JP3820316B2 - Weaving cloth inspection device in loom - Google Patents

Weaving cloth inspection device in loom Download PDF

Info

Publication number
JP3820316B2
JP3820316B2 JP15768298A JP15768298A JP3820316B2 JP 3820316 B2 JP3820316 B2 JP 3820316B2 JP 15768298 A JP15768298 A JP 15768298A JP 15768298 A JP15768298 A JP 15768298A JP 3820316 B2 JP3820316 B2 JP 3820316B2
Authority
JP
Japan
Prior art keywords
sensor head
light
cover
woven fabric
loom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15768298A
Other languages
Japanese (ja)
Other versions
JPH11350308A (en
Inventor
昌司 戸田
義美 岩野
隆弘 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyobo Co Ltd
Original Assignee
Toyota Industries Corp
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyobo Co Ltd filed Critical Toyota Industries Corp
Priority to JP15768298A priority Critical patent/JP3820316B2/en
Publication of JPH11350308A publication Critical patent/JPH11350308A/en
Application granted granted Critical
Publication of JP3820316B2 publication Critical patent/JP3820316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03JAUXILIARY WEAVING APPARATUS; WEAVERS' TOOLS; SHUTTLES
    • D03J1/00Auxiliary apparatus combined with or associated with looms
    • D03J1/007Fabric inspection on the loom and associated loom control

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Auxiliary Weaving Apparatuses, Weavers' Tools, And Shuttles (AREA)
  • Looms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、織機上の織布の織り状態を反映する光を拾いながら移動するセンサヘッドを備え、前記光の受光量に応じた電気信号を出力する光電センサを用いて織布の欠点の有無を検出する織機における織布検反装置に関するものである。
【0002】
【従来の技術】
この種の織布検反装置では、外乱光が光電センサによって拾われると、欠点有無の検出精度が低下する。そのため、例えば特開平6−65844号公報の従来装置では、外乱光の影響を極力排除するため、センサヘッドが収容ボックス内に収容されている。センサヘッドはスライド可能なベースを介して走行レール上に支持されている。走行レール上を移動可能に支持されたセンサヘッドは、モータによって往復周回されるベルトに止着されており、モータの往復作動によってセンサヘッドが往復走行する。
【0003】
【発明が解決しようとする課題】
経糸は隣合う筬羽間に一定本数単位で通されているが、例えばある筬羽間では経糸の通し本数が規定に足りず、隣の筬羽間で経糸の通し本数が規定よりも多いといった状況が生じることもある。このような状況が続くと、いわゆる経筋が織布上に生じ、不良織布ができてしまう。このような織布上における欠点を検出した場合には製織を停止して経筋を発生させないための処置が行われる。この場合、経筋の的確な検出は、経筋の増長を防いで織布品質の低下を回避したり、あるいは誤検出による稼働率低下を回避する上で重要である。センサヘッドの円滑な走行は欠点を的確に探り出す上で必要である。モータが故障したり、ベースと走行レールとの間に風綿が入り込んだりすると、センサヘッドが円滑に走行できなくなる。しかし、センサヘッドを収容ボックス内に収容するような収容構成では、センサヘッドの走行状況を把握することができない。
【0004】
本発明は、センサヘッドの走行状況を把握できる織布検反装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
そのために本発明は、織機上の織布の織り状態を反映する光を拾いながら移動するセンサヘッド及び前記センサヘッドの走査経路を覆うカバーを備え、前記光の受光量に応じた電気信号を出力する光電センサを用いて織布の欠点の有無を検出する織布検反装置を対象とし、請求項1の発明では、前記センサヘッドと一体的に移動して点灯する点灯表示手段と、前記点灯表示手段の点灯光を前記カバー外へ漏出させる漏出手段とを備えた織布検反装置を構成し、前記センサヘッドの走査時には前記点灯表示手段を点灯するようにした。
【0006】
点灯表示手段の点灯光は漏出手段を介してカバー外から視認できる。カバーで覆われたセンサヘッドの移動状況は前記点灯光の移動状況に基づいて把握できる。
【0007】
また、前記カバーと織布面との間の隙間を前記漏出手段とした。
隙間は漏出手段として簡便である。
【0008】
請求項の発明では、請求項において、前記点灯表示手段は前記隙間から前記カバー外の織布面上へ光を投射するようにした。
