JP3822709B2 - Steel surface treatment equipment - Google Patents

Steel surface treatment equipment Download PDF

Info

Publication number
JP3822709B2
JP3822709B2 JP12832997A JP12832997A JP3822709B2 JP 3822709 B2 JP3822709 B2 JP 3822709B2 JP 12832997 A JP12832997 A JP 12832997A JP 12832997 A JP12832997 A JP 12832997A JP 3822709 B2 JP3822709 B2 JP 3822709B2
Authority
JP
Japan
Prior art keywords
steel material
current
electrode
steel
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12832997A
Other languages
Japanese (ja)
Other versions
JPH10317190A (en
Inventor
鋼治 安達
治 久末
孝 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12832997A priority Critical patent/JP3822709B2/en
Publication of JPH10317190A publication Critical patent/JPH10317190A/en
Application granted granted Critical
Publication of JP3822709B2 publication Critical patent/JP3822709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、コイル状の鋼材を巻き戻しながら連続通材させてリン酸塩皮膜を形成させる装置に関するものである。
【0002】
【従来の技術】
従来、鋼材へのリン酸塩処理は、部品加工用の潤滑皮膜下地処理、防錆処理、および塗装下地処理として広く利用されている。リン酸塩処理は一般的に浸漬法、スプレー法により実施される。
そこで、鋼材をリン酸亜鉛処理液に浸漬すると、以下の反応が起こる。
(アノード反応)Fe→Fe 2+ +2e-
(カソード反応)2H+ +2e- →H2
ここでアノード反応は、リン酸による鋼材面の溶解腐食反応であり、鋼材面に電子を与えるとともに鋼材表面を活性化して析出するリン酸塩の結晶と鋼材表面の密着性が確保される。また、鋼材内に与えられた電子により起こるカソード反応は溶液中に分離して浮遊していた水素イオンを水素分子へと変換する反応である。処理液の平均的なpHは2前後であるがカソード反応が起きた鋼材面近くではpHが4前後まで上昇し、リン酸亜鉛結晶(Zn3 (PO4 2 )の析出条件を満足し、鋼材表面にリン酸亜鉛皮膜が形成される。
(3Zn(H2 PO4 2 →Zn3 (PO4 2 +H3 PO4
【0003】
このリン酸亜鉛皮膜を下地処理として表面にステアリン酸塩等の金属石鹸からなる潤滑剤の皮膜を形成させることにより、冷間鍛造のごとく面圧が3000(MPa)、摩擦面温度400℃、表面積の拡大率が100倍にも達する過酷な条件下においても鋼材と金型間の摩擦力を下げて金型の摩耗や焼き付きを防止できる。
しかしながら、このリン酸亜鉛皮膜の形成反応は電気化学反応とpH変動に伴う平衡反応および結晶析出反応が互いに関連作用する複合的な反応であるため液の温度、濃度や成分変動により皮膜量が十分得られなかったり、鋼材との密着性が十分でないと上記冷間鍛造加工で焼き付き等の不具合を発生する要因となる。
【0004】
また、皮膜付着状態を鋼材表面全体で均一に処理するために必要な時間は、平板を処理槽内に浸漬するような系、すなわち処理液が鋼材表面に対して十分置換可能な場合でも20秒から2分程度、コイル状に巻き取られた鋼材を処理槽内に浸漬するような系、すなわちコイルの内部に滞留した処理液の置換が十分に起きない系では3分から8分という長い時間を要し生産性向上の点で問題があった。そこでリン酸塩処理の促進技術の一つとして電気的促進法が考案されている。リン酸塩処理の電気的促進技術は英国特許16300号(1909年)で直流定電流法が開示されて以来、交流通電法(例えば特公昭49−46220号公報)や、パルス電流印加法(例えば特開昭59−197596号公報,特開平6−322592号公報)等の改良が重ねられている。
【0005】
【発明が解決しようとする課題】
リン酸塩処理の電気的促進方法は、皮膜付着量の確保と鋼材表面との密着性を両立させることができないという問題があり実用化には至っていない。
リン酸塩溶液中で陰極電極を対面に浸漬すると鋼材表面が陽極電解されアノード反応が選択的に促進される。しかし、このときカソード反応によるpH変動がほとんど起きないためリン酸塩皮膜生成量が確保できないばかりか過剰溶出したFeイオンがZnイオンと置換したリン酸亜鉛鉄(Zn2 Fe(PO4 2 )を主成分とした皮膜が析出してしまい所期の目的を達し得ない。
【0006】
同様にリン酸塩溶液中で陽極電極を対面に浸漬すると鋼材表面が陰極電解され、カソード反応を促進する。この結果pH変動が十分に起きるため供給電流に応じてリン酸塩皮膜生成の析出を増大させることができるが、アノード反応がないため鋼材とリン酸塩皮膜の密着性が悪く、部品加工時に剥離してしまい金型との焼付けを起こしてしまう等の問題があった。
