JP3820894B2 - Manufacturing method of mold for forming honeycomb structure - Google Patents

Manufacturing method of mold for forming honeycomb structure Download PDF

Info

Publication number
JP3820894B2
JP3820894B2 JP2001035642A JP2001035642A JP3820894B2 JP 3820894 B2 JP3820894 B2 JP 3820894B2 JP 2001035642 A JP2001035642 A JP 2001035642A JP 2001035642 A JP2001035642 A JP 2001035642A JP 3820894 B2 JP3820894 B2 JP 3820894B2
Authority
JP
Japan
Prior art keywords
electric discharge
discharge machining
shape
electrode
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001035642A
Other languages
Japanese (ja)
Other versions
JP2002239844A (en
Inventor
清文 新屋
守 大西
和幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001035642A priority Critical patent/JP3820894B2/en
Publication of JP2002239844A publication Critical patent/JP2002239844A/en
Application granted granted Critical
Publication of JP3820894B2 publication Critical patent/JP3820894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

【0001】
【技術分野】
本発明は,格子状のスリット溝を有するハニカム構造体成形用金型の製造方法に関するものである。
【0002】
【従来技術】
六角形状のセルを有するセラミック製のハニカム構造体を製造するには,六角形格子状のスリット溝を有する金型を用いて押出成形を行う必要がある。後述する図2に示すごとく,上記金型としては,材料供給用の供給穴81と,該供給穴81に連通して六角格子状に設けたスリット溝82とを有するハニカム構造体成形用金型8を用いる。
【0003】
ハニカム構造体成形用金型8の六角形格子状のスリット溝を形成するには,金型素材の溝形成面に,放電加工を加える。
従来の放電加工用電極としては,得ようとするスリット溝全体の形状に対応した格子形状を有する放電加工用電極を用いていた。しかしながら,放電加工用電極自体の製造コスト,製造日数,品質上の問題から,放電加工方法の改善が望まれている。
【0004】
その改善策として,特開平12−24840号公報には,溝形成面を幅方向にn個の領域に分割した大きさの加工面をもつ放電加工用電極を用い,n回放電加工する方法が提案されている。この方法によれば,従来のスリット溝全体をカバーする大型の放電加工用電極を用いる場合と比べて大幅な改善効果が得られる。
【0005】
【解決しようとする課題】
しかしながら,上記の改善策においても,未だ次のような問題が残っている。すなわち,全体形状が円形の溝形成面を有するハニカム構造体成形用金型を放電加工する場合,その溝形成面を幅方向に分割した領域の分割方向と直交する方向の寸法は,中央部と端部とで大きく異なる。これを中央部の領域を加工可能な大きさの一種類の電極を用いて放電加工する場合,中央部の放電加工では加工面の大部分が使用されるが,端部を放電加工する場合には加工面の一部分しか使用されず無駄である。また,得ようとするスリット溝の格子寸法が同じであっても,外径寸法が変わると,放電加工用電極の最大幅寸法もその寸法に合わせて変える必要があった。
【0006】
本発明はかかる従来の問題点に鑑みてなされたもので,スリット溝の放電加工時に放電加工用電極を従来よりもさらに有効に使用できるハニカム構造体成形用金型の製造方法を提供しようとするものである。
【0007】
【課題の解決手段】
請求項1の発明は,少なくとも,材料供給用の複数の供給穴と,該供給穴に連通して六角形格子状に設けられ,材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型を製造する方法において,
上記スリット溝を加工するに当たっては,金型素材の溝形成面よりも小さい外形寸法の加工面を有し,該加工面が,六角格子状の電極を連ねて構成され,その輪郭部分も含めて全て六角格子状の電極よりなり,該加工面全体の輪郭形状が,その各辺が上記六角格子状の電極の格子形状に沿った凹凸形状である六角形を呈しており,該加工面の全体が周囲よりも突出している放電加工用電極を用いて,上記溝形成面を複数回放電加工することにより行うことを特徴とするハニカム構造体成形用金型の製造方法にある。
【0008】
次に,本発明の作用効果につき説明する。
本発明においては,上記放電加工用電極として,金型素材の溝形成面よりも小さい外形寸法を有し,その輪郭形状が略多角形であると共に全体が周囲よりも突出した上記加工面を有する放電加工用電極を用いる。
まず,上記放電加工用電極の加工面全体が周囲よりも突出しているので,溝形成面のどの位置に対しても制限無く上記放電加工用電極を用いた放電加工を行うことができる。すなわち,溝形成面の中央部分のみを加工する場合においても,放電加工用電極の加工面の周囲が溝形成面に当接して加工面の前進を妨げることがない。又,溝形成面の外周端を跨るように加工面を当接させても何ら制限無く放電加工を進めることができる。
【0009】
そして,金型素材の溝形成面に対しては,これを上記加工面の輪郭形状と同じ又はこれよりも小さい領域に分け,それぞれに放電加工を行う。このとき,上記加工面の輪郭形状と同じ領域に対しては文字通り加工面全体を無駄なく使用することができる。一方,例えば,溝形成面の端部を跨る領域を加工する場合には,一部の加工面が使用されない状態となる。この場合においても,他の部分,例えば反対側の端部付近を加工する際に,上記の使用されなかった加工面を使用することができる。又,そのように上記領域の区分を都合よく設定することができる。そのため,結果として放電加工用電極の加工面全体を平均的に効率よく使用することができる。