織布面からの反射光はカバー内のセンサヘッドの走行状況を把握する上で簡便である。
【0010】
【発明の実施の形態】
以下、本発明を具体化した第1の実施の形態を図1〜図6に基づいて説明する。
【0011】
図1に示すように、織布Wの上方には支持バー10が織布Wの織幅方向、即ち緯糸の糸方向に配設されている。支持バー10にはレール11、検反モータ13、ガイドプーリ16及び光受信器40が取り付けられている。検反モータ13の出力軸には駆動プーリ15が止着されており、駆動プーリ15とガイドプーリ16とには無端状ベルト12が巻き掛けられている。無端状ベルト12は検反モータ13の往復駆動によって往復周回する。図2及び図3に示すように、レール11にはセンサヘッド14がスライド可能に支持されており、無端状ベルト12にはセンサヘッド14が止着されている。センサヘッド14は無端状ベルト12の往復周回によってレール11に沿った走査経路を往復動する。検反モータ13、プーリ15,16、無端状ベルト12及びレール11は往復走行手段を構成する。センサヘッド14、検反モータ13、プーリ15,16、無端状ベルト12及び支持バー10はカバー41によって覆われており、カバー41はセンサヘッド14の走査経路を覆っている。
【0012】
センサヘッド14は、投光器17、結像レンズ18、光電センサとなる一対の受光素子19,20、信号処理回路基板21、光送信器22及び点灯器25を備えている。点灯器25は、カバー41の垂下部411と織布Wとの間の隙間412を介して織布W面上を指向しており、点灯器25からの投射光はカバー41外で織布W面から反射する。即ち、点灯器25からの投射光は、カバー41を挟んで織布Wの織前W1とは反対側の織布W面で反射される。投光器17から投射された光は織布W上に向けられる。結像レンズ18は織布Wの上面の像を一対の受光素子19,20の受光面に一致する平面上に結像する。受光素子19,20は、経糸Tの糸配列方向の幅が狭く、かつ経糸Tの糸方向へ長い形状である。
【0013】
図5の検知範囲191は結像レンズ18によって受光素子19上に結像される織布W上の範囲を表し、検知範囲201は結像レンズ18によって受光素子20上に結像される織布W上の範囲を表す。経糸Tの糸配列方向の検知範囲191,201の幅は同じhであり、幅hは経糸Tの糸配列ピッチPの半分P/2よりも小さくしてある。又、検知範囲191,201の経糸Tの糸方向の長さは同じであり、この長さは緯糸Yを例えば10本程度含むぐらいの長さにしてある。そして、両検知範囲191,201は経糸Tの糸配列方向に糸配列ピッチPの半分だけずらしてある。
【0014】
図4の右向きの矢印Q1で囲まれた領域はセンサヘッド14の右方向への移動による織布W上における検知範囲191,201の走査範囲を表す。左向きの矢印Q2で囲まれた領域はセンサヘッド14の左方向への移動による織布W上における検知範囲191,201の走査範囲を表す。即ち、検反時にはセンサヘッド14上の投光器17からの投射光は織布Wの織幅W1内を走査する。織布Wは矢印Rの方向に移動する。
【0015】
受光素子19,20は受け取った光を電流に変換する。この変換電流信号は受光量に応じた電気信号になる。図5の回路は信号処理回路基板21上の回路構成を表す。受光素子19は変換電流信号を電流−電圧変換回路28に出力し、受光素子20は変換電流信号を電流−電圧変換回路29に出力する。電流−電圧変換回路28,29は変換電流信号を電圧信号S1,S2に変換して差演算回路30に出力する。図6の波形S1は電流−電圧変換回路28から出力される電圧信号を表し、波形S2は電流−電圧変換回路29から出力される電圧信号を表す。なお、電圧信号S1,S2の値の変動は、例えば出力電圧1ボルトに対して5ミリボルト程度という僅かなものである。
【0016】
差演算回路30は両電流−電圧変換回路28,29から入力する電圧信号S1,S2の値の差を演算する。図6の波形ΔSは差演算回路30から出力される差信号を表す。差演算回路30は演算して得られた差信号ΔSをバンドパスフィルタ31を経由して比較回路32に出力する。バンドパスフィルタ31は差信号ΔSの周波数近辺の周波数の信号以外の波形信号をカットする。
【0017】
比較回路32は入力した差信号ΔSと基準値設定回路33によって予め設定された基準値Vo(>0)とを比較する。差信号ΔSの値が基準値Voを越えると、比較回路32は図6に波形Hで示す信号を制御信号発生回路34に出力する。制御信号発生回路34は波形Hの立ち上がり部に対応して図6にパルス状波形で示す制御信号Kをカウンタ35に出力する。カウンタ35は基準クロック36から出力されるパルス信号の数に基づいて各制御信号K間の時間間隔txの計測を行なう。この計測情報は比較回路37に送られる。
【0018】
比較回路37は、基準値設定回路38によって予め設定された基準間隔〔to−Δt,to+Δt〕と計測された時間間隔txとの比較を行なう。txが〔to−Δt,to+Δt〕の範囲外にあれば、比較回路37は出力回路39に対して異常検出信号を出力する。txが〔to−Δt,to+Δt〕の範囲内にあれば、比較回路37は出力回路39に対して異常検出信号を出力しない。出力回路39は、比較回路37から出力される異常検出信号の入力に応じて欠点有検出信号を光送信器22に出力する。光送信器22はこの欠点有検出信号を光に変換して光受信器40に向けて発信する。
【0019】
センサヘッド14の移動速度をv、結像レンズ18の倍率をmとすると、結像レンズ18によって受光素子19,20の受光平面上に結合される像は速度mvで移動する。経糸Tの糸配列ピッチPよりも小さい幅hの検知範囲191,201は糸配列ピッチPの半分P/2だけ経糸Tの配列方向にずらしてある。従って、経糸Tの糸配列ピッチが常に所定の糸配列ピッチPに等しいならば、制御信号Kの時間間隔txはP/mvにほぼ等しい。P/mvは基準値toとして採用されており、Δtは許容公差である。
【0020】
比較回路32、基準値設定回路33、制御信号発生回路34、カウンタ35、基準クロック36、基準値設定回路38及び比較回路37から構成される欠点有無判定手段は、差演算回路30によって演算された差ΔSに基づいて欠点有無の判定を行なう。この差ΔSの演算は照明光、風綿といった外乱の影響による電気信号の変化を抑制する。