この問題を解決する方法として鋼材に付与する電流をパルス電流や正逆反転サイクル電流とする方法(例えば特開昭59−197596号公報)によりアノード反応とカソード反応の各々の促進する時間帯を繰り返し実施することでリン酸塩皮膜生成の析出増大を狙ったものであるが、パルス電流で陰極電解する場合では電流休止期間中に若干のアノード反応が期待できるものの直流電流と根本的には変わらない。また、正逆反転サイクル電流とした場合は、陽極電解中に処理を完了した部位の皮膜は、一旦析出した皮膜と鋼材の界面にあるFeが陽極電解中のアノード反応により局所的に侵食されてしまい鋼材との密着性が著しく阻害されてしまうという問題があり、所期の目的を達しえなかった。
【0007】
また、鋼材に電流を印加する方法として線材、棒鋼、鋼板、パイプ等のコイル状に巻き取られた鋼材を巻き戻しながら通材させつつ電気的促進方を適用する場合、図4に示すごとくリン酸塩処理槽33の入側と出側に配置した抑えローラー32により鋼材1はリン酸塩処理液34中に浸漬される。ここで、通電ローラー31あるいは通電ブラシなどにより鋼材に直接接触させて、リン酸塩溶液34中に通材方向に沿って鋼材と対面するよう配置された電極21との間にある電源装置8により鋼材1に電流を印加する直流通電方式が採用されている。しかしこの方法では、不可避的に鋼材の凹凸、曲がり等に表面欠陥や、通電ローラーやブラシ表面の摩耗等により鋼材への電気供給時の放電が発生し孔触されたり、鋼材表面に疵が発生してしまうという問題があった。
本発明の目的は、極短時間で密着制に優れた鋼材のリン酸塩皮膜生成を可能とする鋼材の表面処理装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の要旨は、次のとおりである。
(1)リン酸塩処理液中に鋼材を連続的に通材させながら電流を印加して鋼材表面にリン酸塩皮膜を形成させる鋼材の表面処理装置において、リン酸塩処理槽内に鋼材の経路に沿って隣り合った陰極電極と陽極電極との一対以上を各陰極電極が通材方向の上流側になるように配置し、(陰極電極の通材方向長さ/陽極電極の通材方向長さ)の比が0.2〜0.3であり、各電極は通過する鋼材に接触しない位置に配置せしめ、各対内の陰極電極と陽極電極とは直流定電流またはパルス電流を供給する単一の電源装置を介して電気的に接続して、電極と鋼材を直接接触させることなく、かつ、各対間で個別に電流印加を可能に構成したことを特徴とする鋼材の表面処理装置にある。
【0009】
本発明はリン酸塩処理液中で鋼材の通材方向の上流側に陰極電極を、下流側に陽極電極を配置して連続的に鋼材を通材処理するのでリン酸塩処理におけるアノード反応を陰極電極による陽極電解帯で行った後、カソード反応を陽極電極による陰極電解帯で実施できるので、短時間で密着性の良い皮膜を生成できる。
また、本発明は直流定電流を印加した場合には最も効率良く電気を供給できるので、処理時間が短くなることや、電極の表面積を最小限にして設計できる等の点で優れている。また、パルス電流にした場合は電流休止期間があるため直流電流に比べると供給できる電気量は少なくなるが、鋼材表面に生成するリン酸塩皮膜の結晶が緻密になり鋼材との密着性が向上する。すなわちパルス電流では通電時の電流密度(ip)と1週期の間に電流が流れる割合(θ)の積であるパルス平均電流密度(ip×θ)が直流定電流の電流密度と同等であり、またパルス電流の電流休止期間中に鋼材表面近傍のリン酸塩処理液が置換され、再度電流が流れる際に新たな皮膜結晶析出の起点が発生し、結晶粒が緻密で微細化されるためと考えられる。
また、本発明はリン酸塩処理液中に経路に沿って浸漬配置した隣り合った電極間に電源装置を介して連接することにより鋼材と電極を直接接触させることなく鋼材に電流を印加できるので、鋼材表面の孔触や疵の発生が防止できる。また、単一の電源装置のみで陽極電解帯と陰極電解帯とをリン酸塩処理槽内に効率よく形成できる。
【0010】
【発明の実施の形態】
次に本発明の実施の形態について説明する。
本発明の適用となる鋼材とは熱間圧延材や焼きなまし処理材はもとより、表面に亜鉛メッキ処理した鋼材、その他、原理的にリン酸塩処理が可能な全ての鋼材を対象として実施可能である。
また、本発明でいうリン酸塩とは、リン酸亜鉛、リン酸ニッケル、リン酸カルシウム、リン酸鉄の一種または2種以上を含有してなるものである。
また、本発明により鋼材に印加される電流は直流定電流あるいはパルス電流であるが、直流定電流は電流密度が50〜200000A/m2 、の範囲であることが望ましい。電流密度がこの範囲よりも小さい場合は電流印加による促進効果がほとんど期待できなく、電流密度がこの範囲を超えると処理液の物質移動が皮膜生成速度を律速するため電流値を増やしても促進効果には影響しなくなるためである。
【0011】
本発明について更に詳しく図示の例により説明する。図1は本発明による電流印加式のリン酸塩処理装置例の側面図である。リン酸塩処理槽33には鋼材通材方向の上流側で陽極電解を、下流側で陰極電解を行うよう電極21が電源装置8を介して電気的に接続されている。鋼材1は図の左方より移動し抑えローラー32によりリン酸塩処理槽33に導かれリン酸塩処理液34中に浸漬される。鋼材は電源装置8の陰極側に接続した電極21により陽極電解されアノード反応が急激に起き鋼材表面は活性化される。その後鋼材は電源装置8の陽極側に接続した電極22により陰極電解されカソード反応が起き鋼材近傍の処理液のpHが上昇し極短時間で皮膜結晶が析出する。この結果、皮膜付着量の確保と鋼材表面との密着性を両立させたリン酸塩皮膜が得られる。