【0010】
また,加工しようとするハニカム構造体成形用金型におけるスリット溝の格子形状が同じであるならば,全体の大きさが変わっても同じ放電加工用電極を使用することができる。
このように,本発明では,上記の構成の加工面を有する放電加工用電極を用いることにより,ハニカム構造体成形用金型を製造する際の放電加工の合理化を進めることができる。
【0011】
次に上記放電加工用電極の上記加工面の輪郭形状は略六角形である。すなわち,該加工面全体の輪郭形状が,その各辺が上記六角格子状の電極の格子形状に沿った凹凸形状である六角形を呈している。これにより,溝形成面上における各加工領域を,重なり合うことなく効率よく容易に設定することができる。更に,円形の溝形成面を加工する際に,その端部においても加工面の未使用部の割合を小さくすることができる。
【0012】
また,請求項の発明のように,上記放電加工用電極を複数同時に用いて,複数箇所を同時に放電加工することができる。この場合には,複数箇所を同時に放電加工することができるので,その分全体の加工時間を短縮することができ,さらなる放電加工工程の合理化を図ることができる。
【0013】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかるハニカム構造体成形用金型の製造方法につき,図1〜図7を用いて説明する。
本例では,図1,図2に示すごとく,少なくとも,材料供給用の複数の供給穴81と,該供給穴81に連通して六角形格子状に設けられ,材料をハニカム形状に成形するためのスリット溝82とを有するハニカム構造体成形用金型8を製造する。
上記スリット溝82を加工するに当たっては,図4,図5に示すごとく,金型素材80の溝形成面85よりも小さい外形寸法の加工面10を有し,該加工面10の輪郭形状が略多角形であると共にその全体が周囲の基板部18よりも突出している放電加工用電極1を用いて,上記溝形成面85を複数回放電加工することにより行う。
【0014】
以下,これを詳説する。
本例において製造するハニカム構造体成形用金型8を製造するに当たっては,まず,図3(a)に示すごとく,溝形成面85と穴形成面84とを表裏に有する金型素材80を準備する。
次いで,図3(b)に示すごとく,金型素材80の穴形成面84にドリル加工により多数の供給穴81を設ける。
その後,図2,図3(c)に示すごとく,六角形格子状のスリット溝82を放電加工により形成する。これにより,図1(a)(b)に示すごとく,周囲部88よりも突出した溝形成面85に多数の六角格子状のスリット溝82を有するハニカム構造体成形用金型8が得られる。
【0015】
上記放電加工においては,図4,図5に示すごとく,金型素材80の溝形成面85よりも外形寸法が小さい加工面10を有する小型の放電加工用電極1を用いる。本例では,図5に示すごとく,加工面10の最大径Lは,金型素材80の溝形成面85の幅(径)Rよりも十分に小さく,1/5以下とした。
また,加工面10はその輪郭形状を略六角形に設けた。具体的には,六角形の各辺は,格子形状に沿って凹凸形状となっているが,その全体の形状は六角形を呈している。
【0016】
また,図5に示すごとく,上記加工面10は,その全体が周囲の基板部18よりも高さH10mm分だけ突出した六角格子状の電極15を連ねて構成されており,その輪郭部も含めてすべて加工可能な電極15となっている。
また,上記放電加工用電極1における加工面10の六角形格子の内部は,裏面まで貫通して設けてある。また,上記加工面10の周囲においても,基板部18に六角形の貫通穴17を設けてある。これは加工面10を形成する際に利用する穴である。なお,図4に示すごとく,基板部18に設けた丸い穴161,162は,放電加工装置に上記放電加工用電極1を固定するための固定具を挿入する穴である。
【0017】
次に,この放電加工用電極1を用いて金型素材80を加工するに当たっては,図6に示すごとき放電加工装置5を用いる。放電加工装置5は,タンク50内に配置されたベース部51とこれに内蔵された吸引装置52とを有し,吸引装置52の上面に金型素材80をセットするよう構成されている。また,金型素材80の上方には,図示しないヘッドに放電加工用電極1を固定し,これを上下,左右に移動可能に支持している。また,放電加工用電極1と金型素材80との間には,電源55によって電圧が付与されるようになっている。また,上記放電加工用電極1よりも下方が十分に浸かるように加工液59がタンク50内に満たされている。
【0018】
そして,実際に加工するに当たっては,まず,図7に示すごとく,六角形状を有する19の領域S1〜S19を想定する。そして,上記放電加工用電極1を用いて,これらの領域S1〜S19を,Sについた添え字の番号の順番に放電加工する。
具体的には,第1番目に,中央の領域S1を放電加工する。次いで,その周囲の領域S2〜S7を順次放電加工する。これらの領域S1〜S7の放電加工は,放電加工用電極1の加工面10の全体を用いて行われる。そのため,ここまでの時点では,放電加工用電極1が無駄なく有効に利用される。
【0019】
次に,本例では,領域S8を放電加工する。このときには,加工面10のおよそ左半分のみが使用され,右半分が未使用となる。次いで,溝形成面85の中心に関して上記領域S8と点対称に位置する領域S9を放電加工する。このときには,加工面10のおよそ右半分のみが使用され,左半分が未使用となる。したがって,このS8とS9の2つの領域を加工したことによって,加工面10はその全体が平均的に使用されたこととなる。
【0020】
次いで,領域S10,S11,....S19と順次放電加工することによって,溝形成面85の中心に関する一対の対称領域が順次放電加工される。これにより,一対の対象領域の一方の加工時に使用されなかった加工面10は,確実に他方の対象領域を加工する際に使用される。したがって,加工面10は,あまり偏りなく平均的に使用されることとなる。
【0021】
このように,本例においては,放電加工の際において,加工面10と同じ大きさの領域S1〜S7に対しては文字通り加工面10全体を無駄なく使用することができる。一方,溝形成面85の端部付近の領域を加工する場合には,一部の加工面10が使用されない状態となる場合がある。しかし,上記のごとく,複数回の他の場所の加工時に先に未使用であった部分を有効に使用することができる。そのため,結果として放電加工用電極1の加工面10全体を平均的に効率よく使用することができる。
【0022】