【0021】
図6では織布Wの織幅方向の領域Wt1が経筋発生による粗な部分を表し、領域Wt2が経筋発生による密な部分を表す。受光素子19,20の検知範囲191,201の経糸Tの糸配列方向の幅hは経糸Tの糸配列ピッチP以下に設定してあり、両検知範囲191,201は糸配列方向に糸配列ピッチPの半分P/2だけずらしてある。各受光素子19,20の検知範囲191,201の幅が糸配列ピッチP以下であるため、検知範囲191,201の一方が経糸Tの配列位置上にある場合に得られる電気信号の値と、他方が隣合う経糸Tの配列位置の間にある場合に得られる電気信号の値との差が最も大きくなる。従って、糸配列ピッチPの半分P/2だけ検知範囲191,201の移動方向へ両検知範囲191,201をずらすことによって電気信号S1,S2の値の差ΔSが最も大きくなる。この差ΔSが大きいほど欠点有無の判定が正確になる。
【0022】
図5に示すように、検反モータ13及び投光器17は、織機駆動モータMの作動を制御する織機制御コンピュータCoの制御を受ける。織機制御コンピュータCo予め設定された走査プログラム及び検反モータ13に組み込まれたロータリエンコーダ(図示略)からの回転位置情報に基づいて検反モータ13の往復作動をフィードバック制御する。検反時には織機制御コンピュータCoは投光器17の点灯を指令し、センサヘッド14の走査時には投光器17が点灯する。点灯器25は織機の電源ON状態では常時点灯している。光受信器40は光送信器22から発信された欠点有検出信号を含む通信光を受信する。光受信器40は受信した欠点有検出信号を電気的欠点有検出信号に変換して織機制御コンピュータCoに出力する。織機制御コンピュータCoは、欠点有検出信号の入力に基づいて織機駆動モータM及び検反モータ13の作動停止を指令すると共に、投光器17の消灯を指令する。起動スイッチ26をONすると、織機制御コンピュータCoは織機駆動モータM及び検反モータ13の作動を指令すると共に、投光器17の点灯を指令し、製織及び検反が開始される。
【0023】
第1の実施の形態では以下の効果が得られる。
(1-1)欠点有無の検出は制御信号K間の時間間隔tx(=P/mv)の計測に基づいて行われており、欠点有無の検出精度(検反精度)はセンサヘッド14の移動速度Vの影響を受ける。そのため、検反モータ13の故障あるいはレール11とセンサヘッド14との間での風綿噛み込み等によってセンサヘッド14が円滑に走行しない場合には検反精度が低下する。カバー41で覆われたセンサヘッド14の移動状況は、点灯表示手段である点灯器25の点灯光の移動状況に基づいて把握できる。即ち、検反モータ13の故障によるセンサヘッド14が停止状態、風綿噛み込みによるセンサヘッド14の移動速度の低下が点灯器25の点灯光の移動状況に基づいて把握できる。このような把握によって検反モータ13の故障あるいは風綿噛み込み等によるセンサヘッド14の円滑走行の阻害原因の排除に対処することができる。
(1-2)点灯器25の点灯光を隙間412から外部へ漏らせばセンサヘッド14の走行状況を把握することができ、隙間412は漏出手段として簡便である。
(1-3)点灯器25からの投射光はカバー41外の織布W面からの反射によって容易い視認できる。点灯器25からの投射光をカバー41外の織布W面で反射っせる構成は、カバー41内のセンサヘッド14の走行状況を把握する上で簡便である。
【0024】
次に、図7(a),(b)の第2の実施の形態を説明する。第1の実施の形態と同じ構成部には同じ符号が付してある。
この実施の形態では、点灯器25がセンサヘッド14の上部に取り付けられており、カバー41には多数の漏出孔413が設けられている。点灯器25の光は漏出孔413を介してカバー41外から視認でき、漏出手段である漏出孔413を介した点灯器25の点灯孔の移動状況の視認がカバー41内のセンサヘッド14の移動状況の把握を可能にする。漏出孔413はカバー41の上部かつカバー41を挟んで織布Wの織前W1とは反対側にある。このような漏出孔413の位置は、作業者にとってカバー41内のセンサヘッド14の移動状況の把握を最も容易に行える位置である。カバー41上での漏出孔413の形成は、カバー41内の点灯器25の点灯光を視認容易な位置の選択自由度を高める。
【0025】
次に、図8の第3の実施の形態を説明する。第1の実施の形態と同じ構成部には同じ符号が付してある。
この実施の形態では、走査確認スイッチ27が織機制御コンピュータCoに信号接続されている。検反時においてセンサヘッド14の走行が所定速度Vよりも低速となり、txが〔to−Δt,to+Δt〕の範囲外となった場合には欠点有検出信号が出力されてしまう。欠点有検出に伴う製織停止状態ではセンサヘッド14が停止状態にあるが、走査確認スイッチ27をON操作すれば織機制御コンピュータCoが検反モータ13の作動を指令する。検反モータ13の故障あるいは風綿噛み込みがなければセンサヘッド14が所定速度Vで円滑に走行する。検反モータ13の故障あるいは風綿噛み込みがあればセンサヘッド14は円滑に走行しない。走査確認スイッチ27を設置した構成は、検反停止が検反モータ13の故障あるいは風綿噛み込みによるものか否かの判断を可能にする。
【0026】
本発明では以下のような実施の形態も可能である。
(1)第1の実施の形態において、点灯器25の投射光を織前W1側の織布W面上で反射させること。
(2)投光器17の投光をカバー41外へ漏出するようにし、投光器17を点灯表示手段として兼用すること。
(3)検反用投光手段を織布の織幅全体にわたって配置すると共に、検反用受光手段のみを移動させる織布検反装置において、前記受光手段と一体的に反射鏡を移動させ、前記検反用投光手段の照射光を反射鏡によってカバー外へ反射させること。
(4)第1の実施の形態における無端状ベルト12に点灯表示手段を取り付けること。
【0027】
前記した実施の形態から把握できる発明についてその効果と共に記載する。
(1)製織停止時において往復走行手段の作動を確認するための操作確認手段を設けた織機における織布検反装置。
【0028】
検反停止が検反モータ13の故障あるいは風綿噛み込みによるものか否かの判断を可能にする。
【0029】
