake mass, and the exhaust gas mass have physically meaningful values for a certain range of auxiliary variables. Therefore, in order to obtain a correct answer, it is necessary to specify the value of the auxiliary variable.

次に、助変数に特定について説明する。助変数の値を特定するため、過給機付4ストロークディーゼル機関で、吹き抜け吸気が無い状態で運転を行い、前述と同様の方法で方程式を解く。この結果を図2に示す。図2には縦軸に未知数である吹き抜け吸気の質量、横軸に助変数であるタービンの出口における排出ガスの温度をとり、すべての未知数が物理的に意味のある値をとる範囲を実線矢印で示している。ここで、吹き抜け吸気の質量の正解はゼロであるので、助変数が取るべき値は、すべての未知数が物理的に意味のある値をとる条件内で最も高いタービン3の出口における排出ガスの温度であると特定することができる。また、吹き抜け吸気がある運転の場合でも、以上の特定法を適用して、先の計算について正解を得ることができる。   Next, the identification of the auxiliary variable will be described. In order to specify the value of the auxiliary variable, a 4-stroke diesel engine with a supercharger is operated with no blow-through intake, and the equation is solved by the same method as described above. The result is shown in FIG. In Fig. 2, the vertical axis represents the mass of the blow-through intake, which is an unknown, and the horizontal axis represents the temperature of the exhaust gas at the turbine outlet, which is an auxiliary variable. Is shown. Here, since the correct answer of the mass of the blow-through intake air is zero, the value that the auxiliary variable should take is the highest temperature of the exhaust gas at the outlet of the turbine 3 within the condition that all unknowns are physically meaningful. Can be specified. In addition, even in the case of an operation with blow-in air, a correct answer can be obtained for the previous calculation by applying the above specific method.

以上の結果に基づいて、気筒内の空気過剰率を求める手順について説明する。気筒内の空気過剰率は、圧縮行程におけるガスの成分の内、空気に相当する量と理論空気比及び供給された燃料の質量との関係から求められる。即ち、以下に示す[数9]式にそれぞれの値を代入することによって得ることができる。

Figure 0003823158
ここで、
o : 理論空気比で燃料の物性値から求めた値
res : 残留ガスの質量で三連立方程式から得た値
exh : 排出ガスの質量で三連立方程式から得た値
f : 供給された燃料の質量
Fra : 残留ガス中の空気の質量分率で[数7]式を解いて得た値 A procedure for obtaining the excess air ratio in the cylinder will be described based on the above results. The excess air ratio in the cylinder is obtained from the relationship between the amount corresponding to air among the gas components in the compression stroke, the theoretical air ratio, and the mass of the supplied fuel. That is, it can be obtained by substituting each value into the following [Equation 9].
Figure 0003823158
here,
L o : The value obtained from the physical property value of the fuel with the theoretical air ratio G res : The value obtained from the three simultaneous equations with the mass of the residual gas G exh : The value obtained from the three simultaneous equations with the mass of the exhaust gas M f : Supplied Fuel mass Fr a : Value obtained by solving the equation (7) with the mass fraction of air in the residual gas

海上技術安全研究所所有の吸排気弁開閉時期の変更が可能な過給機付4ストロークディーゼル機関である松井鉄工所製Mu323型機関により、吹き抜け吸気がある場合及び吹き抜け吸気が無い場合の実験を行い、その計測値から気筒内の空気過剰率を求めた。その結果、上記の機関で発生した窒素酸化物濃度と、計算による空気過剰率から発生する窒素酸化物濃度とは、空気過剰率に比例することが明らかになった。本発明により気筒内の空気過剰率を簡単に明らかにすることができるので、窒素酸化物を始めとする大気汚染物質の削減のための方策を立てる上で、本発明は大いに有効な手段として活用されることが期待される。   Experiments in the case where there is a blow-through intake and no blow-through intake using a Mu323 type engine manufactured by Matsui Iron Works, which is a 4-stroke diesel engine with a turbocharger that can change the opening and closing timing of intake and exhaust valves owned by the National Maritime Research Institute The excess air ratio in the cylinder was obtained from the measured value. As a result, it has been clarified that the nitrogen oxide concentration generated in the engine and the nitrogen oxide concentration generated from the calculated excess air ratio are proportional to the excess air ratio. Since the excess air ratio in the cylinder can be easily clarified by the present invention, the present invention can be utilized as a highly effective means in formulating measures for reducing air pollutants such as nitrogen oxides. Is expected to be.