【0012】
ここで陽極電解帯と陰極電解帯の総電流値は等しいため両帯の長さが等しい場合は鋼材表面の電流密度が等しく、電解帯長さが異なる場合は電解帯長さに反比例して電流密度は小さくなる。よって、陽極電解帯と陰極電解帯の長さが極端に違うと各電解反応を効率良く行うことができない。また、陰極電解帯の方がリン酸塩結晶析出のための時間を要することから、陽極電解帯と陰極電解帯との長さの比は0.2〜0.3:1.0の範囲が好ましい。
また電極の材質は、炭素電極により良好な結果が得られたが、金属であれば、白金、チタン、イリジウム等のいわゆる貴なる金属やその酸化物からなるものとすることで、電解反応時に電極がリン酸塩液中へ溶出することを防ぐことが可能である。
【0013】
図2は本発明による電流印加式のリン酸塩処理装置の他の例の側面図である。リン酸塩処理槽33内に陽極電解帯と陰極電解帯を各々2ケ所づつ交互に連続配置した例である。この場合、電源装置8を2個に分散できるので比較的小容量の電源装置でもよく、また上流側の陰極帯と下流側の陰極帯で電流の種類、電流密度を変えて組み合わせることも可能となる。ここで、上流側の電流密度を下流側のそれより大きくした前段負荷型にすると総投入電力が同じでもより多くの皮膜を生成可能である。これは、皮膜生成反応の後半では鋼材表面の過半に非導電性のリン酸塩の結晶が付着しており電流印加の効果が小さくなっているためと考えられる。
【0014】
図3は図1の電流印加式のリン酸塩処理装置を組み込んだ線材の連続処理装置である。サプライスタンド2より引き出されたコイル状の鋼材1は伸線機13を動力として長手方向に矯正機3、デスケーリング装置4、洗浄・予熱装置5を通過した後にリン酸塩処理槽33へ移送される。
このリン酸塩処理槽33には陽極電解帯6と陰極電解帯7が鋼材の経路に沿って備えられている。陽極電解帯6には電源装置8の陰極側が接続された陰極電極21が、陰極電解帯7には電源装置8の陽極側が接続された陽極電極22が各々リン酸塩処理液34中に浸漬配置される。このとき、鋼材の通材方向に対して陽極電解帯6が陰極電解帯7の上流側となるよう配置され、電極は処理する鋼材の投影幅以上の大きさのものを鋼材を挟んで対面に直接鋼材に接触しないように配置することで鋼材周方向における皮膜量のばらつきを抑えることが可能である。
リン酸塩処理槽33を出た鋼材1は洗浄・中和装置9、石鹸処理装置10、乾燥装置11を経過した後、伸線ダイス12にて縮径され、捲取装置14にて再度コイル状に巻き取られる。
また、上記連続処理装置のデスケーリング装置4にショットブラスト等のメカニカルデスケーリングにて脱スケールした場合、極微量ではあるものの除去しきれなかった鉄スケール、合金酸化物が鋼材表面に残存し、リン酸塩の付着を阻害するという問題があるが、本発明のリン酸塩処理槽内での陽極電解帯で完全除去が可能となる。
【0015】
【実施例】
本発明の実施例を、鋼線材にリン酸亜鉛皮膜を形成させた場合について詳述する。
表1には図3の連続処理装置を用いて本発明法と従来法とを以下の条件で実施した結果について示す。ここで、鋼材表面に生成せしめたリン酸亜鉛皮膜の付着量を評価するため処理後の鋼材を酸性溶液に溶かすという方法でリン酸亜鉛皮膜量を測定した。リン酸亜鉛皮膜量はその用途により好適な値が選定されるが4〜20g/m2 の範囲が好ましい。また、鋼材とリン酸亜鉛皮膜の密着性を評価するため、処理材を孔型ダイスで伸線加工した後のリン酸亜鉛皮膜量を測定し、伸線前後の皮膜量からリン酸亜鉛皮膜の残存率を求めた。
【0016】
(実施条件)
被処理材:JIS S45C相当,直径7.5mm
デスケーリング:ショットブラスト
処理材予熱温度:85℃
リン酸亜鉛処理:濃度30〜80ポイント,処理時間5秒

Figure 0003822709
潤滑石鹸:石灰石鹸(固形分濃度18%)
乾燥:熱風温度150℃,乾燥時間10秒
伸線条件:仕上線径φ6.5mm(減面率25%)
【0017】
表1から明らかなように、本発明法による実施例1では6〜14.5g/m2 のリン酸亜鉛皮膜の付着量が確保され、更に伸線後も皮膜の87%は鋼材表面に残存する優れた密着性が得られている。また実施例2は陽極電解帯と陰極電解帯からなる組の工程を2回行うので、実施例1よりも総投入電力が10%少ないにもかかわらずほぼ同等の皮膜付着と密着性が得られた。また実施例3ではパルス電流の結晶粒微細化作用により伸線後の皮残存率は90%にまで向上した。
【0018】
【表1】
Figure 0003822709
【0019】
【発明の効果】
以上に述べたように、本発明法に従えば、電気的リン酸塩処理においても皮膜量の確保と、鋼材と皮膜の密着性を兼ね備えた優れた表面処理材を製造可能となったばかりか生産性向上による経済的効果や省力化にもたらす効果は極めて大きい。
【図面の簡単な説明】
【図1】本発明の陽極電解帯と陰極電解帯を各々1つづつ備えたリン酸塩処理方法と装置を示す概念図、
【図2】本発明の陽極電解帯と陰極電解帯を各々2つづつ備えたリン酸塩処理方法と装置を示す概念図、
【図3】本発明の電気的リン酸塩処理装置を組み込んだ線材の連続処理装置のブロック図、
【図4】従来法による電気的リン酸塩処理方法と装置を示す概念図である。
【符号の説明】
1 鋼材
2 サプライスタンド
3 矯正機
4 デスケーリング装置
5 洗浄・予熱装置
6 陽極電解帯
7 陰極電解帯
8 電源装置
9 洗浄・中和槽
10 潤滑石鹸処理装置
11 乾燥装置
12 伸線ダイス
13 伸線機
14 捲取装置
21 電極(陰極)
22 電極(陽極)
31 通電ローラー
32 抑えローラー