【発明の効果】
以上詳述したように本発明では、点灯表示手段の点灯光をカバー外から視認可能にしたので、センサヘッドの走行状況を把握して織布検反装置の異常を把握できるという優れた効果を奏する。
【図面の簡単な説明】
【図1】第1の実施の形態を示し、センサヘッドの拡大断面図を組み込んだ正断面図。
【図2】図1のA−A線断面図。
【図3】図1のB−B線断面図。
【図4】検知範囲の走査領域を示す略体平面図。
【図5】織布上の検知範囲及び信号処理回路の組み合わせ図。
【図6】信号処理回路における信号処理を説明するグラフ。
【図7】第2の実施の形態を示し、(a)はセンサヘッドの拡大断面図を組み込んだ正断面図。(b)は(a)のC−C線断面図。
【図8】第3の実施の形態を示し、織布上の検知範囲及び信号処理回路の組み合わせ図。
【符号の説明】
13…往復走行手段を構成する検反モータ、14…センサヘッド、25…点灯表示手段となる点灯器、19,20…光電センサとなる受光素子、41…カバー、412…漏出手段となる隙間、413…漏出手段となる漏出孔。
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a sensor head that moves while picking up light reflecting the weaving state of a woven fabric on a loom, and uses a photoelectric sensor that outputs an electrical signal corresponding to the amount of received light to check whether or not there is a defect in the woven fabric. The present invention relates to a woven fabric inspection apparatus in a loom for detecting the above.
[0002]
[Prior art]
In this type of woven fabric inspection apparatus, when disturbance light is picked up by a photoelectric sensor, the accuracy of detecting the presence or absence of defects is lowered. Therefore, for example, in the conventional apparatus disclosed in Japanese Patent Laid-Open No. 6-65844, the sensor head is accommodated in the accommodation box in order to eliminate the influence of disturbance light as much as possible. The sensor head is supported on the traveling rail via a slidable base. The sensor head supported so as to be movable on the traveling rail is fixed to a belt that is reciprocated by a motor, and the sensor head reciprocates by the reciprocating operation of the motor.
[0003]
[Problems to be solved by the invention]
Warp yarns are passed in units of a certain number between adjacent wings, but for example, the number of warp threads in one cocoon wing is insufficient, and the number of warp knives between adjacent wings is more than specified. A situation may arise. When such a situation continues, so-called warps are generated on the woven fabric, and a defective woven fabric is produced. When such a defect on the woven fabric is detected, weaving is stopped to prevent the generation of warps. In this case, accurate detection of the warp is important in preventing the increase of the warp and avoiding the deterioration of the woven fabric quality, or avoiding the decrease in the operation rate due to the false detection. Smooth running of the sensor head is necessary to accurately find the defects. If the motor breaks down or if fluff enters between the base and the running rail, the sensor head cannot run smoothly. However, in the housing configuration in which the sensor head is housed in the housing box, the traveling state of the sensor head cannot be grasped.