過給機付4ストロークディーゼル機関のガスの流れを説明するための全体概念図である。It is a whole conceptual diagram for demonstrating the gas flow of a 4-stroke diesel engine with a supercharger. 吹き抜け吸気の質量と過給機のタービンの出口における排出ガスの温度との関係を示すグラフである。It is a graph which shows the relationship between the mass of blow-in intake, and the temperature of the exhaust gas in the exit of the turbine of a supercharger.

符号の説明Explanation of symbols

1 過給機
2 ブロア
3 タービン
4 インタークーラ
5 第1気筒
6 第2気筒
7 第3気筒
8 吸気弁
9 排気弁
10 排気マニホルド
11 排気管
DESCRIPTION OF SYMBOLS 1 Supercharger 2 Blower 3 Turbine 4 Intercooler 5 1st cylinder 6 2nd cylinder 7 3rd cylinder 8 Intake valve 9 Exhaust valve 10 Exhaust manifold 11 Exhaust pipe

Claims (2)

過給機付4ストロークディーゼル機関を流れるガスの状態からシリンダ内の残留ガスの質量、吹き抜け吸気の質量、排出ガスの質量を未知数とし、上記排出ガスによって駆動される上記過給機のタービンの出力とブロアの仕事との釣り合い、圧縮工程における気筒の容積および排出ガスの組成から方程式をたて、同方程式に代入する計測値のうち上記タービンの出口の排出ガスの温度を助変数とし、求めた解の値の範囲のうち上記未知数の値が物理的に意味のある値となる助変数の中で最も高い温度を特定して正解を求め、この正解から圧縮工程中の上記気筒内のガスの成分のうち空気に相当する量を求め、これと理論空気比及び供給された燃料の質量の関係から上記気筒内の空気過剰率を求めることを特徴とする、過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法。 From the state of the gas flowing through the 4-stroke diesel engine with a supercharger, the mass of the residual gas in the cylinder, the mass of the blow-in air intake, and the mass of the exhaust gas are unknown, and the output of the turbocharger turbine driven by the exhaust gas The equation was calculated from the balance between the work of the blower and the work of the blower, the volume of the cylinder in the compression process, and the composition of the exhaust gas. In the range of solution values, the correct temperature is determined by specifying the highest temperature among the auxiliary variables in which the unknown value is a physically meaningful value, and from this correct solution, the gas in the cylinder during the compression process is determined. An amount corresponding to air is obtained from the components, and an excess air ratio in the cylinder is obtained from the relationship between the theoretical air ratio and the mass of the supplied fuel. Cylinder air excess ratio detecting method of hazel engine. 請求項1に記載の過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法において、上記過給機付4ストロークディーゼル機関を、吹き抜け吸気が無い状態とし、上記未知数である吹き抜け吸気の質量をゼロであるとして上記方程式を解いて正解を得るに当たり、上記タービンの出口の排出ガスの温度を、上記方程式の解の値が物理的に意味のある値となるような温度の中で最も高い温度に特定して、正解を得るようにしたことを特徴とする、過給機付4ストロークディーゼル機関の気筒内空気過剰率検出方法。 2. The method for detecting an excess air ratio in a cylinder of a 4-stroke diesel engine with a supercharger according to claim 1, wherein the 4-stroke diesel engine with a supercharger is in a state where there is no blow-through intake, and the mass of the blow-through intake that is the unknown number. In order to obtain a correct solution by solving the above equation with zero as the temperature, the temperature of the exhaust gas at the outlet of the turbine is the highest among the temperatures at which the solution value of the above equation becomes a physically meaningful value. A method for detecting an excess air ratio in a cylinder of a 4-stroke diesel engine with a supercharger, characterized in that a correct answer is obtained by specifying a temperature.
JP2003406476A 2003-12-04 2003-12-04 Method for detecting excess air ratio in cylinder of 4-stroke diesel engine with supercharger Expired - Lifetime JP3823158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406476A JP3823158B2 (en) 2003-12-04 2003-12-04 Method for detecting excess air ratio in cylinder of 4-stroke diesel engine with supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406476A JP3823158B2 (en) 2003-12-04 2003-12-04 Method for detecting excess air ratio in cylinder of 4-stroke diesel engine with supercharger