33 リン酸塩処理槽
34 リン酸塩処理液[0001]
[Industrial application fields]
The present invention relates to an apparatus for forming a phosphate film by continuously passing a coiled steel material while rewinding it.
[0002]
[Prior art]
Conventionally, phosphating on steel materials has been widely used as a lubricant film base treatment, rust prevention treatment, and paint base treatment for parts processing. Phosphate treatment is generally carried out by dipping or spraying.
Therefore, when the steel material is immersed in the zinc phosphate treatment solution, the following reaction occurs.
(Anode reaction) Fe → Fe 2+ + 2e
(Cathode reaction) 2H + + 2e - → H 2
Here, the anodic reaction is a dissolution corrosion reaction of the steel material surface by phosphoric acid, which provides electrons to the steel material surface and activates the steel material surface to ensure the adhesion between the phosphate crystal and the steel material surface. Moreover, the cathode reaction caused by the electrons given in the steel is a reaction that converts hydrogen ions separated and suspended in the solution into hydrogen molecules. The average pH of the treatment solution is around 2, but the pH rises to around 4 near the steel surface where the cathode reaction has occurred, satisfying the precipitation condition of zinc phosphate crystals (Zn 3 (PO 4 ) 2 ), A zinc phosphate coating is formed on the steel surface.
(3Zn (H 2 PO 4 ) 2 → Zn 3 (PO 4 ) 2 + H 3 PO 4
[0003]
By using this zinc phosphate coating as a base treatment to form a lubricant coating composed of a metal soap such as stearate on the surface, the surface pressure is 3000 (MPa) as in cold forging, the friction surface temperature is 400 ° C., the surface area Even under harsh conditions in which the enlargement ratio is as high as 100 times, the friction force between the steel material and the mold can be lowered to prevent the mold from being worn or seized.
However, since the formation reaction of this zinc phosphate film is a complex reaction in which the electrochemical reaction, the equilibrium reaction associated with pH fluctuation, and the crystal precipitation reaction interact with each other, the film amount is sufficient due to the temperature, concentration, and component fluctuations of the solution. If it is not obtained or if the adhesiveness with the steel material is not sufficient, it causes a problem such as seizure in the cold forging process.