[0004]
An object of the present invention is to provide a woven fabric inspection apparatus that can grasp the traveling state of a sensor head.
[0005]
[Means for Solving the Problems]
For this purpose, the present invention includes a sensor head that moves while picking up light reflecting the weaving state of the woven fabric on the loom and a cover that covers the scanning path of the sensor head, and outputs an electrical signal corresponding to the amount of light received. The present invention is directed to a woven fabric inspection apparatus that detects the presence or absence of defects in a woven fabric using a photoelectric sensor, and in the invention of claim 1, a lighting display means that moves and moves together with the sensor head, and the lighting A woven fabric inspection apparatus comprising a leakage means for leaking the lighting light of the display means to the outside of the cover is configured to light up the lighting display means when scanning the sensor head.
[0006]
The lighting light of the lighting display means can be visually recognized from outside the cover through the leakage means. The movement status of the sensor head covered with the cover can be grasped based on the movement status of the lighting light.
[0007]
Further, the gap between the cover and the fabric surface was the leak means.
The gap is convenient as a leakage means.
[0008]
According to a second aspect of the present invention, in the first aspect , the lighting display means projects light onto the woven cloth surface outside the cover from the gap.
The reflected light from the woven fabric surface is convenient for grasping the traveling state of the sensor head in the cover.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
[0011]
As shown in FIG. 1, a support bar 10 is disposed above the woven fabric W in the woven width direction of the woven fabric W, that is, the weft yarn direction. A rail 11, an inspection motor 13, a guide pulley 16 and an optical receiver 40 are attached to the support bar 10. A drive pulley 15 is fixed to the output shaft of the inspection motor 13, and an endless belt 12 is wound around the drive pulley 15 and the guide pulley 16. The endless belt 12 reciprocates by the reciprocating drive of the inspection motor 13. As shown in FIGS. 2 and 3, the sensor head 14 is slidably supported on the rail 11, and the sensor head 14 is fixed to the endless belt 12. The sensor head 14 reciprocates along the scanning path along the rail 11 by the reciprocating rotation of the endless belt 12. The inspection motor 13, the pulleys 15 and 16, the endless belt 12 and the rail 11 constitute reciprocating means. The sensor head 14, the inspection motor 13, the pulleys 15 and 16, the endless belt 12, and the support bar 10 are covered with a cover 41, and the cover 41 covers the scanning path of the sensor head 14.
[0012]
The sensor head 14 includes a light projector 17, an imaging lens 18, a pair of light receiving elements 19 and 20 serving as a photoelectric sensor, a signal processing circuit board 21, an optical transmitter 22, and a lighting device 25. The lighting device 25 is directed on the surface of the woven fabric W through a gap 412 between the hanging portion 411 of the cover 41 and the woven fabric W, and the projection light from the lighting device 25 is outside the cover 41 and the woven fabric W. Reflect from the surface. That is, the projection light from the lighting device 25 is reflected on the woven fabric W surface on the opposite side of the woven fabric W from the pre-woven W1 with the cover 41 interposed therebetween. The light projected from the projector 17 is directed onto the woven fabric W. The imaging lens 18 forms an image of the upper surface of the woven fabric W on a plane coinciding with the light receiving surfaces of the pair of light receiving elements 19 and 20. The light receiving elements 19 and 20 have a narrow width in the yarn arrangement direction of the warp T and a long shape in the yarn direction of the warp T.
[0013]
A detection range 191 in FIG. 5 represents a range on the woven fabric W imaged on the light receiving element 19 by the imaging lens 18, and a detection range 201 is a woven fabric imaged on the light receiving element 20 by the imaging lens 18. Represents the range on W. The widths of the detection ranges 191 and 201 in the yarn arrangement direction of the warp T are the same h, and the width h is smaller than half P / 2 of the yarn arrangement pitch P of the warp T. The lengths of the warp yarns T in the detection ranges 191 and 201 are the same, and the length is set to include about ten wefts Y, for example. Both detection ranges 191 and 201 are shifted by half the yarn arrangement pitch P in the yarn arrangement direction of the warp T.
[0014]
A region surrounded by a rightward arrow Q1 in FIG. 4 represents a scanning range of the detection ranges 191 and 201 on the woven fabric W due to the movement of the sensor head 14 in the right direction. A region surrounded by a left-pointing arrow Q2 represents a scanning range of the detection ranges 191 and 201 on the woven fabric W due to the movement of the sensor head 14 in the left direction. That is, at the time of inspection, the projection light from the projector 17 on the sensor head 14 scans within the woven width W1 of the woven fabric W. The woven fabric W moves in the direction of arrow R.