また,本例は,上記のごとく,放電加工用電極1の加工面10の輪郭形状を略六角形とした。これにより,溝形成面85上における各加工領域S1〜S19を,重なり合うことなく効率よく容易に設定することができた。更に,円形の溝形成面85を加工する際に,その端部においても加工面の未使用部の割合を小さくすることができた。
ただし,上記輪郭形状を六角形ではなく,略正方形等,その他の多角形形状に変えることも可能である。
【0023】
また,上記金型素材8の溝形成面85の外径Rが変化しても,六角格子の寸法が同じであるならば,上記と同一の加工面10を有する放電加工用電極1を用いて,上記と同様の手順で放電加工できる。それ故,放電加工用電極1を更に有効に利用することができる。
【0024】
実施形態例2
本例は,実施形態例1における放電加工用電極1を複数同時に用いて,複数箇所を同時に放電加工する例である。
具体的には,図7に示すごとく,溝形成面85を実施形態例1と同様に19の領域に分け,これを5つのグループG1〜G5に分類した。このグループG1の領域に対応するように7つの放電加工用電極1の加工面10を上記と同様の放電加工装置5のヘッドにセットして放電加工を繰り返した。
【0025】
まず,グループG1の7つの領域を放電加工し,次いで,7つの放電加工用電極1を互いの相対位置が変わらない状態で移動させ,グループG2の5つの領域を放電加工する。更に放電加工用電極1を移動させてグループG3の5つの領域を放電加工する。その後,グループG4の1つの領域を放電加工し,最後にグループG5の1つの領域を放電加工する。
このように,本例では,5回のサイクルで,19の領域を放電加工することができる。これにより,実施形態例1の場合よりも全体の放電加工時間を短縮することができる。
【0026】
実施形態例3
本例では,実施形態例1において使用する放電加工用電極1の加工面10の形状の別例を示す。
図9は,実施形態例1と同様のパターンを有するものである。すなわち,加工面10の輪郭部においても各六角形が完全に形成され,その形状に沿って凹凸があり,全体的に六角形を呈するものである。
【0027】
一方,図10は,上記と同様の単位格子を有するものであるが,その配置の方向を変更してる。そして,加工面10の輪郭部においては,六角形を半分に切断したような形状を有している。
いずれのパターンであっても,実施形態例1と同様の作用効果を得ることができる。
【図面の簡単な説明】
【図1】実施形態例1におけるハニカム構造体成形用金型の,(a)全体形状,(b)スリット溝形成状態,を示す説明図。
【図2】実施形態例1におけるハニカム構造体成形用金型の溝形成面と供給穴との関係を示す,(a)一部切欠き断面斜視図,(b)正面から見た説明図。
【図3】実施形態例1における,ハニカム構造体成形用金型の製造工程を示す説明図。
【図4】実施形態例1における,放電加工用電極を示す斜視図。
【図5】実施形態例1における,放電加工用電極の一部拡大斜視図。
【図6】実施形態例1における,放電加工用電極の構成を示す説明図。
【図7】実施形態例1における,溝形成面の放電加工領域を示す説明図。
【図8】実施形態例2における,溝形成面の放電加工領域を示す説明図。
【図9】実施形態例3における,放電加工用電極の加工面パターンを示す説明図。
【図10】実施形態例3における,放電加工用電極の他の加工面パターンを示す説明図。
【符号の説明】
1...放電加工用電極,
10...加工面,
15...電極,
18...基板部,
8...ハニカム構造体成形用金型,
80...金型素材,
81...供給穴,
82...スリット溝,
85...溝形成面,
[0001]
【Technical field】
The present invention relates to a method for manufacturing a mold for forming a honeycomb structure having lattice-shaped slit grooves.
[0002]
[Prior art]
In order to manufacture a ceramic honeycomb structure having hexagonal cells, it is necessary to perform extrusion molding using a mold having slit grooves in a hexagonal lattice shape. As shown in FIG. 2, which will be described later, the mold includes a honeycomb structure forming mold having a supply hole 81 for material supply and slit grooves 82 provided in a hexagonal lattice shape in communication with the supply hole 81. 8 is used.
[0003]
In order to form the hexagonal lattice slit grooves of the honeycomb structure forming mold 8, electric discharge machining is applied to the groove forming surface of the mold material.
As a conventional electric discharge machining electrode, an electric discharge machining electrode having a lattice shape corresponding to the shape of the entire slit groove to be obtained has been used. However, an improvement in the electrical discharge machining method is desired due to problems in the production cost, production days, and quality of the electrical discharge machining electrode itself.
[0004]