[0004]
In addition, the time required to uniformly treat the film adhesion state on the entire steel surface is 20 seconds even in a system in which a flat plate is immersed in a treatment tank, that is, even when the treatment liquid can be sufficiently replaced on the steel surface. In a system in which a steel material wound in a coil shape is immersed in a treatment tank for about 2 minutes from 1 to 3 minutes, that is, in a system in which the treatment liquid staying inside the coil is not sufficiently replaced, a long time of 3 to 8 minutes is required. In short, there was a problem in terms of productivity improvement. Thus, an electrical promotion method has been devised as one of the technologies for promoting phosphate treatment. Since the DC constant current method was disclosed in British Patent No. 16300 (1909) as an electrical acceleration technique for phosphating, an AC energization method (for example, Japanese Patent Publication No. 49-46220) or a pulse current application method (for example, Improvements such as JP 59-197596 A and JP 6-322592 A have been repeated.
[0005]
[Problems to be solved by the invention]
The electrical promotion method for phosphating has not been put into practical use because there is a problem that it is impossible to achieve both the securing of the coating amount and the adhesion to the steel surface.
When the cathode electrode is immersed in the phosphate solution in the opposite surface, the surface of the steel material is anodically electrolyzed and the anode reaction is selectively promoted. However, since there is almost no pH fluctuation due to the cathode reaction at this time, it is not possible to secure the amount of phosphate film formation, and zinc iron phosphate (Zn 2 Fe (PO 4 ) 2 ) in which excessively eluted Fe ions are replaced with Zn ions. As a result, a film containing the main component as a main component is deposited, and the intended purpose cannot be achieved.
[0006]
Similarly, when the anode electrode is immersed in the phosphate solution in the opposite side, the surface of the steel material is subjected to cathodic electrolysis to promote the cathode reaction. As a result, sufficient pH fluctuation occurs, so that the precipitation of phosphate film formation can be increased according to the supply current. However, since there is no anode reaction, the adhesion between the steel material and the phosphate film is poor, and peeling occurs when parts are processed. As a result, there were problems such as burning the mold.
As a method for solving this problem, a method in which the current applied to the steel material is a pulse current or a forward / reverse reversal cycle current (for example, Japanese Patent Application Laid-Open No. 59-197596) is used to repeat the time zone for promoting the anode reaction and the cathode reaction. Although it is aimed at increasing precipitation of phosphate film formation by implementing it, in the case of cathodic electrolysis with pulse current, although a slight anode reaction can be expected during the current pause period, it is not fundamentally different from DC current . In addition, when the forward / reverse reversal cycle current is used, the coating at the site where the treatment was completed during anodic electrolysis is caused by local erosion of Fe at the interface between the deposited coating and the steel material by the anodic reaction during anodic electrolysis. As a result, there is a problem that the adhesion with the steel material is significantly hindered, and the intended purpose cannot be achieved.
[0007]
In addition, as a method of applying an electric current to a steel material, when applying the electrical promotion method while passing the steel material wound up in a coil shape such as a wire rod, a steel bar, a steel plate, a pipe, etc., as shown in FIG. The steel material 1 is immersed in the phosphating solution 34 by holding rollers 32 arranged on the entry side and the exit side of the acid treatment tank 33. Here, the power supply device 8 is in direct contact with the steel material by the energizing roller 31 or the energizing brush, and between the electrode 21 disposed so as to face the steel material in the phosphate solution 34 along the material passing direction. A direct current energization method for applying a current to the steel material 1 is employed. However, this method inevitably causes a surface defect such as unevenness or bending of the steel material, or electric discharge to the steel material due to wear on the surface of the current roller or brush, etc. There was a problem of doing.
The objective of this invention is providing the surface treatment apparatus of the steel materials which enables the phosphate film production | generation of the steel materials excellent in adhesion control in a very short time.
[0008]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) In a steel surface treatment apparatus for forming a phosphate film on the surface of a steel material by applying an electric current while continuously passing the steel material through the phosphate treatment liquid, Arrange a pair of cathode electrodes and anode electrodes adjacent to each other along the path so that each cathode electrode is on the upstream side in the threading direction. (Length of cathode electrode threading direction / direction of anode electrode threading) (Length) ratio is 0.2 to 0.3, each electrode is disposed at a position not in contact with the passing steel material, and the cathode electrode and the anode electrode in each pair are simply a DC constant current or a pulse current. A steel material surface treatment apparatus characterized in that it is electrically connected via a single power supply device, and the current can be individually applied between each pair without direct contact between the electrode and the steel material. is there.