Publications (2)

Publication Number Publication Date
JP2005163727A JP2005163727A (en) 2005-06-23
JP3823158B2 true JP3823158B2 (en) 2006-09-20

Family

ID=34728840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406476A Expired - Lifetime JP3823158B2 (en) 2003-12-04 2003-12-04 Method for detecting excess air ratio in cylinder of 4-stroke diesel engine with supercharger

Country Status (1)

Country Link
JP (1) JP3823158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9206751B2 (en) * 2013-06-25 2015-12-08 Achates Power, Inc. Air handling control for opposed-piston engines with uniflow scavenging

Also Published As

Publication number Publication date
JP2005163727A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
RU2557079C2 (en) Measurement and control method and device of recirculation degree of exhaust gas in internal combustion engine
US9599056B2 (en) System and method for estimating the richness of the gaseous mixture in the combustion chamber of an internal combustion engine of a motor vehicle power plant
RU2009118213A (en) METHOD FOR CONTROL VALVE OF EXHAUST GASES AND THROTTLE BODY IN THE INTERNAL COMBUSTION ENGINE
CN101555839A (en) A method for estimating the oxygen concentration in internal combustion engines
US7581535B2 (en) Method of estimating the fuel/air ratio in a cylinder of an internal-combustion engine by means of an extended Kalman filter
JP2006336644A (en) Estimation method using non-linear adaptive filter of air-fuel ratio in cylinder of internal combustion engine
JP2009264372A (en) Scavenging performance monitoring system and method for monitoring stroke parameter of scavenging stroke of longitudinal directional scavenging type 2-stroke large diesel engine
CN108386281B (en) System and method for estimating residual exhaust gas of internal combustion engine system
CN102939453A (en) Method for estimating an amount of fresh air, recording medium and estimator for said method, and vehicle provided with said estimator
Bajwa et al. A new single-zone multi-stage scavenging model for real-time emissions control in two-stroke engines
CN102023071A (en) Method for estimating exhaust manifold pressure
Lujan et al. A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection diesel engines
JP3823158B2 (en) Method for detecting excess air ratio in cylinder of 4-stroke diesel engine with supercharger
Schwarz et al. Determination of residual gas fraction in IC engines
US7527034B2 (en) Method for operating a compression ignition internal combustion engine
US7020554B2 (en) Method of regulating or controlling a cyclically operating internal combustion engine
Benajes et al. Modelling study of the scavenging process in a turbocharged diesel engine with modified valve operation
Kirchen et al. Soot emission measurements and validation of a mean value soot model for common-rail diesel engines during transient operation
Benajes et al. ADVANCED METHODOLOGY FOR IMPROVING TESTING EFFICIENCY IN A SINGLE-CYLINDER RESEARCH DIESEL ENGINE.
US9845771B2 (en) Method for determining the recycled air flow rate and the quantity of oxygen available at the inlet of an internal combustion engine cylinder
US10920685B2 (en) Estimation method to determine the concentration of recirculated exhaust gas present in a cylinder of an internal combustion engine
NL2020448B1 (en) Engine air flow estimation.
Liu et al. Evaluation analysis of scavenging process of two-stroke marine diesel engine by experiment and simulation
Tobis et al. Scavenging of a firing two-stroke spark-ignition engine
Bengtsson Modelling of volumetric efficiency on a diesel engine with variable geometry turbine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Ref document number: 3823158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term