[0015]
The light receiving elements 19 and 20 convert the received light into a current. This converted current signal is an electrical signal corresponding to the amount of received light. The circuit in FIG. 5 represents a circuit configuration on the signal processing circuit board 21. The light receiving element 19 outputs the conversion current signal to the current-voltage conversion circuit 28, and the light receiving element 20 outputs the conversion current signal to the current-voltage conversion circuit 29. The current-voltage conversion circuits 28 and 29 convert the converted current signal into voltage signals S 1 and S 2 and output them to the difference calculation circuit 30. A waveform S1 in FIG. 6 represents a voltage signal output from the current-voltage conversion circuit 28, and a waveform S2 represents a voltage signal output from the current-voltage conversion circuit 29. Note that the fluctuations in the values of the voltage signals S1 and S2 are as small as about 5 millivolts for an output voltage of 1 volt, for example.
[0016]
The difference calculation circuit 30 calculates the difference between the values of the voltage signals S1 and S2 input from the current-voltage conversion circuits 28 and 29. A waveform ΔS in FIG. 6 represents a difference signal output from the difference calculation circuit 30. The difference calculation circuit 30 outputs the difference signal ΔS obtained by the calculation to the comparison circuit 32 via the band pass filter 31. The band pass filter 31 cuts a waveform signal other than a signal having a frequency near the frequency of the difference signal ΔS.
[0017]
The comparison circuit 32 compares the input difference signal ΔS with the reference value Vo (> 0) preset by the reference value setting circuit 33. When the value of the difference signal ΔS exceeds the reference value Vo, the comparison circuit 32 outputs a signal indicated by a waveform H in FIG. The control signal generation circuit 34 outputs a control signal K shown in a pulse waveform in FIG. The counter 35 measures the time interval tx between the control signals K based on the number of pulse signals output from the reference clock 36. This measurement information is sent to the comparison circuit 37.
[0018]
The comparison circuit 37 compares the reference interval [to-Δt, to + Δt] preset by the reference value setting circuit 38 with the measured time interval tx. If tx is outside the range of [to−Δt, to + Δt], the comparison circuit 37 outputs an abnormality detection signal to the output circuit 39. If tx is within the range of [to−Δt, to + Δt], the comparison circuit 37 does not output an abnormality detection signal to the output circuit 39. The output circuit 39 outputs a defect presence detection signal to the optical transmitter 22 in response to the input of the abnormality detection signal output from the comparison circuit 37. The optical transmitter 22 converts this defect detection signal into light and transmits it to the optical receiver 40.
[0019]
If the moving speed of the sensor head 14 is v and the magnification of the imaging lens 18 is m, the image combined on the light receiving planes of the light receiving elements 19 and 20 by the imaging lens 18 moves at a speed mv. The detection ranges 191 and 201 having a width h smaller than the yarn arrangement pitch P of the warp T are shifted in the arrangement direction of the warp T by half P / 2 of the yarn arrangement pitch P. Therefore, if the yarn arrangement pitch of the warp T is always equal to the predetermined yarn arrangement pitch P, the time interval tx of the control signal K is substantially equal to P / mv. P / mv is adopted as the reference value to, and Δt is an allowable tolerance.
[0020]
The defect presence / absence determining means including the comparison circuit 32, the reference value setting circuit 33, the control signal generation circuit 34, the counter 35, the reference clock 36, the reference value setting circuit 38 and the comparison circuit 37 is calculated by the difference calculation circuit 30. The presence / absence of a defect is determined based on the difference ΔS. The calculation of the difference ΔS suppresses changes in the electrical signal due to the influence of disturbances such as illumination light and fluff.
[0021]
In FIG. 6, a region Wt1 in the weaving width direction of the woven fabric W represents a rough portion due to the occurrence of a warp and a region Wt2 represents a dense portion due to the occurrence of a warp. The width h in the yarn arrangement direction of the warp T of the detection ranges 191 and 201 of the light receiving elements 19 and 20 is set to be equal to or less than the yarn arrangement pitch P of the warp T, and both detection ranges 191 and 201 are arranged in the yarn arrangement pitch in the yarn arrangement direction. It is shifted by P / 2 half P / 2. Since the width of the detection range 191, 201 of each light receiving element 19, 20 is equal to or less than the yarn arrangement pitch P, the value of the electric signal obtained when one of the detection ranges 191, 201 is on the arrangement position of the warp T, The difference from the value of the electric signal obtained when the other is between the arrangement positions of adjacent warps T is the largest. Therefore, the difference ΔS between the values of the electric signals S1 and S2 is maximized by shifting both the detection ranges 191 and 201 in the moving direction of the detection ranges 191 and 201 by half P / 2 of the yarn arrangement pitch P. The larger the difference ΔS, the more accurate the determination of the presence or absence of defects.
[0022]
As shown in FIG. 5, the inspection motor 13 and the projector 17 are controlled by a loom control computer Co that controls the operation of the loom drive motor M. The loom control computer Co performs feedback control of the reciprocating operation of the inspection motor 13 based on a preset scanning program and rotational position information from a rotary encoder (not shown) incorporated in the inspection motor 13. At the time of inspection, the loom control computer Co commands the lighting of the projector 17, and the projector 17 is turned on when the sensor head 14 is scanned. The lighting device 25 is always on when the loom is powered on. The optical receiver 40 receives communication light including a defect presence detection signal transmitted from the optical transmitter 22. The optical receiver 40 converts the received defect detection signal into an electrical defect detection signal and outputs it to the loom control computer Co. The loom control computer Co commands the loom driving motor M and the inspection motor 13 to stop operating based on the input of the defect presence detection signal, and commands the projector 17 to turn off. When the start switch 26 is turned on, the loom control computer Co commands the operation of the loom drive motor M and the cloth inspection motor 13 and also commands the lighting of the projector 17 to start weaving and cloth inspection.