As an improvement measure, Japanese Patent Laid-Open No. 12-24840 discloses a method of performing electric discharge machining n times using an electric discharge machining electrode having a machining surface having a size obtained by dividing a groove forming surface into n regions in the width direction. Proposed. According to this method, a significant improvement effect can be obtained as compared with the conventional case of using a large electric discharge machining electrode that covers the entire slit groove.
[0005]
[Problems to be solved]
However, the following problems still remain in the above improvement measures. That is, when a honeycomb structure forming die having a groove forming surface with a circular overall shape is subjected to electric discharge machining, the dimension in the direction perpendicular to the dividing direction of the region obtained by dividing the groove forming surface in the width direction is It differs greatly at the end. When electric discharge machining is performed using one kind of electrode that is large enough to machine the central area, most of the machined surface is used in electric discharge machining in the central area, but when the edge is electric discharge machined. Is wasteful because only a part of the machined surface is used. In addition, even if the lattice dimensions of the slit grooves to be obtained are the same, if the outer diameter changes, it is necessary to change the maximum width of the electrode for electric discharge machining according to the dimensions.
[0006]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a method for manufacturing a die for forming a honeycomb structure capable of more effectively using an electrode for electric discharge machining at the time of electric discharge machining of a slit groove. Is.
[0007]
[Means for solving problems]
The invention according to claim 1 is a honeycomb structure having at least a plurality of supply holes for material supply, and a slit groove provided in a hexagonal lattice shape in communication with the supply holes and for forming the material into a honeycomb shape. In a method of manufacturing a body molding die,
When machining the slit groove, it has a machined surface with an outer dimension smaller than the groove-forming surface of the mold material, and the machined surface is formed by connecting hexagonal grid-like electrodes, including its contour part. All of the electrodes are hexagonal grid-like, and the contour shape of the entire processed surface is a hexagonal shape in which each side is a concavo-convex shape along the grid shape of the hexagonal grid-shaped electrode. In the method for manufacturing a honeycomb structure forming die, the groove forming surface is subjected to electric discharge machining a plurality of times using an electric discharge machining electrode protruding from the periphery.
[0008]
Next, the effects of the present invention will be described.