[0009]
In the present invention, a cathode electrode is arranged upstream of the steel material passing direction in the phosphating solution, and an anode electrode is arranged downstream of the steel material so that the steel material is continuously treated. Since the cathode reaction can be carried out in the cathodic electrolysis zone using the anode electrode after the anodic electrolysis zone using the cathode electrode, a film having good adhesion can be formed in a short time.
In addition, the present invention is superior in that it can supply electricity most efficiently when a DC constant current is applied, so that the processing time can be shortened and the electrode surface area can be minimized. In addition, when the pulse current is used, the amount of electricity that can be supplied is less than the direct current because there is a current quiescent period, but the phosphate film crystals formed on the surface of the steel material become denser and the adhesion to the steel material is improved. To do. That is, in the pulse current, the pulse average current density (ip × θ), which is the product of the current density (ip) during energization and the ratio (θ) in which current flows during one week, is equal to the current density of the DC constant current, In addition, the phosphating solution near the steel surface is replaced during the current suspension period of the pulse current, and when the current flows again, a new starting point for film crystal precipitation occurs, and the crystal grains become dense and refined. Conceivable.
In addition, the present invention can apply an electric current to the steel material without directly contacting the steel material and the electrode by connecting the adjacent electrodes immersed in the phosphating solution along the path through a power supply device. In addition, it is possible to prevent the occurrence of holes and wrinkles on the steel surface. In addition, the anodic electrolysis zone and the cathodic electrolysis zone can be efficiently formed in the phosphate treatment tank using only a single power supply device.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
The steel materials to which the present invention is applied can be applied not only to hot-rolled materials and annealed materials, but also to steel materials that have been galvanized on the surface, and all steel materials that can be phosphated in principle. .
The phosphate referred to in the present invention contains one or more of zinc phosphate, nickel phosphate, calcium phosphate, and iron phosphate.
The current applied to the steel product by the present invention is a DC constant current or pulsed current, the DC constant current is preferably a current density in the range of 50~200000A / m 2,. When the current density is lower than this range, almost no promotion effect can be expected by applying current. When the current density exceeds this range, the mass transfer of the treatment liquid will limit the film formation rate, so even if the current value is increased, the promotion effect is achieved. This is because there is no influence on.
[0011]
The present invention will be described in more detail with reference to the illustrated examples. FIG. 1 is a side view of an example of a current application type phosphating apparatus according to the present invention. An electrode 21 is electrically connected to the phosphate treatment tank 33 via the power supply device 8 so as to perform anodic electrolysis on the upstream side in the steel material passing direction and cathodic electrolysis on the downstream side. The steel material 1 moves from the left side of the figure and is guided by the roller 32 to the phosphating bath 33 and immersed in the phosphating solution 34. The steel material is anodically electrolyzed by the electrode 21 connected to the cathode side of the power supply device 8, and an anodic reaction occurs abruptly to activate the steel material surface. Thereafter, the steel material is catholyzed by the electrode 22 connected to the anode side of the power supply device 8 to cause a cathode reaction, whereby the pH of the treatment liquid in the vicinity of the steel material rises and a film crystal is deposited in a very short time. As a result, it is possible to obtain a phosphate film that ensures both the amount of film adhesion and the adhesion to the steel surface.
[0012]
Here, since the total current value of the anodic electrolysis zone and the cathodic electrolysis zone is equal, if the lengths of both zones are equal, the current density on the steel surface is equal, and if the electrolysis zone lengths are different, the current is inversely proportional to the electrolysis zone length. Density decreases. Therefore, if the lengths of the anodic electrolysis zone and the cathodic electrolysis zone are extremely different, each electrolytic reaction cannot be performed efficiently. In addition, since the cathode electrolysis zone requires more time for precipitation of phosphate crystals, the ratio of the length of the anodic electrolysis zone to the cathode electrolysis zone is in the range of 0.2 to 0.3: 1.0 . preferable.
In addition, although the electrode material is a carbon electrode, good results were obtained. However, if it is a metal, it can be made of a so-called noble metal such as platinum, titanium, iridium or its oxide, so that the electrode can be used during an electrolytic reaction. Can be prevented from eluting into the phosphate solution.
[0013]
FIG. 2 is a side view of another example of the phosphating apparatus of the current application type according to the present invention. This is an example in which an anodic electrolysis zone and a cathodic electrolysis zone are alternately and continuously arranged in two places in the phosphating tank 33. In this case, since the power supply device 8 can be distributed to two, a power supply device having a relatively small capacity may be used, and it is also possible to combine the upstream cathode band and the downstream cathode band by changing the type of current and the current density. Become. Here, if the upstream load current density is made larger than that on the downstream side, more films can be generated even if the total input power is the same. This is presumably because in the latter half of the film formation reaction, non-conductive phosphate crystals adhere to the majority of the steel material surface, and the effect of current application is reduced.