[0023]
The following effects can be obtained in the first embodiment.
(1-1) Detection of the presence / absence of a defect is performed based on measurement of a time interval tx (= P / mv) between the control signals K, and the detection accuracy (examination accuracy) of the presence / absence of a defect is determined by the movement of the sensor head 14. Influenced by speed V. For this reason, when the sensor head 14 does not travel smoothly due to a failure of the inspection motor 13 or biting between the rail 11 and the sensor head 14, the accuracy of inspection decreases. The movement status of the sensor head 14 covered with the cover 41 can be grasped based on the movement status of the lighting light of the lighting device 25 which is the lighting display means. That is, the sensor head 14 is in a stopped state due to a failure of the inspection motor 13, and a decrease in the moving speed of the sensor head 14 due to the biting of the fluff can be grasped based on the moving state of the lighting light of the lighting device 25. Such a grasp makes it possible to cope with the elimination of the obstruction of the smooth running of the sensor head 14 due to the failure of the inspection motor 13 or the biting of the fluff.
(1-2) If the lighting light of the lighting device 25 is leaked from the gap 412 to the outside, the traveling state of the sensor head 14 can be grasped, and the gap 412 is simple as a leakage means.
(1-3) The projection light from the lighting device 25 can be easily visually recognized by reflection from the woven cloth W surface outside the cover 41. The configuration in which the projection light from the lighting device 25 is reflected by the woven cloth W surface outside the cover 41 is simple in grasping the traveling state of the sensor head 14 in the cover 41.
[0024]
Next, a second embodiment of FIGS. 7A and 7B will be described. The same components as those in the first embodiment are denoted by the same reference numerals.
In this embodiment, the lighting device 25 is attached to the upper part of the sensor head 14, and the cover 41 is provided with a number of leakage holes 413. The light of the lighting device 25 can be visually recognized from the outside of the cover 41 through the leakage hole 413, and the movement state of the lighting hole of the lighting device 25 through the leakage hole 413 as a leakage means is determined by the movement of the sensor head 14 in the cover 41. Enables understanding of the situation. The leakage hole 413 is on the upper side of the cover 41 and on the opposite side of the woven fabric W from the front side W1 with the cover 41 interposed therebetween. Such a position of the leak hole 413 is a position where the operator can most easily grasp the movement state of the sensor head 14 in the cover 41. The formation of the leakage hole 413 on the cover 41 increases the degree of freedom in selecting a position where the lighting light of the lighting device 25 in the cover 41 is easily visible.
[0025]
Next, a third embodiment of FIG. 8 will be described. The same components as those in the first embodiment are denoted by the same reference numerals.
In this embodiment, the scanning confirmation switch 27 is signal-connected to the loom control computer Co. If the sensor head 14 travels at a speed lower than the predetermined speed V at the time of inspection, and tx falls outside the range of [to-Δt, to + Δt], a defect presence detection signal is output. The sensor head 14 is in a stopped state in the weaving stop state due to the detection of a defect, but if the scanning confirmation switch 27 is turned on, the loom control computer Co commands the operation of the inspection motor 13. If there is no failure of the inspection motor 13 or biting of the fluff, the sensor head 14 runs smoothly at a predetermined speed V. The sensor head 14 does not run smoothly if the inspection motor 13 is broken or if there is a fluff bite. The configuration in which the scanning confirmation switch 27 is installed makes it possible to determine whether or not the inspection stop is due to a failure of the inspection motor 13 or the biting of the fluff.
[0026]
In the present invention, the following embodiments are also possible.
(1) In the first embodiment, the projection light of the lighting device 25 is reflected on the woven cloth W surface on the pre-weaving W1 side.
(2) The light emitted from the projector 17 is leaked out of the cover 41, and the projector 17 is also used as a lighting display means.
(3) In the woven fabric inspection apparatus that disposes the inspection light projecting means over the entire woven width of the woven fabric and moves only the inspection light receiving means, the reflecting mirror is moved integrally with the light receiving means, The irradiation light of the inspection light projecting means is reflected out of the cover by a reflecting mirror.
(4) A lighting display means is attached to the endless belt 12 in the first embodiment.
[0027]
It described together with its effect on inventions that can be grasped from the embodiments described above.
(1) weaving the fabric fabric inspection apparatus in a provided woven machine operation confirmation means for confirming the operation of the round trip means during stopping.
[0028]
It is possible to determine whether or not the inspection stop is due to a failure of the inspection motor 13 or the biting of the fluff.
[0029]
【The invention's effect】
As described above in detail, in the present invention, since the lighting light of the lighting display means is made visible from outside the cover, it is possible to grasp the running condition of the sensor head and grasp the abnormality of the woven fabric inspection device. Play.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an enlarged sectional view of a sensor head according to a first embodiment.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
3 is a cross-sectional view taken along line BB in FIG.
FIG. 4 is a schematic plan view showing a scanning region of a detection range.
FIG. 5 is a combination diagram of a detection range and a signal processing circuit on a woven fabric.
FIG. 6 is a graph illustrating signal processing in a signal processing circuit.
7A is a front sectional view showing an enlarged sectional view of a sensor head according to a second embodiment; FIG. (B) is CC sectional view taken on the line of (a).
FIG. 8 is a combination diagram of a detection range on a woven fabric and a signal processing circuit according to the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 13 ... Inspection motor which comprises reciprocating travel means, 14 ... Sensor head, 25 ... Lighting device used as lighting display means, 19, 20 ... Light receiving element used as photoelectric sensor, 41 ... Cover, 412 ... Clearance used as leakage means, 413 ... Leakage hole serving as a leakage means.

Claims (2)

織機上の織布の織り状態を反映する光を拾いながら移動するセンサヘッド及び前記センサヘッドの走査経路を覆うカバーを備え、前記光の受光量に応じた電気信号を出力する光電センサを用いて織布の欠点の有無を検出する織布検反装置において、
前記センサヘッドと一体的に移動して点灯する点灯表示手段と、
前記点灯表示手段の点灯光を前記カバー外へ漏出させる漏出手段とを備え、
前記センサヘッドの走査時には前記点灯表示手段を点灯するようにし、前記漏出手段は前記カバーと織布面との間の隙間である織機における織布検反装置。
A sensor head that moves while picking up light reflecting the weaving state of the woven fabric on the loom and a cover that covers the scanning path of the sensor head, and uses a photoelectric sensor that outputs an electrical signal corresponding to the amount of received light In the fabric inspection device that detects the presence or absence of defects in the fabric,
Lighting display means that moves integrally with the sensor head and lights up;
Leakage means for leaking the lighting light of the lighting display means out of the cover,
The lighting display means is turned on during scanning of the sensor head, and the leaking means is a woven cloth inspection device in a loom, which is a gap between the cover and the woven cloth surface.
前記点灯表示手段は前記隙間から前記カバー外の織布面上へ光を投射するようにした請求項1に記載の織機における織布検反装置 The woven fabric inspection apparatus for a loom according to claim 1, wherein the lighting display means projects light from the gap onto a woven fabric surface outside the cover .
JP15768298A 1998-06-05 1998-06-05 Weaving cloth inspection device in loom Expired - Lifetime JP3820316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15768298A JP3820316B2 (en) 1998-06-05 1998-06-05 Weaving cloth inspection device in loom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15768298A JP3820316B2 (en) 1998-06-05 1998-06-05 Weaving cloth inspection device in loom

Publications (2)

Publication Number Publication Date
JPH11350308A JPH11350308A (en) 1999-12-21
JP3820316B2 true JP3820316B2 (en) 2006-09-13

Family

ID=15655092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15768298A Expired - Lifetime JP3820316B2 (en) 1998-06-05 1998-06-05 Weaving cloth inspection device in loom

Country Status (1)

Country Link
JP (1) JP3820316B2 (en)

Also Published As

Publication number Publication date
JPH11350308A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US5433253A (en) Cloth abnormality inspecting device within a sealed container for a loom
US5694979A (en) Method and apparatus for inspecting woven cloth using a plurality of photoelectric sensors
JP3820316B2 (en) Weaving cloth inspection device in loom
JP3817914B2 (en) Weaving cloth inspection device in loom
JPH08209501A (en) Warp yarn checking device in loom
JP4290243B2 (en) Weaving cloth inspection device in loom
JP3477876B2 (en) Woven cloth inspection equipment
JPH11350307A (en) Cloth inspecting apparatus in loom
JP2000017546A (en) Inspection of woven fabric in loom and device therefor
JPH06102198A (en) Cloth inspecting machine
JPH11350305A (en) Cloth inspection in loom and apparatus therefor
JPH08261952A (en) Woven fabric inspection method and device
JPH06116845A (en) Fabric inspection apparatus
JP2000017567A (en) Woven fabric inspection in loom and system therefor
JP3161046B2 (en) Inspection equipment
JPH06116846A (en) Fabric inspection apparatus
JPH11323700A (en) Woven fabric inspection device in loom
JP2000034651A (en) Apparatus for inspection of woven fabric on loom
JPH03249243A (en) Inspection device for woven cloth
JPH02160957A (en) Cloth inspection machine for loom
JP2000034650A (en) Inspection of woven fabric on loom and apparatus therefor
JP3077386B2 (en) Inspection equipment
JPH0665844A (en) Apparatus for inspecting fabric
JPH06108347A (en) Fabric-inspecting apparatus
JPH0978445A (en) Inspecting apparatus for woven cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term