In the present invention, the electric discharge machining electrode has an outer dimension smaller than the groove forming surface of the mold material, the contour shape is substantially polygonal, and the entire machining surface protrudes from the periphery. An electrode for electric discharge machining is used.
First, since the entire machining surface of the electrode for electric discharge machining protrudes from the periphery, electric discharge machining using the electrode for electric discharge machining can be performed without any restriction on any position on the groove forming surface. That is, even when only the central portion of the groove forming surface is processed, the periphery of the processing surface of the electric discharge machining electrode does not come into contact with the groove forming surface to prevent the processing surface from moving forward. Further, even if the machining surface is brought into contact with the outer peripheral edge of the groove forming surface, the electric discharge machining can be advanced without any limitation.
[0009]
Then, the groove forming surface of the mold material is divided into regions that are the same as or smaller than the contour shape of the processed surface, and each is subjected to electric discharge machining. At this time, the entire processed surface can be used literally for the same region as the contour shape of the processed surface. On the other hand, for example, when a region straddling the end of the groove forming surface is processed, a part of the processed surface is not used. Even in this case, when machining other parts, for example, the vicinity of the opposite end, the above-described machining surface that has not been used can be used. In addition, it is possible to conveniently set the above-mentioned area division. Therefore, as a result, the entire machining surface of the electric discharge machining electrode can be used efficiently on average.
[0010]
Moreover, if the lattice shape of the slit grooves in the honeycomb structure forming die to be processed is the same, the same electric discharge machining electrode can be used even if the overall size changes.
As described above, in the present invention, by using the electric discharge machining electrode having the machining surface having the above-described configuration, it is possible to promote the rationalization of electric discharge machining when manufacturing the honeycomb structure forming mold.
[0011]
Next , the contour shape of the processed surface of the electric discharge machining electrode is a substantially hexagonal shape. That is, the contour shape of the entire processed surface has a hexagonal shape in which each side is an uneven shape along the grid shape of the hexagonal grid electrode. Thereby, each process area | region on a groove | channel formation surface can be set efficiently and easily, without overlapping. Furthermore, when the circular groove forming surface is processed, the ratio of the unused portion of the processed surface can be reduced also at the end portion.
[0012]
Further, as in the second aspect of the invention, a plurality of places can be simultaneously subjected to electric discharge machining by using a plurality of the electric discharge machining electrodes simultaneously. In this case, since a plurality of locations can be subjected to electric discharge machining at the same time, the machining time for the entire portion can be shortened, and the electric discharge machining process can be further rationalized.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A method for manufacturing a mold for forming a honeycomb structure according to an embodiment of the present invention will be described with reference to FIGS.
In this example, as shown in FIGS. 1 and 2, at least a plurality of supply holes 81 for material supply and a hexagonal lattice shape communicating with the supply holes 81 to form the material into a honeycomb shape are provided. The honeycomb structure forming mold 8 having the slit grooves 82 is manufactured.
When processing the slit groove 82, as shown in FIGS. 4 and 5, the slit groove 82 has a processing surface 10 having an outer dimension smaller than the groove forming surface 85 of the mold material 80, and the contour shape of the processing surface 10 is substantially the same. The groove forming surface 85 is subjected to electric discharge machining a plurality of times by using the electric discharge machining electrode 1 which is polygonal and protrudes from the surrounding substrate portion 18 as a whole.
[0014]
This will be described in detail below.
In manufacturing the honeycomb structure forming mold 8 to be manufactured in this example, first, as shown in FIG. 3A, a mold material 80 having a groove forming surface 85 and a hole forming surface 84 on the front and back is prepared. To do.
Next, as shown in FIG. 3B, a large number of supply holes 81 are provided in the hole forming surface 84 of the mold material 80 by drilling.
Thereafter, as shown in FIG. 2 and FIG. 3C, hexagonal lattice slit grooves 82 are formed by electric discharge machining. Thereby, as shown in FIGS. 1A and 1B, the honeycomb structure molding die 8 having a large number of hexagonal lattice slit grooves 82 on the groove forming surface 85 protruding from the peripheral portion 88 is obtained.
[0015]
In the electric discharge machining, as shown in FIGS. 4 and 5, a small electric discharge machining electrode 1 having a machining surface 10 whose outer dimensions are smaller than the groove forming surface 85 of the mold material 80 is used. In this example, as shown in FIG. 5, the maximum diameter L of the processed surface 10 is sufficiently smaller than the width (diameter) R of the groove forming surface 85 of the mold material 80 and is 1/5 or less.
Further, the machining surface 10 has a substantially hexagonal outline. Specifically, each side of the hexagon has an uneven shape along the lattice shape, but the overall shape is a hexagon.