[0014]
FIG. 3 shows a continuous processing apparatus for a wire rod incorporating the current application type phosphate processing apparatus of FIG. The coiled steel material 1 drawn out from the supply stand 2 is transferred to the phosphating tank 33 after passing through the straightening device 3, descaling device 4 and cleaning / preheating device 5 in the longitudinal direction by using the wire drawing machine 13 as power. The
The phosphating tank 33 is provided with an anodic electrolysis zone 6 and a cathodic electrolysis zone 7 along the path of the steel material. A cathode electrode 21 connected to the cathode side of the power supply device 8 is immersed in the anodic electrolytic zone 6, and an anode electrode 22 connected to the anode side of the power supply device 8 is immersed in the phosphating solution 34. Is done. At this time, the anodic electrolysis zone 6 is disposed upstream of the cathodic electrolysis zone 7 with respect to the passing direction of the steel material, and the electrodes are opposed to each other across the steel material with a size larger than the projected width of the steel material to be processed. It is possible to suppress variations in the coating amount in the circumferential direction of the steel material by arranging so as not to directly contact the steel material.
After passing through the washing / neutralizing device 9, the soap treatment device 10, and the drying device 11, the steel material 1 exiting the phosphate treatment tank 33 is reduced in diameter by the wire drawing die 12, and again coiled by the scraping device 14. Rolled up into a shape.
In addition, when descaling is performed on the descaling device 4 of the above-described continuous processing device by mechanical descaling such as shot blasting, iron scale and alloy oxides that are extremely small but could not be removed remain on the surface of the steel material, and phosphorus Although there is a problem of inhibiting the adhesion of the acid salt, it can be completely removed by the anodic electrolysis zone in the phosphate treatment tank of the present invention.
[0015]
【Example】
Examples of the present invention will be described in detail with respect to the case where a zinc phosphate film is formed on a steel wire.
Table 1 shows the results of carrying out the method of the present invention and the conventional method under the following conditions using the continuous processing apparatus of FIG. Here, in order to evaluate the adhesion amount of the zinc phosphate film formed on the steel material surface, the zinc phosphate film amount was measured by a method of dissolving the treated steel material in an acidic solution. A suitable value for the amount of zinc phosphate coating is selected depending on its use, but a range of 4 to 20 g / m 2 is preferred. In addition, in order to evaluate the adhesion between the steel material and the zinc phosphate coating, the amount of zinc phosphate coating after the treatment material was drawn with a hole die was measured, and the amount of zinc phosphate coating before and after wire drawing was measured. The survival rate was determined.
[0016]
(Implementation conditions)
Material to be treated: JIS S45C equivalent, diameter 7.5mm
Descaling: Shot blasting material preheating temperature: 85 ° C
Zinc phosphate treatment: concentration 30-80 points, treatment time 5 seconds
Figure 0003822709
Lubricating soap: Lime soap (solid content 18%)
Drying: Hot air temperature 150 ° C., drying time 10 seconds Drawing condition: Finished wire diameter φ6.5 mm (area reduction rate 25%)
[0017]
As can be seen from Table 1, in Example 1 according to the method of the present invention, an adhesion amount of 6 to 14.5 g / m 2 of zinc phosphate film was secured, and 87% of the film remained on the steel surface even after wire drawing. Excellent adhesion is obtained. In addition, since Example 2 performs the process of a set including an anodic electrolysis zone and a cathodic electrolysis zone twice, almost the same film adhesion and adhesion can be obtained even though the total input power is 10% less than that in Example 1. It was. Further, in Example 3, the remaining rate of the skin after wire drawing was improved to 90% due to the grain refinement effect of the pulse current.