[0016]
Further, as shown in FIG. 5, the processed surface 10 is composed of a hexagonal grid-like electrode 15 that is entirely protruded by a height H10 mm from the surrounding substrate 18 and includes its contour portion. Thus, all of the electrodes 15 can be processed.
Further, the inside of the hexagonal lattice of the machining surface 10 in the electric discharge machining electrode 1 is provided so as to penetrate to the back surface. In addition, a hexagonal through hole 17 is provided in the substrate portion 18 around the processed surface 10. This is a hole used when forming the processed surface 10. As shown in FIG. 4, the round holes 161 and 162 provided in the substrate portion 18 are holes for inserting a fixture for fixing the electric discharge machining electrode 1 to the electric discharge machining apparatus.
[0017]
Next, when machining the die material 80 using the electric discharge machining electrode 1, an electric discharge machining device 5 as shown in FIG. 6 is used. The electric discharge machining device 5 includes a base portion 51 disposed in a tank 50 and a suction device 52 built in the base portion 51, and is configured to set a mold material 80 on the upper surface of the suction device 52. Further, an electric discharge machining electrode 1 is fixed to a head (not shown) above the mold material 80 and supported so as to be movable up and down and left and right. In addition, a voltage is applied between the electric discharge machining electrode 1 and the mold material 80 by a power supply 55. Further, the working liquid 59 is filled in the tank 50 so that the lower part is sufficiently immersed below the electric discharge machining electrode 1.
[0018]
In actual processing, first, as shown in FIG. 7, 19 regions S1 to S19 having a hexagonal shape are assumed. Then, using the electric discharge machining electrode 1, these regions S <b> 1 to S <b> 19 are subjected to electric discharge machining in the order of the subscript numbers attached to S.
Specifically, first, the central region S1 is subjected to electric discharge machining. Next, the peripheral regions S2 to S7 are sequentially subjected to electric discharge machining. The electric discharge machining of these regions S1 to S7 is performed using the entire machining surface 10 of the electric discharge machining electrode 1. For this reason, the electric discharge machining electrode 1 is effectively used without waste up to this point.
[0019]
Next, in this example, the region S8 is subjected to electric discharge machining. At this time, only the left half of the processed surface 10 is used, and the right half is unused. Next, a region S9 located point-symmetrically with the region S8 with respect to the center of the groove forming surface 85 is subjected to electric discharge machining. At this time, only the right half of the processed surface 10 is used, and the left half is unused. Therefore, by processing these two areas S8 and S9, the entire processed surface 10 is used on average.
[0020]
Next, the regions S10, S11,. . . . By sequentially performing electrical discharge machining with S19, a pair of symmetric regions with respect to the center of the groove forming surface 85 are sequentially subjected to electrical discharge machining. Thereby, the processing surface 10 which was not used at the time of one process of a pair of object area | region is used when processing the other object area | region reliably. Therefore, the processed surface 10 is used on an average without much deviation.
[0021]
Thus, in this example, the entire machining surface 10 can literally be used without waste for the regions S1 to S7 having the same size as the machining surface 10 during electric discharge machining. On the other hand, when a region near the end of the groove forming surface 85 is processed, a part of the processed surface 10 may not be used. However, as described above, it is possible to effectively use a portion that has not been used previously at the time of machining a plurality of other locations. Therefore, as a result, the entire machining surface 10 of the electric discharge machining electrode 1 can be used efficiently on average.
[0022]
Further, in this example, as described above, the contour shape of the machining surface 10 of the electric discharge machining electrode 1 is substantially hexagonal. Thereby, each process area | region S1-S19 on the groove | channel formation surface 85 was able to be set efficiently and easily, without overlapping. Further, when the circular groove forming surface 85 is processed, the ratio of the unused portion of the processed surface can be reduced also at the end portion.
However, it is possible to change the contour shape to other polygonal shapes such as a substantially square shape instead of the hexagonal shape.
[0023]
If the dimension of the hexagonal lattice is the same even if the outer diameter R of the groove forming surface 85 of the mold material 8 changes, the electric discharge machining electrode 1 having the same machining surface 10 as described above is used. , EDM can be performed in the same procedure as above. Therefore, the electric discharge machining electrode 1 can be used more effectively.
[0024]
Embodiment 2
This example is an example in which a plurality of portions for electric discharge machining in Embodiment Example 1 are simultaneously used, and a plurality of places are subjected to electric discharge machining simultaneously.
Specifically, as shown in FIG. 7, the groove forming surface 85 is divided into 19 regions as in the first embodiment, and these are classified into five groups G1 to G5. The machining surfaces 10 of the seven electric discharge machining electrodes 1 were set on the head of the electric discharge machining apparatus 5 similar to the above so as to correspond to the region of the group G1, and the electric discharge machining was repeated.
[0025]
First, the seven regions of the group G1 are subjected to electric discharge machining, and then the seven electric discharge machining electrodes 1 are moved in a state where their relative positions are not changed, and the five regions of the group G2 are subjected to electric discharge machining. Further, the electric discharge machining electrode 1 is moved to perform electric discharge machining on the five regions of the group G3. Thereafter, one region of the group G4 is subjected to electric discharge machining, and finally one region of the group G5 is subjected to electric discharge machining.
Thus, in this example, 19 regions can be subjected to electric discharge machining in 5 cycles. Thereby, the whole electric discharge machining time can be shortened compared with the case of the first embodiment.
[0026]
Embodiment 3
In this example, another example of the shape of the machining surface 10 of the electric discharge machining electrode 1 used in the first embodiment is shown.
FIG. 9 has the same pattern as in the first embodiment. That is, each hexagon is completely formed in the contour portion of the processed surface 10, and there are irregularities along the shape, and the hexagon is formed as a whole.
[0027]
On the other hand, FIG. 10 has a unit cell similar to the above, but the arrangement direction is changed. And in the outline part of the processing surface 10, it has a shape which cut | disconnected the hexagon in half.
Even if it is any pattern, the effect similar to Example 1 can be acquired.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view showing (a) the overall shape and (b) a slit groove forming state of a honeycomb structure forming mold in Embodiment 1;
2A is a partially cutaway perspective view of a groove forming surface of a honeycomb structure forming mold in Embodiment 1 and a supply hole, and FIG. 2B is an explanatory view viewed from the front.
3 is an explanatory view showing a manufacturing process of a honeycomb structure forming mold in Embodiment 1; FIG.
4 is a perspective view showing an electric discharge machining electrode in Embodiment 1. FIG.
5 is a partially enlarged perspective view of an electric discharge machining electrode in Embodiment 1. FIG.
6 is an explanatory diagram showing a configuration of an electric discharge machining electrode in Embodiment 1. FIG.
7 is an explanatory diagram showing an electric discharge machining area on a groove forming surface in Embodiment 1. FIG.
FIG. 8 is an explanatory view showing an electric discharge machining region on a groove forming surface in Embodiment 2.
FIG. 9 is an explanatory view showing a machined surface pattern of an electric discharge machining electrode in Embodiment 3;
10 is an explanatory view showing another machining surface pattern of an electrode for electric discharge machining in Embodiment 3. FIG.
[Explanation of symbols]
1. . . Electrodes for electrical discharge machining,
10. . . Machined surface,
15. . . electrode,
18. . . Substrate section,
8). . . Mold for forming honeycomb structure,
80. . . Mold material,
81. . . Supply holes,
82. . . Slit groove,
85. . . Groove forming surface,

Claims (2)

少なくとも,材料供給用の複数の供給穴と,該供給穴に連通して六角形格子状に設けられ,材料をハニカム形状に成形するためのスリット溝とを有するハニカム構造体成形用金型を製造する方法において,
上記スリット溝を加工するに当たっては,金型素材の溝形成面よりも小さい外形寸法の加工面を有し,該加工面が,六角格子状の電極を連ねて構成され,その輪郭部分も含めて全て六角格子状の電極よりなり,該加工面全体の輪郭形状が,その各辺が上記六角格子状の電極の格子形状に沿った凹凸形状である六角形を呈しており,該加工面の全体が周囲よりも突出している放電加工用電極を用いて,上記溝形成面を複数回放電加工することにより行うことを特徴とするハニカム構造体成形用金型の製造方法。
Manufactures a honeycomb structure molding die having at least a plurality of supply holes for material supply, and a hexagonal grid connected to the supply holes, and slit grooves for forming the material into a honeycomb shape In the way to
When machining the slit groove, it has a machined surface with an outer dimension smaller than the groove-forming surface of the mold material, and the machined surface is formed by connecting hexagonal grid-like electrodes, including its contour part. All of the electrodes are hexagonal grid-like, and the contour shape of the entire processed surface is a hexagonal shape in which each side is a concavo-convex shape along the grid shape of the hexagonal grid-shaped electrode. A method for manufacturing a die for forming a honeycomb structure, wherein the groove forming surface is subjected to electric discharge machining a plurality of times using an electric discharge machining electrode protruding from the periphery.
請求項1において,上記放電加工用電極を複数同時に用いて,複数箇所を同時に放電加工することを特徴とするハニカム構造体成形用金型の製造方法。2. The method for manufacturing a honeycomb structure molding die according to claim 1, wherein a plurality of the electric discharge machining electrodes are simultaneously used, and a plurality of locations are subjected to electric discharge machining simultaneously.
JP2001035642A 2001-02-13 2001-02-13 Manufacturing method of mold for forming honeycomb structure Expired - Lifetime JP3820894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035642A JP3820894B2 (en) 2001-02-13 2001-02-13 Manufacturing method of mold for forming honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035642A JP3820894B2 (en) 2001-02-13 2001-02-13 Manufacturing method of mold for forming honeycomb structure

Publications (2)

Publication Number Publication Date
JP2002239844A JP2002239844A (en) 2002-08-28
JP3820894B2 true JP3820894B2 (en) 2006-09-13

Family

ID=18899060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035642A Expired - Lifetime JP3820894B2 (en) 2001-02-13 2001-02-13 Manufacturing method of mold for forming honeycomb structure

Country Status (1)

Country Link
JP (1) JP3820894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9726059B2 (en) 2010-10-01 2017-08-08 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Exhaust system, motor vehicle having an exhaust system and method for operating a motor vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE460270T1 (en) * 2003-02-18 2010-03-15 Corning Inc CERAMIC HONEYCOMB BODY AND PRODUCTION METHOD
JP2005254345A (en) 2004-03-09 2005-09-22 Ngk Insulators Ltd Manufacturing method of mouthpiece for forming honeycomb structure
WO2008053854A1 (en) * 2006-10-27 2008-05-08 Hitachi Metals, Ltd. Die for molding honeycomb structure body and method of producing the same
JP4394714B2 (en) * 2007-09-20 2010-01-06 日本碍子株式会社 Forming die processing electrode, forming die manufacturing method and forming die
US8263895B2 (en) * 2009-08-28 2012-09-11 Corning Incorporated Electro-discharge electrode and method of use
US8622752B2 (en) * 2011-04-13 2014-01-07 Teradyne, Inc. Probe-card interposer constructed using hexagonal modules
CN104384635B (en) * 2014-09-16 2017-07-14 沈阳飞机工业(集团)有限公司 The processing method of grate opening on a kind of various dimensions curved surface
CN111136358A (en) * 2018-11-02 2020-05-12 成都飞机工业(集团)有限责任公司 Method for machining thin-wall array group holes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9726059B2 (en) 2010-10-01 2017-08-08 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Exhaust system, motor vehicle having an exhaust system and method for operating a motor vehicle

Also Published As

Publication number Publication date
JP2002239844A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP3820894B2 (en) Manufacturing method of mold for forming honeycomb structure
US6448530B1 (en) Metal mold for molding a honeycomb structure and method of producing the same
JP4394714B2 (en) Forming die processing electrode, forming die manufacturing method and forming die
DE69739678D1 (en) Manufacturing method for a small contact area between electrodes
JPS6140490B2 (en)
JP3673152B2 (en) Fixed member, commutator forming plate material, and manufacturing method thereof
JP5823676B2 (en) Discharge electrode and method of use
JPH0474131B2 (en)
JP2001071216A (en) Electric discharge machining electrode for manufacturing hexagonal cell honeycomb extruding metal mold, its manufacture and manufacture of hexagonal cell honeycomb extruding metal mold using this electrode
ITRM20000680A1 (en) PLATE FORMING SWITCH, SWITCH, MOTOR WITH SWITCH AND MANUFACTURE OF THE SAME.
JP3402206B2 (en) Method for manufacturing mold for forming honeycomb structure
CN212443611U (en) Processing assembly of formula of hiding runner mold insert
CN212735037U (en) Locking device of rocker milling machine
JP4019542B2 (en) Manufacturing method and manufacturing apparatus for mold for forming honeycomb structure
JP3836013B2 (en) Electrode for electrical discharge machining
JP4253865B2 (en) Mold manufacturing method
CN214079637U (en) Circular electrode socket of electric discharge machine
CN107000248B (en) Die body apparatus and method
CN214350093U (en) Electric spark machining electrode for wireless earphone
CN213827371U (en) Rib position electrode for electric discharge machining of injection mold
JP3924916B2 (en) Mold for forming hexagonal honeycomb structure and manufacturing method thereof
CN113727525B (en) Resin plug hole air guide plate and manufacturing method thereof
KR200181275Y1 (en) Trimming apparatus of mold
JPH01197029A (en) Insert split die and its manufacture
JPS62104729A (en) Production device of honeycomb structural body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3820894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term