[0018]
[Table 1]
Figure 0003822709
[0019]
【The invention's effect】
As described above, according to the method of the present invention, it has become possible not only to produce an excellent surface treatment material that has both the amount of coating and the adhesion between steel and coating even in electrical phosphate treatment. The effect of improving the economic efficiency and labor saving is extremely large.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a phosphating method and apparatus having one anodic electrolysis zone and one cathodic electrolysis zone according to the present invention,
FIG. 2 is a conceptual diagram showing a phosphating method and apparatus provided with two anodic electrolysis zones and two cathodic electrolysis zones according to the present invention,
FIG. 3 is a block diagram of a continuous processing apparatus for wire incorporating the electrical phosphate processing apparatus of the present invention;
FIG. 4 is a conceptual diagram showing an electrical phosphating treatment method and apparatus according to a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel 2 Supply stand 3 Straightening machine 4 Descaling apparatus 5 Cleaning / preheating apparatus 6 Anode electrolysis zone 7 Cathode electrolysis zone 8 Power supply device 9 Washing / neutralization tank 10 Lubricating soap treatment apparatus 11 Drying apparatus 12 Wire drawing die 13 Wire drawing machine 14 Trapping device 21 Electrode (cathode)
22 Electrode (Anode)
31 Energizing roller 32 Retaining roller 33 Phosphate treatment tank 34 Phosphate treatment liquid

Claims (1)

リン酸塩処理液中に鋼材を連続的に通材させながら電流を印加して鋼材表面にリン酸塩皮膜を形成させる鋼材の表面処理装置において、リン酸塩処理槽内に鋼材の経路に沿って隣り合った陰極電極と陽極電極との一対以上を各陰極電極が通材方向の上流側になるように配置し、陰極電極の通材方向長さ/陽極電極の通材方向長さの比が0.2〜0.3であり、各電極は通過する鋼材に接触しない位置に配置せしめ、各対内の陰極電極と陽極電極とは直流定電流またはパルス電流を供給する単一の電源装置を介して電気的に接続して、電極と鋼材を直接接触させることなく、かつ、各対間で個別に電流印加を可能に構成したことを特徴とする鋼材の表面処理装置。In steel surface treatment equipment that forms a phosphate film on the steel surface by applying an electric current while continuously passing the steel material through the phosphating solution, along the path of the steel material in the phosphating tank The cathode electrode and anode electrode adjacent to each other are arranged so that each cathode electrode is on the upstream side in the material passing direction, and the ratio of the cathode electrode passing direction length / the anode electrode passing direction length 0.2 to 0.3, each electrode is placed at a position where it does not come into contact with the passing steel material, and the cathode electrode and anode electrode in each pair are a single power supply device that supplies a DC constant current or pulse current. A surface treatment apparatus for steel material, which is configured to be electrically connected to each other without allowing direct contact between the electrode and the steel material, and allowing individual current application between each pair.
JP12832997A 1997-05-19 1997-05-19 Steel surface treatment equipment Expired - Fee Related JP3822709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12832997A JP3822709B2 (en) 1997-05-19 1997-05-19 Steel surface treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12832997A JP3822709B2 (en) 1997-05-19 1997-05-19 Steel surface treatment equipment

Publications (2)

Publication Number Publication Date
JPH10317190A JPH10317190A (en) 1998-12-02
JP3822709B2 true JP3822709B2 (en) 2006-09-20

Family

ID=14982104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12832997A Expired - Fee Related JP3822709B2 (en) 1997-05-19 1997-05-19 Steel surface treatment equipment

Country Status (1)

Country Link
JP (1) JP3822709B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502004010850D1 (en) * 2004-03-13 2010-04-15 Staku Anlagenbau Gmbh Process for the galvanic deposition of zinc phosphate or zinc-calcium-phosphate
CN102732867B (en) * 2012-06-02 2015-01-28 马鞍山市凯敏钢缆有限责任公司 Online phosphatization apparatus of metal wire rods
CN102728656B (en) * 2012-06-02 2015-04-15 马鞍山市凯敏钢缆有限责任公司 Pickling-free drawing method of middle and high carbon wire rods

Also Published As

Publication number Publication date
JPH10317190A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5472579A (en) Hot-rolled steel strip manufacturing and descaling method and apparatus
US6235180B1 (en) Method for forming phosphate film on the steel wires and apparatus used therefore
JP3822709B2 (en) Steel surface treatment equipment
JP3200235B2 (en) Steel surface treatment method and apparatus
ES2268846T3 (en) PROCEDURE AND DEVICE FOR THE APPLICATION OF A PHOSPHATE COATING ON PARTS.
EP1358367B1 (en) Continuous electrolytic pickling and descaling of carbon steel and stainless steel
JP4145136B2 (en) Continuous processing method of steel wire
US6837973B1 (en) Apparatus for electrically coating a hot-rolled steel substrate
JP3300673B2 (en) Method and apparatus for quickly forming a phosphate coating on steel wire
JP4177476B2 (en) Method and apparatus for continuous cleaning of steel strip
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
JP3873335B2 (en) Electrolytic descaling method for steel strip
CN1187480C (en) Method and apparatus for producing hot-rolled steel belt with electrolytic coating
JP3846646B2 (en) Surface cleaning method by electrolysis of steel
CN114599824B (en) Electrically assisted pickling of steel
JP6720943B2 (en) Cold rolled steel sheet manufacturing method
JPS6023200B2 (en) Manufacturing equipment for iron-zinc alloy electroplated steel sheets
JP3123353B2 (en) Manufacturing method, descaling method and equipment for hot-rolled ordinary steel strip
JPS61261497A (en) Clad steel plate and method and apparatus for producing said plate
JPH03111598A (en) Production of steel wire for cold upsetting
JPH10152800A (en) Method for descaling steel strip
JPH0125395B2 (en)
JPH07216583A (en) Method for producing electrogalvanized steel sheet having excellent appearance and electroplating device
JPS6277497A (en) Installation for producing steel sheet for can having excellent weldability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees