JP3820164B2 - Method for producing water-soluble vinyl polymer - Google Patents
Method for producing water-soluble vinyl polymer Download PDFInfo
- Publication number
- JP3820164B2 JP3820164B2 JP2002047824A JP2002047824A JP3820164B2 JP 3820164 B2 JP3820164 B2 JP 3820164B2 JP 2002047824 A JP2002047824 A JP 2002047824A JP 2002047824 A JP2002047824 A JP 2002047824A JP 3820164 B2 JP3820164 B2 JP 3820164B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- water
- aqueous solution
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Paper (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、凝集剤、抄紙用粘剤、製紙用歩留まり向上剤、石油回収剤等に好適な水溶性ビニル系重合体の製造方法に関する。より詳しくは、基体上に敷かれたフィルムの上に存在する光重合開始剤を含むビニル系単量体水溶液に、活性エネルギー線を照射して光重合する工程を含む水溶性ビニル系重合体の製造方法に関する。
【0002】
【従来の技術】
従来より、水溶性ビニル系重合体は工業的な規模で生産され、各種用水の浄化のための凝集剤、抄紙用粘剤、製紙用歩留まり向上剤、紙力増強剤、繊維分散剤、土質安定剤、石油回収剤等として広く利用されている。
【0003】
このような水溶性ビニル系重合体の製造方法として、例えば、特公平5−32410号公報および特公平6−804号公報には、移動する基体上に光開始剤を含むビニル系単量体水溶液を層状となるように供給し、この層状とされたビニル系単量体水溶液に光を照射して重合し、水溶性ビニル系重合体を連続的に製造する方法が開示されている。この製造方法においては、例えば、可動式の連続ベルト上の一端から単量体水溶液を供給し、光を照射して重合させ、得られた水性ゲルを他端から連続的に取り出す。
【0004】
また、基体上での光重合により得た水性ゲルを基体から容易に剥離する目的で、基体上に非粘着性のフィルムを敷いて、その上にビニル系単量体またはその水溶液を層状に供給して重合する方法が知られている。このような非粘着性フィルムとして、例えば、特許第2598017号公報には、ポリテトラフルオロエチレンフィルム等が記載され、特公平8−5926号公報および特開平11−228609号公報には、ポリエチレンテレフタレートフィルム、ナイロンフィルム、ポリプロピレンフィルム等が記載されている。
【0005】
【発明が解決しようとする課題】
一般に、凝集剤は、その分子量が高いほど使用量が少なくなり、また凝集沈殿時間が短くなるので、凝集性能が優れると言われている。また、抄紙用粘剤も同様に、その分子量が高いほど好ましいと言われている。しかし、その一方で、分子量が高いほど重合体の水への溶解性が低下してしまうことも知られている。
【0006】
分子量以外のポリマー物性のうち諸性能に影響を与える物性として、特開昭52−3758号公報には、特定組成のアクリルアミド系共重合体の曳糸性を制御することにより、凝集性能に優れた重合体が得られることが記載されている。また、抄紙用粘剤でも、一般に、曳糸性が長い方が性能的に優れているとされている。
【0007】
さらに、基体上での光重合により水溶性ビニル系重合体を製造する方法は、レドックス開始剤とアゾ開始剤を含む水溶性ビニル系単量体水溶液を断熱的に重合する方法と比較して、得られる重合体の平均分子量が同じ場合、一般に、前者の方が曳糸性が短い傾向にあると言われている。
【0008】
基体上での光重合において曳糸性を制御する方法として、例えば、特開昭61−213203号公報には、活性エネルギー線の照射強度を重合途中に変更する方法が記載されている。しかし、この制御方法は、重合生産性がはなはだ低いという問題がある。
【0009】
本発明は、上述した従来技術の各課題を解決すべくなされたものである。すなわち、本発明の目的は、分子量が高く、曳糸性が長く、かつ水溶解性に優れた水溶性ビニル系重合体を、生産性良く製造できる方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、基体上に敷かれたフィルムの上に存在する光重合開始剤を含むビニル系単量体水溶液に活性エネルギー線を照射して光重合させる工程を含む水溶性ビニル系重合体の製造方法において、
前記光重合させる工程において、前記光重合開始剤を含む前記ビニル系単量体水溶液を、前記基体と共に移動する前記基体上に敷かれたフィルムの上に層状になるよう供給し、前記基体と前記基体上に敷かれたフィルムの間に液体媒体を存在させた状態でその供給されたビニル系単量体水溶液を光重合させることを特徴とする水溶性ビニル系重合体の製造方法である。
【0011】
【発明の実施の形態】
本発明において、ビニル系単量体水溶液は特に限定されず、光重合により水溶性ビニル系重合体を生成し得るビニル系単量体と、光重合開始剤とを含む水溶液であればよい。特に、(メタ)アクリルアミドおよび/またはその誘導体を主成分とする単量体水溶液が好ましい。なお、本発明において「(メタ)アクリル」は、アクリルとメタクリルの総称である。
【0012】
そのビニル系単量体の具体例としては、(メタ)アクリルアミドおよびその部分加水分解物、(メタ)アクリル酸、ならびにそれら酸のアルカリ塩、アンモニウム塩;2−アクリルアミド−2−メチルプロパンスルホン酸等のアクリルアミドアルカンスルホン酸およびそのアルカリ塩、アンモニウム塩;N,N'−ジアルキルアミノアルキル(メタ)アクリルアミドおよびその塩、N,N'−ジアルキルアミノアルキル(メタ)アクリレートおよびその塩、ならびに、それらの4級アンモニウム塩;等が挙げられる。これらは1種を単独で用いても良いし、2種以上を併用しても良い。また、生成重合体の水溶性を損なわない範囲で、(メタ)アクリルアミドのN置換誘導体、N,N'−メチレンビスアクリルアミド等の2官能基以上のビニル系単量体を併用してもよい。
【0013】
本発明は、ノニオン性またはアニオン性のアクリルアミド系重合体の製造に好適である。ここで、ノニオン性またはアニオン性アクリルアミド系重合体とは、少なくともアクリルアミドを含む単量体水溶液を光重合して得られる重合体である。ノニオン性アクリルアミド系重合体を製造する場合、アクリルアミドと共重合させるビニル系単量体としては、例えば、メタアクリルアミド、N−ビニルアセトアミド、N−ビニルホルムアミド、N−ビニル−N−メチルアセトアミド、N−ビニル−N−メチルホルムアミド、N−メチル(メタ)アクリルアミド、メチル(メタ)アクリレート、酢酸ビニル、アリルアルコール、N−ビニルピロリドン、N−イソプロピルアクリルアミド等のN−置換アルキルアクリルアミド、ダイアセトンアクリルアミド、アクリロニトリル等のノニオン性単量体が挙げられる。また、アニオン性アクリルアミド系重合体を製造する場合、アクリルアミドと共重合させるビニル系単量体としては、上記ノニオン性単量体の他に、例えば、(メタ)アクリル酸およびそのアルカリ塩、アンモニウム塩;2−アクリルアミド−2−メチルプロパンスルホン酸等のアクリルアミドアルカンスルホン酸およびそのアルカリ塩、アンモニウム塩;スチレンスルホン酸およびそのアルカリ塩、アンモニウム塩;等のアニオン性単量体が挙げられる。
【0014】
アクリルアミドと上述したノニオン性またはアニオン性単量体とを共重合させる場合、アクリルアミドの使用量は、全単量体中25質量%以上が好ましい。
【0015】
ノニオン性またはアニオン性アクリルアミド系重合体の具体例としては、アクリルアミド重合体、アクリルアミドと(メタ)アクリル酸(またはそのアルカリ塩、アンモニウム塩)との共重合体、アクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸等のアクリルアミドアルカンスルホン酸(またはそのアルカリ塩、アンモニウム塩)との共重合体、アクリルアミドと(メタ)アクリル酸(またはそのアルカリ塩、アンモニウム塩)と2−アクリルアミド−2−メチルプロパンスルホン酸等のアクリルアミドアルカンスルホン酸(またはそのアルカリ塩、アンモニウム塩)との共重合体、等が挙げられる。また、上記各重合体のアミド基の部分加水分解により、アニオン性アクリルアミド系重合体が得られることもある。
【0016】
ビニル系単量体水溶液の濃度(ビニル系単量体の含有比率)は、好ましくは20〜80質量%、より好ましくは25〜50質量%、特に好ましくは30〜40質量%である。この濃度が高いほど重合時間が短くなり、重合体を乾燥させる際の負荷が少なくなり、生産性が向上する。一方、濃度が低いほど、重合熱の除去が容易になる。
【0017】
ビニル系単量体水溶液に含まれる光重合開始剤は、活性エネルギー線によって分解し重合開始ラジカルを発生する化合物であればよい。その具体例としては、ベンゾイン、ベンゾインアルキルエーテル、ベンジル、ベンゾフェノン、アセトフェノン、アンスラキノン、アシルホスフィンオキサイド化合物、アゾ系化合物等が挙げられる。これらは1種を単独で用いても良いし、2種以上を併用しても良い。特に、水溶解性の高い重合体が得られる点から、アシルホスフィンオキサイド化合物が好ましい。
【0018】
光重合開始剤の含有量は、目的とする重合体の分子量と重合時間の兼ね合いから適宜決定すればよい。通常は、ビニル系単量体水溶液に対して1〜1000ppm程度である。
【0019】
本発明においては、光重合開始剤を含むビニル系単量体水溶液を、基体上に敷かれたフィルムの上に供給する。この基体は、ビニル系単量体水溶液をに定状(層状等)に保持できるものであれば特に限定されない。特に、ビニル系単量体水溶液の液層の厚さが、できるだけ均一になるものが好ましい。基体の具体例としては、バット様の容器、平らな平板上の四方に堰を設けたもの、連続ベルトの両側に堰を設けたもの等が挙げられる。基体は、その表面が照射波長の光を反射する材質からなるものが好ましい。そのような基体の具体例としては、ステンレス、鉄、アルミニウム等の金属から成る基体;表面に金属を蒸着したゴムまたはプラスチック等の合成樹脂から成る基体;などが挙げられる。
【0020】
基体上に敷かれるフィルムとしては、薄膜状で、適度な耐熱性と強度を有する合成樹脂フィルムを通常使用する。特に、非粘着性のフィルムが好ましい。非粘着性フィルムの具体例としては、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、ナイロン、ポリプロピレン等のプラスチックフィルムが挙げられる。なかでも、良好な光透過性を有し、かつ比較的酸素透過率の低いポリエチレンテレフタレートフィルムが好ましい。フィルムの厚さは、好ましくは5〜100μm、より好ましくは10〜50μmである。耐熱性および強度の観点からは厚い方が好ましく、経済性の観点からは薄い方が好ましい。
【0021】
本発明では、光重合させる工程において、基体と基体上に敷かれたフィルムの間に液体媒体を存在させておくことが重要である。これにより、高分子量で曳糸性の長い水溶性ビニル系重合体が得られる。特に、液体媒体を存在させることにより、曳糸性と相関するといわれているワイセンベルク効果の高さ(ポリマー水溶液を攪拌した状態での攪拌棒に絡みついたポリマー水溶液の上位置と液面との距離)が、相対的に大きくなる。これは、液体媒体の存在により重合挙動が変化し、得られたポリマーの分子量分布が変化しているからであると推定される。
【0022】
液体媒体の具体例としては、水、ポリマー水溶液、アルコール類や液体状炭化水素等の有機溶媒などが挙げられる。特に、取り扱い性、安全性の観点から、水が好ましい。また、液体媒体の供給方法は特に限定されない。例えば、基体上に塗布、噴霧、滴下等により液体媒体を供給し、その後、液体媒体の上にフィルムを設ければよい。
【0023】
液体媒体は、基体とフィルムが接触しないように均一に存在させることが好ましく、液体媒体の供給方法や供給量もこのような観点から選定することが望ましい。また、基体とフィルムの間の間隙の平均厚さ、すなわちその間隙に存在する液体媒体の液層の平均厚さは、1〜1000μm程度が好ましい。特に、その厚さの下限については10μm以上がより好ましく、上限については100μm以下がより好ましい。
【0024】
本発明は、このような構成(基体/液体媒体/フィルム)のフィルムの上(液体媒体とは逆の面)に存在するビニル系単量体水溶液を重合させる方法である。フィルムの上にビニル系単量体水溶液を存在させる方法は、特に限定されない。例えば、その構成(基体/液体媒体/フィルム)を設けてから、フィルム上にビニル系単量体水溶液を供給する(流し込む等)方法が挙げられる。
【0025】
ビニル系単量体水溶液の液層の厚さの下限については、好ましくは11mm以上、より好ましくは13mm以上、特に好ましくは16mm以上である。また、その上限については、好ましくは50mm以下、より好ましくは30mm以下、特に好ましくは25mm以下である。ビニル系単量体水溶液の液層の厚さは、厚いほど生産性が高くなり、薄いほど重合熱の除去が容易になる。
【0026】
フィルムの上に存在するビニル系単量体水溶液の表面を、さらに光透過性フィルムで覆うことも可能である。この光透過性フィルムとしては、ポリエチレンテレフタレートやポリ塩化ビニリデン等の比較的酸素透過性が低く、耐熱性のあるフィルムが好ましい。このような光透過性フィルムで表面を覆えば、ビニル系単量体水溶液と外部空気(特に重合を阻害する酸素)との接触をさけることができるので、効率的な重合が可能となる。
【0027】
活性エネルギー線の照射開始時におけるビニル系単量体水溶液(特にアクリルアミド系水溶液)の溶存酸素濃度は、好ましくは1ppm以下、より好ましくは0.5ppm以下である。溶存酸素濃度が低いほど重合開始の遅延が少なくなり、かつ水不溶物の発生が少なくなる。溶存酸素濃度の低減は、窒素置換法等により行うことができる。
【0028】
ビニル系単量体水溶液の重合は、活性エネルギー線の照射により行なう。活性エネルギー線の具体例としては、紫外線、可視光線等が挙げられる。活性エネルギー線の波長は、使用する光重合開始剤により適宜選定すればよい。特に、単量体自身による吸収および光量子のエネルギーの観点から、200〜650nmの領域の波長の活性エネルギー線が好ましい。200〜650nmの活性エネルギー線を与える光源としては各種のものが知られている。その代表例としては、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、蛍光ケミカルランプ、蛍光青色ランプ等が挙げられる。
【0029】
活性エネルギー線の照射強度は常に一定である必要はなく、重合の進行に伴って変化させても良い。照射強度を変化させる方法としては、活性エネルギー線の強度や光源を段階的に変える方法が簡便である。
【0030】
本発明においては、ビニル系単量体水溶液を保持する基体を移動させながら活性エネルギー線を照射することにより、水溶性ビニル系重合体を連続的に製造することもできる。この場合、基体としては、可動式のエンドレスベルト(連続ベルト)等を用いることができる。このようなエンドレスベルトを用いた重合装置は、例えば、先に述べた特公平6−804号公報にも記載されている。具体的には、例えば、連続ベルトの両長辺部分にゴム棒により堰を設け、この堰の内側に液体媒体を介してフィルムを敷き、ビニル系単量体水溶液が漏れ出ないようにした装置等を用いることができる。
【0031】
このような重合装置では、例えば、移動するエンドレスベルトの一端(上流側)のフィルムの上に、ビニル系単量体水溶液を層状になるよう供給し、光源の下をベルトと共に通過させることによって光重合させる。また、ビニル系単量体水溶液が重合反応の進行により流動しなくなった時点以降は、これをローラコンベアー上に連続的に移動させ、光照射を続けることも可能である。また、ローラコンベアーに移動した後は、上方と下方の両方から光照射を行うこともできる。また、このような重合装置では、例えば、移動するエンドレスベルトの上にフィルムを敷く前に(すなわち上流側で)、エンドレスベルト上に液体媒体を供給する。
【0032】
ビニル系単量体水溶液の重合の際には、重合熱によりビニル系単量体水溶液が沸騰することがある。したがって、例えば、基体の下面(液体媒体とは逆側の面)から冷水等の冷却媒を噴霧する方法、ビニル系単量体水溶液の表面(フィルムとは逆側の面)を気体により冷却する方法等により、重合熱を極力除去して沸騰を防ぐことが好ましい。
【0033】
このようにして製造した水溶性ビニル系重合体は、曳糸性が長く、高分子量で、溶解性も良いので、従来より水溶性重合体の用途として知られている各種の用途において、非常に有用な重合体である。なかでも、ノニオン性またはアニオン性アクリルアミド系重合体は、特に、紙・パルプ工業または金属工業の産業廃水処理用の凝集剤として好適である。また、その使用に際して効率よく凝集沈殿を生じさせるためには、必要に応じ、硫酸バンド、ポリ塩化アルミニウム等の無機凝集剤を適宜併用できる。さらに、ノニオン性またはアニオン性アクリルアミド系重合体は、抄紙用粘剤、製紙用歩留まり向上剤としても好適である。
【0034】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。また、以下の記載において「部」は質量部を示す。
【0035】
<実施例1〜8、比較例1〜5>
1.単量体水溶液の調製:
表1に示す割合で、50質量%アクリルアミド水溶液(AAmaq)、アクリル酸(AA)、2−アクリルアミド−2−メチルプロパンスルホン酸(TBAS)、亜リン酸水素二ナトリウムを純水に溶解し、水酸化ナトリウム水溶液でpHを6.5に調整し、純水を加えた。この水溶液のpHが6.5であることを確認した後、遮光下で、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイドの2質量%メタノール溶液0.05部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンの2質量%メタノール溶液1部を添加し、さらに純水を加えて、ビニル系単量体水溶液100部を得た。次いで、この水溶液の溶存酸素濃度が0.2ppm以下になるように窒素ガスで溶存酸素を置換しつつ、液温を10℃に調整した。
【0036】
2.重合装置:
厚さ1mmのステンレス板上に、台形のゴム棒で、底面が225mm×225mmの堰を作った。この台形のゴム棒としては、その断面の上辺が24mm、下辺が40mm、高さが24mmのものを用いた。次いで、実施例1〜8では、その堰内に所定量の純水を添加し、その上に厚さ26μmのPET(ポリエチレンテレフタレート)フィルムを敷いた。ステンレス板とPETフィルムの間の純水の液層の厚さを表1に示す。一方、比較例1〜5では、純水を添加せずに、ステンレス板上に直接、厚さ26μmのPETフィルムを敷いた。次いで、各実施例および各比較例の双方において、PETフィルム上に、先に調製したビニル系単量体水溶液を所定量供給した。さらに、このビニル系単量体水溶液の液面に接するようにして、厚さ16μmの光透過性フィルム[PETフィルム12μm+ポリ塩化ビニリデン4μm]で覆った。ビニル系単量体水溶液の液層の厚さは、16mmであった。また、その上方に、20W型蛍光青色ランプ(東芝社製FL−20S−B)を備えた光源を設置し、重合装置を完成した。
【0037】
3.重合反応:
蛍光青色ランプを点灯し、光透過性フィルムを通した光強度が13W/m2[事前にステンレス板上に受光器(トプコン社製UVR−40)を置いて光強度を測定し、ランプの位置を設定]となるように照射したところ、直ちに温度上昇が見られ、ビニル系単量体水溶液中での重合反応の開始が確認された。その後、光照射強度を段階的に変化させた。具体的には、重合開始1分後に光強度を2.5W/m2とし、さらに重合開始24.5分後に光源を20W型蛍光ケミカルランプ(東芝社製FL−20S−BL)に代えて、光透過性フィルムを通した光強度が52W/m2[事前にステンレス板上に受光器(トプコン社製UVR−36)を置いて光強度を測定し、ランプの位置を設定]になるようにして照射し、10.5分間重合を行った。また、その重合反応中は、重合装置の下面に10℃の冷水を噴霧し、かつ上面の光透過性フィルムには室温の空気を風速約5m/sで吹き付けた。この重合反応により、ゲル状の含水重合体が得られた。次いで、このゲル状の含水重合体を数mm角に解砕し、60℃で16時間乾燥し、ウイレー粉砕機で粉砕し、乾燥重合体粉末を得た。
【0038】
【表1】
【0039】
「AAmaq」・・50質量%アクリルアミド水溶液。
「AA」・・・・・アクリル酸。
「TBAS」・・・2−アクリルアミド−2−メチルプロパンスルホン酸。
【0040】
以上のようにして得た実施例1〜8および比較例1〜5の各重合体に対して、以下の物性測定および性能試験を実施した。
【0041】
[水溶解性能試験]
実施例1〜8および比較例1〜5の何れかの乾燥重合体粉末を純水500gに溶解し、0.1質量%濃度の水溶液を調製した。この水溶液を80メッシュの金網で濾過し、溶解状態および水不溶物を観察した。いずれの溶液においても、水不溶物は全く含まれていなかった。
【0042】
[0.2%塩粘度]
塩化ナトリウムを4質量%、実施例1〜8および比較例1〜5の何れかの乾燥重合体粉末を0.2質量%含む水溶液を調製し、そのブルックフィールド粘度(mPa・s)を測定した。この粘度測定は、B型回転粘度計(ローターNo.1)を用い、60rpm、25℃の条件で実施した。結果を表2〜表4に示す。
【0043】
[1%塩粘度]
塩化ナトリウムを4質量%、実施例1〜8および比較例1〜5の何れかの乾燥重合体粉末を1質量%含む水溶液を調製し、そのブルックフィールド粘度(mPa・s)を測定した。この粘度測定は、B型回転粘度計(ローターNo.2)を用い、6rpm、25℃の条件で実施した。結果を表2〜表4に示す。
【0044】
[1.04%W値(曳糸性)]
実施例1〜8および比較例1〜5の何れかの乾燥重合体粉末を純水に溶解し、1.04質量%濃度の水溶液を調製した。内径約8.6cmのガラス製500mlビーカー内の上記水溶液500gを、2段の2枚平羽根(塩化ビニル製、幅5cm、高さ2cm、間隔2cm、液面から上段の平羽根までの距離1.5cm)を用いて240rpmで4時間攪拌し、この撹拌時のワイセンベルク効果の高さ(攪拌時に攪拌棒に絡みついた水溶液の上位置と液面との距離)を測定した。なお本発明では、1.04%W値/1.0%塩粘度[102mm(mPa・s)]の値を、曳糸性の指標とした。結果を表2〜表4に示す。
【0045】
[凝集性能試験A]
実施例1〜4および比較例1〜4の何れかの乾燥重合体粉末を、純水に溶解し、0.1質量%濃度の重合体水溶液を調製した。一方、懸濁物濃度約350ppmの紙パルプ廃水500mLを500mLビーカーに入れ、表2および表3に示すpHに調整し、ジャーテスターに据え付け、表2および表3に示す量の硫酸バンドを添加し、2分間攪拌した。その後、先に調製した0.1質量%濃度の重合体水溶液を廃水質量に対し0.5ppmになるように加え、回転数100rpmで3分間攪拌混合し、その後、攪拌を止めた。この攪拌混合の際にはフロックが形成されるので、その際のフロックの沈降時間を測定した。結果を表2および表3に示す。
【0046】
[凝集性能試験B]
実施例5〜8および比較例5の何れかの乾燥重合体粉末を用いたこと以外は、凝集性能試験Aと同様にして重合体水溶液を調製した。さらに、廃水として懸濁物濃度670ppmの銅を含む金属廃水を用い、かつ硫酸バンドを添加しなかったこと以外は、凝集性能試験Aと同様にして上記重合体水溶液の凝集性能試験を実施した。結果を表4示す。
【0047】
【表2】
【0048】
【表3】
【0049】
【表4】
【0050】
表2〜表4に示す結果から明らかなように、実施例1〜8においては、基体とPETフィルムの間に液体媒体(純水)を存在させた状態で重合を行なったので、曳糸性の指標である1.04%W値/1%塩粘度の値が大きく、沈降時間が短く、凝集性能に優れた水溶性ビニル系重合体が得られた。
【0051】
さらに、凝集性能試験A(紙パルプ廃水)において、実施例1〜4の重合体を用いて凝集させたフロックは、フロック径も明らかに大きく、かつ攪拌に対しても耐久性が高く、フロック沈降後の上澄液の非沈降物の量はほぼ皆無であった。また、凝集性能試験B(金属排水)において、実施例5〜8の重合体を用いた場合も同様の傾向が認められ、水溶解性、凝集性能共に優れたものであった。
【0052】
なお、凝集性能試験B(金属排水)において、実施例6と実施例8は同一の乾燥重合体粉末を用いた例であり、両者の相違点は重合体の添加量だけである(0.5ppmと0.35ppm)。実施例6よりも添加量を70%低減した実施例8であってもほぼ良好な結果が得られることから、本発明によれば添加量を低減しても、優れた凝集性能が得られることが分かる。
【0053】
【発明の効果】
以上説明したように、本発明によれば、曳糸性が長く、高分子量で、溶解性のよい水溶性ビニル系重合体を、生産性良く製造できる。この水溶性ビニル系重合体を凝集剤等として使用すれば、大幅に速い沈降速度が得られ、効率的な凝集操作ができ、重合体の使用量を少なくすることができる。特に、本発明により製造したノニオン性またはアニオン性の水溶性アクリルアミド系重合体は、浄化のための凝集剤、抄紙用粘剤、製紙用歩留まり向上剤、石油回収剤等の広い用途に、好適に使用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a water-soluble vinyl polymer suitable for a flocculant, a papermaking adhesive, a papermaking yield improver, a petroleum recovery agent and the like. More specifically, a water-soluble vinyl polymer comprising a step of photopolymerizing an aqueous vinyl monomer solution containing a photopolymerization initiator existing on a film laid on a substrate by irradiating active energy rays. It relates to a manufacturing method.
[0002]
[Prior art]
Conventionally, water-soluble vinyl polymers have been produced on an industrial scale, including flocculants for purification of various water supplies, papermaking adhesives, papermaking yield improvers, paper strength enhancers, fiber dispersants, and soil stability. It is widely used as an agent and oil recovery agent.
[0003]
As a method for producing such a water-soluble vinyl polymer, for example, Japanese Patent Publication No. 5-32410 and Japanese Patent Publication No. 6-804 disclose a vinyl monomer aqueous solution containing a photoinitiator on a moving substrate. Has been disclosed in which a water-soluble vinyl polymer is continuously produced by polymerizing the layered vinyl monomer aqueous solution by irradiation with light. In this production method, for example, an aqueous monomer solution is supplied from one end on a movable continuous belt, polymerized by irradiation with light, and the resulting aqueous gel is continuously taken out from the other end.
[0004]
Also, in order to easily peel off the aqueous gel obtained by photopolymerization on the substrate, a non-adhesive film is laid on the substrate, and a vinyl monomer or an aqueous solution thereof is supplied in layers on the non-adhesive film. Thus, a method for polymerization is known. As such a non-adhesive film, for example, Japanese Patent No. 2598017 describes a polytetrafluoroethylene film and the like, and Japanese Patent Publication No. 8-5926 and Japanese Patent Application Laid-Open No. 11-228609 disclose a polyethylene terephthalate film. Nylon film, polypropylene film and the like are described.
[0005]
[Problems to be solved by the invention]
In general, the higher the molecular weight of the flocculant, the smaller the amount used, and the shorter the coagulation sedimentation time, it is said that the coagulation performance is excellent. Similarly, it is said that the higher the molecular weight of the papermaking adhesive, the better. However, on the other hand, it is also known that the higher the molecular weight, the lower the solubility of the polymer in water.
[0006]
As a physical property that affects various performances among the polymer physical properties other than the molecular weight, Japanese Patent Application Laid-Open No. 52-3758 has excellent aggregation performance by controlling the spinnability of an acrylamide copolymer having a specific composition. It is described that a polymer is obtained. In addition, it is generally said that the longer the spinnability of the papermaking adhesive, the better.
[0007]
Furthermore, the method for producing a water-soluble vinyl polymer by photopolymerization on a substrate is compared with a method for adiabatically polymerizing a water-soluble vinyl monomer aqueous solution containing a redox initiator and an azo initiator. When the average molecular weights of the obtained polymers are the same, it is generally said that the former tends to have a shorter spinnability.
[0008]
As a method for controlling spinnability in photopolymerization on a substrate, for example, JP-A-61-2213203 describes a method in which the irradiation intensity of active energy rays is changed during polymerization. However, this control method has a problem that the polymerization productivity is extremely low.
[0009]
The present invention has been made to solve the above-described problems of the prior art. That is, an object of the present invention is to provide a method capable of producing a water-soluble vinyl polymer having a high molecular weight, a long spinnability, and excellent water solubility with high productivity.
[0010]
[Means for Solving the Problems]
The present invention relates to a production of a water-soluble vinyl polymer comprising a step of irradiating an aqueous vinyl monomer solution containing a photopolymerization initiator existing on a film laid on a substrate with an active energy ray for photopolymerization. In the method
In the step of the photopolymerization, the vinyl monomer aqueous solution containing the photopolymerization initiator, was supplied so as to be layered on top of said laid on a substrate film which moves together with said substrate, and prior SL base A method for producing a water-soluble vinyl polymer , wherein the supplied vinyl monomer aqueous solution is photopolymerized in a state where a liquid medium is present between films laid on the substrate.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the vinyl monomer aqueous solution is not particularly limited as long as it is an aqueous solution containing a vinyl monomer capable of forming a water-soluble vinyl polymer by photopolymerization and a photopolymerization initiator. In particular, an aqueous monomer solution mainly containing (meth) acrylamide and / or a derivative thereof is preferable. In the present invention, “(meth) acryl” is a general term for acrylic and methacrylic.
[0012]
Specific examples of the vinyl monomer include (meth) acrylamide and its partial hydrolyzate, (meth) acrylic acid, and alkali salts and ammonium salts of these acids; 2-acrylamido-2-methylpropanesulfonic acid, etc. Acrylamide alkanesulfonic acid and its alkali salts, ammonium salts; N, N′-dialkylaminoalkyl (meth) acrylamide and its salts, N, N′-dialkylaminoalkyl (meth) acrylate and its salts, and their 4 Grade ammonium salt; etc. are mentioned. These may be used alone or in combination of two or more. Further, a vinyl monomer having two or more functional groups such as an N-substituted derivative of (meth) acrylamide and N, N′-methylenebisacrylamide may be used in combination as long as the water solubility of the resulting polymer is not impaired.
[0013]
The present invention is suitable for producing a nonionic or anionic acrylamide polymer. Here, the nonionic or anionic acrylamide polymer is a polymer obtained by photopolymerizing an aqueous monomer solution containing at least acrylamide. When producing a nonionic acrylamide polymer, examples of vinyl monomers copolymerized with acrylamide include methacrylamide, N-vinylacetamide, N-vinylformamide, N-vinyl-N-methylacetamide, N- N-substituted alkylacrylamides such as vinyl-N-methylformamide, N-methyl (meth) acrylamide, methyl (meth) acrylate, vinyl acetate, allyl alcohol, N-vinylpyrrolidone, N-isopropylacrylamide, diacetone acrylamide, acrylonitrile, etc. Nonionic monomers. Further, in the case of producing an anionic acrylamide polymer, as the vinyl monomer copolymerized with acrylamide, in addition to the nonionic monomer, for example, (meth) acrylic acid and its alkali salts, ammonium salts Anionic monomers such as acrylamide alkanesulfonic acid such as 2-acrylamido-2-methylpropanesulfonic acid and alkali salts and ammonium salts thereof; styrenesulfonic acid and alkali salts and ammonium salts thereof;
[0014]
When acrylamide and the above-described nonionic or anionic monomer are copolymerized, the amount of acrylamide used is preferably 25% by mass or more based on the total monomers.
[0015]
Specific examples of nonionic or anionic acrylamide polymers include acrylamide polymers, copolymers of acrylamide and (meth) acrylic acid (or its alkali salts, ammonium salts), acrylamide and 2-acrylamido-2-methyl. Copolymer with acrylamide alkanesulfonic acid (or its alkali salt, ammonium salt) such as propanesulfonic acid, acrylamide and (meth) acrylic acid (or its alkali salt, ammonium salt) and 2-acrylamido-2-methylpropanesulfone And a copolymer with acrylamide alkanesulfonic acid (or an alkali salt or ammonium salt thereof) such as acid. In addition, an anionic acrylamide polymer may be obtained by partial hydrolysis of the amide group of each polymer.
[0016]
The concentration of vinyl monomer aqueous solution (vinyl monomer content ratio) is preferably 20 to 80% by mass, more preferably 25 to 50% by mass, and particularly preferably 30 to 40% by mass. The higher the concentration, the shorter the polymerization time, the less the load when drying the polymer, and the productivity is improved. On the other hand, the lower the concentration, the easier the removal of the polymerization heat.
[0017]
The photopolymerization initiator contained in the aqueous vinyl monomer solution may be a compound that decomposes by active energy rays and generates a polymerization initiation radical. Specific examples thereof include benzoin, benzoin alkyl ether, benzyl, benzophenone, acetophenone, anthraquinone, acylphosphine oxide compound, azo compound, and the like. These may be used alone or in combination of two or more. In particular, an acylphosphine oxide compound is preferable from the viewpoint of obtaining a polymer having high water solubility.
[0018]
The content of the photopolymerization initiator may be appropriately determined from the balance between the molecular weight of the target polymer and the polymerization time. Usually, it is about 1-1000 ppm with respect to vinyl-type monomer aqueous solution.
[0019]
In the present invention, an aqueous vinyl monomer solution containing a photopolymerization initiator is supplied onto a film laid on a substrate. The substrate is not particularly limited as long as the aqueous vinyl monomer aqueous solution can be held in a definite shape (such as a layer). In particular, it is preferable that the thickness of the liquid layer of the vinyl monomer aqueous solution is as uniform as possible. Specific examples of the substrate include a bat-like container, one provided with weirs on all sides of a flat plate, and one provided with weirs on both sides of the continuous belt. The substrate is preferably made of a material whose surface reflects light having an irradiation wavelength. Specific examples of such a substrate include a substrate made of a metal such as stainless steel, iron, and aluminum; a substrate made of a synthetic resin such as rubber or plastic with a metal deposited on the surface thereof.
[0020]
As the film laid on the substrate, a synthetic resin film having a thin film shape and appropriate heat resistance and strength is usually used. In particular, a non-adhesive film is preferable. Specific examples of the non-adhesive film include plastic films such as polytetrafluoroethylene, polyethylene terephthalate, nylon, and polypropylene. Of these, a polyethylene terephthalate film having good light transmittance and relatively low oxygen permeability is preferable. The thickness of the film is preferably 5 to 100 μm, more preferably 10 to 50 μm. A thicker is preferable from the viewpoint of heat resistance and strength, and a thinner is preferable from the viewpoint of economy.
[0021]
In the present invention, in the photopolymerization step, it is important that a liquid medium exists between the substrate and the film laid on the substrate. As a result, a water-soluble vinyl polymer having a high molecular weight and a long spinnability is obtained. In particular, the height of the Weissenberg effect, which is said to correlate with the spinnability by the presence of a liquid medium (the distance between the upper position of the polymer aqueous solution entangled with the stirring rod when the aqueous polymer solution is stirred) and the liquid level Is relatively large. This is presumably because the polymerization behavior changes due to the presence of the liquid medium, and the molecular weight distribution of the obtained polymer changes.
[0022]
Specific examples of the liquid medium include water, aqueous polymer solutions, organic solvents such as alcohols and liquid hydrocarbons, and the like. In particular, water is preferable from the viewpoints of handleability and safety. Moreover, the supply method of a liquid medium is not specifically limited. For example, a liquid medium may be supplied onto the substrate by coating, spraying, dropping, or the like, and then a film may be provided on the liquid medium.
[0023]
The liquid medium is preferably present uniformly so that the substrate and the film do not come into contact with each other, and the supply method and supply amount of the liquid medium are preferably selected from this viewpoint. The average thickness of the gap between the substrate and the film, that is, the average thickness of the liquid layer of the liquid medium existing in the gap is preferably about 1 to 1000 μm. In particular, the lower limit of the thickness is more preferably 10 μm or more, and the upper limit is more preferably 100 μm or less.
[0024]
The present invention is a method for polymerizing an aqueous vinyl monomer solution present on a film having such a structure (substrate / liquid medium / film) (the surface opposite to the liquid medium). The method for allowing the vinyl monomer aqueous solution to exist on the film is not particularly limited. For example, after the structure (substrate / liquid medium / film) is provided, a vinyl monomer aqueous solution is supplied (poured) onto the film.
[0025]
About the minimum of the thickness of the liquid layer of vinyl-type monomer aqueous solution, Preferably it is 11 mm or more, More preferably, it is 13 mm or more, Most preferably, it is 16 mm or more. Moreover, about the upper limit, Preferably it is 50 mm or less, More preferably, it is 30 mm or less, Most preferably, it is 25 mm or less. As the thickness of the liquid layer of the vinyl monomer aqueous solution increases, the productivity increases, and as the thickness decreases, the heat of polymerization becomes easier.
[0026]
It is also possible to cover the surface of the aqueous vinyl monomer solution present on the film with a light transmissive film. As this light transmissive film, a film having relatively low oxygen permeability and heat resistance such as polyethylene terephthalate and polyvinylidene chloride is preferable. If the surface is covered with such a light-transmitting film, contact between the aqueous vinyl monomer solution and external air (especially oxygen that inhibits polymerization) can be avoided, so that efficient polymerization is possible.
[0027]
The dissolved oxygen concentration of the vinyl monomer aqueous solution (particularly the acrylamide aqueous solution) at the start of irradiation with active energy rays is preferably 1 ppm or less, more preferably 0.5 ppm or less. The lower the dissolved oxygen concentration, the less the delay in the polymerization start and the less water insoluble matter is generated. The dissolved oxygen concentration can be reduced by a nitrogen substitution method or the like.
[0028]
Polymerization of the aqueous vinyl monomer solution is performed by irradiation with active energy rays. Specific examples of the active energy ray include ultraviolet rays and visible rays. What is necessary is just to select the wavelength of an active energy ray suitably with the photoinitiator to be used. In particular, from the viewpoint of absorption by the monomer itself and photon energy, active energy rays having a wavelength in the region of 200 to 650 nm are preferable. Various light sources are known as light sources that provide an active energy ray of 200 to 650 nm. Typical examples include a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, a fluorescent chemical lamp, and a fluorescent blue lamp.
[0029]
The irradiation intensity of the active energy ray does not always need to be constant, and may be changed as the polymerization proceeds. As a method of changing the irradiation intensity, a method of changing the intensity of the active energy ray or the light source in a stepwise manner is simple.
[0030]
In the present invention, a water-soluble vinyl polymer can be continuously produced by irradiating active energy rays while moving a substrate holding an aqueous vinyl monomer solution. In this case, a movable endless belt (continuous belt) or the like can be used as the substrate. Such a polymerization apparatus using an endless belt is also described in, for example, Japanese Patent Publication No. 6-804 described above. Specifically, for example, a device in which weirs are provided by rubber rods on both long side portions of a continuous belt, and a film is laid inside the weir via a liquid medium so that the vinyl monomer aqueous solution does not leak out. Etc. can be used.
[0031]
In such a polymerization apparatus, for example, a vinyl monomer aqueous solution is supplied in a layered form on a film at one end (upstream side) of a moving endless belt, and light is passed by passing under the light source together with the belt. Polymerize. In addition, after the vinyl monomer aqueous solution stops flowing due to the progress of the polymerization reaction, it is possible to continuously move it onto a roller conveyor and continue the light irradiation. Moreover, after moving to a roller conveyor, light irradiation can also be performed from both upper and lower sides. In such a polymerization apparatus, for example, before the film is laid on the moving endless belt (that is, on the upstream side), the liquid medium is supplied onto the endless belt.
[0032]
When the vinyl monomer aqueous solution is polymerized, the vinyl monomer aqueous solution may boil due to the heat of polymerization. Therefore, for example, a method of spraying a cooling medium such as cold water from the lower surface (surface opposite to the liquid medium) of the substrate, or the surface of the vinyl monomer aqueous solution (surface opposite to the film) is cooled with gas. It is preferable to prevent boiling by removing polymerization heat as much as possible by a method or the like.
[0033]
The water-soluble vinyl polymer produced in this way has a long spinnability, a high molecular weight, and good solubility. Therefore, in various applications conventionally known as a water-soluble polymer, It is a useful polymer. Among these, nonionic or anionic acrylamide polymers are particularly suitable as flocculants for treating industrial wastewater in the paper / pulp industry or the metal industry. In addition, in order to efficiently produce a coagulation precipitate during use, an inorganic coagulant such as a sulfate band or polyaluminum chloride can be used in combination as needed. Further, the nonionic or anionic acrylamide polymer is also suitable as a papermaking adhesive and a papermaking yield improver.
[0034]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Moreover, in the following description, "part" shows a mass part.
[0035]
<Examples 1-8, Comparative Examples 1-5>
1. Preparation of aqueous monomer solution:
50 mass% aqueous acrylamide solution (AAmaq), acrylic acid (AA), 2-acrylamido-2-methylpropanesulfonic acid (TBAS), and disodium hydrogen phosphite are dissolved in pure water in the proportions shown in Table 1. The pH was adjusted to 6.5 with an aqueous sodium oxide solution, and pure water was added. After confirming that the pH of this aqueous solution was 6.5, 0.05 parts of a 2% by weight methanol solution of 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-hydroxy-2-methyl- 1 part of a 2 mass% methanol solution of 1-phenylpropan-1-one was added, and pure water was further added to obtain 100 parts of a vinyl monomer aqueous solution. Next, the liquid temperature was adjusted to 10 ° C. while replacing the dissolved oxygen with nitrogen gas so that the dissolved oxygen concentration of this aqueous solution was 0.2 ppm or less.
[0036]
2. Polymerization equipment:
A weir having a bottom surface of 225 mm × 225 mm was made of a trapezoidal rubber rod on a stainless steel plate having a thickness of 1 mm. As the trapezoidal rubber rod, a rubber bar having an upper side of 24 mm, a lower side of 40 mm, and a height of 24 mm was used. Next, in Examples 1 to 8, a predetermined amount of pure water was added to the weir and a PET (polyethylene terephthalate) film having a thickness of 26 μm was laid thereon. Table 1 shows the thickness of the pure water liquid layer between the stainless steel plate and the PET film. On the other hand, in Comparative Examples 1 to 5, a PET film having a thickness of 26 μm was laid directly on the stainless steel plate without adding pure water. Subsequently, in each Example and each Comparative Example, a predetermined amount of the previously prepared vinyl monomer aqueous solution was supplied onto the PET film. Further, it was covered with a 16 μm-thick light-transmitting film [PET film 12 μm + polyvinylidene chloride 4 μm] so as to be in contact with the liquid surface of this vinyl monomer aqueous solution. The thickness of the liquid layer of the vinyl monomer aqueous solution was 16 mm. In addition, a light source equipped with a 20 W fluorescent blue lamp (FL-20S-B manufactured by Toshiba Corp.) was installed above it to complete the polymerization apparatus.
[0037]
3. Polymerization reaction:
The fluorescent blue lamp is turned on, and the light intensity through the light-transmitting film is 13 W / m 2 [The light intensity is measured in advance by placing a light receiver (UVR-40 manufactured by Topcon) on the stainless steel plate, and the position of the lamp. The temperature immediately increased, and the start of the polymerization reaction in the aqueous vinyl monomer solution was confirmed. Thereafter, the light irradiation intensity was changed stepwise. Specifically, the light intensity was set to 2.5 W / m 2 1 minute after the start of polymerization, and the light source was changed to a 20 W fluorescent chemical lamp (FL-20S-BL manufactured by Toshiba) after 24.5 minutes after the start of polymerization. The light intensity through the light-transmitting film should be 52 W / m 2 [previously place the light receiver (UVR-36 manufactured by Topcon) on the stainless steel plate and measure the light intensity to set the lamp position]. And polymerization was carried out for 10.5 minutes. During the polymerization reaction, 10 ° C. cold water was sprayed on the lower surface of the polymerization apparatus, and air at room temperature was blown onto the light transmissive film on the upper surface at a wind speed of about 5 m / s. By this polymerization reaction, a gel-like water-containing polymer was obtained. Subsequently, this gel-like water-containing polymer was pulverized into several mm square, dried at 60 ° C. for 16 hours, and pulverized with a Wiley pulverizer to obtain a dry polymer powder.
[0038]
[Table 1]
[0039]
“AAmaq”: 50 mass% acrylamide aqueous solution.
“AA”: acrylic acid.
“TBAS” —2-acrylamido-2-methylpropanesulfonic acid.
[0040]
The following physical property measurements and performance tests were performed on the polymers of Examples 1 to 8 and Comparative Examples 1 to 5 obtained as described above.
[0041]
[Water dissolution performance test]
The dry polymer powder of any of Examples 1 to 8 and Comparative Examples 1 to 5 was dissolved in 500 g of pure water to prepare a 0.1% by mass aqueous solution. This aqueous solution was filtered through an 80-mesh wire mesh, and the dissolved state and water-insoluble matter were observed. None of the solutions contained any water-insoluble matter.
[0042]
[0.2% salt viscosity]
An aqueous solution containing 4% by mass of sodium chloride and 0.2% by mass of the dry polymer powder of any of Examples 1 to 8 and Comparative Examples 1 to 5 was prepared, and its Brookfield viscosity (mPa · s) was measured. . This viscosity measurement was performed using a B-type rotational viscometer (rotor No. 1) under the conditions of 60 rpm and 25 ° C. The results are shown in Tables 2-4.
[0043]
[1% salt viscosity]
An aqueous solution containing 4% by mass of sodium chloride and 1% by mass of the dry polymer powder of any of Examples 1 to 8 and Comparative Examples 1 to 5 was prepared, and its Brookfield viscosity (mPa · s) was measured. This viscosity measurement was performed using a B-type rotational viscometer (rotor No. 2) under the conditions of 6 rpm and 25 ° C. The results are shown in Tables 2-4.
[0044]
[1.04% W value (threading property)]
The dry polymer powder of any of Examples 1 to 8 and Comparative Examples 1 to 5 was dissolved in pure water to prepare an aqueous solution having a concentration of 1.04% by mass. 500 g of the above aqueous solution in a glass 500 ml beaker having an inner diameter of about 8.6 cm is divided into two two flat blades (made of vinyl chloride, width 5 cm, height 2 cm, interval 2 cm, distance 1 from the liquid surface to the upper flat blade). The height of the Weissenberg effect at the time of stirring (the distance between the upper position of the aqueous solution entangled with the stirring rod during stirring and the liquid level) was measured. In the present invention, the value of 1.04% W value / 1.0% salt viscosity [10 2 mm (mPa · s)] was used as an index of the spinnability. The results are shown in Tables 2-4.
[0045]
[Aggregation performance test A]
The dry polymer powder of any of Examples 1 to 4 and Comparative Examples 1 to 4 was dissolved in pure water to prepare a 0.1% by mass aqueous polymer solution. On the other hand, 500 mL of pulp and paper wastewater having a suspension concentration of about 350 ppm is put into a 500 mL beaker, adjusted to the pH shown in Table 2 and Table 3, installed in a jar tester, and the sulfuric acid band in the amount shown in Table 2 and Table 3 is added. Stir for 2 minutes. Thereafter, the 0.1% by mass polymer aqueous solution prepared previously was added to 0.5 ppm with respect to the wastewater mass, and the mixture was stirred and mixed at a rotation speed of 100 rpm for 3 minutes, and then the stirring was stopped. Since flocs are formed during the stirring and mixing, the flocs settling time at that time was measured. The results are shown in Table 2 and Table 3.
[0046]
[Aggregation performance test B]
A polymer aqueous solution was prepared in the same manner as in the aggregation performance test A except that the dry polymer powder of any of Examples 5 to 8 and Comparative Example 5 was used. Further, the coagulation performance test of the polymer aqueous solution was carried out in the same manner as the coagulation performance test A, except that metal wastewater containing copper having a suspension concentration of 670 ppm was used as the wastewater, and no sulfuric acid band was added. Table 4 shows the results.
[0047]
[Table 2]
[0048]
[Table 3]
[0049]
[Table 4]
[0050]
Table 2 As apparent from the results shown in Table 4, in Examples 1-8, since polymerization was performed in which the presence of a liquid medium (pure water) between the substrate and the PET film, spinnability A water-soluble vinyl polymer having a large 1.04% W value / 1% salt viscosity, a sedimentation time, and excellent coagulation performance was obtained.
[0051]
Furthermore, in the flocculation performance test A (paper pulp wastewater), the floc aggregated using the polymers of Examples 1 to 4 has a clearly large floc diameter and high durability against stirring, and floc sedimentation. There was almost no amount of non-sediment in the subsequent supernatant. Further, in the coagulation performance test B (metal drainage), the same tendency was observed when the polymers of Examples 5 to 8 were used, and both water solubility and coagulation performance were excellent.
[0052]
In the coagulation performance test B (metal drainage), Example 6 and Example 8 are examples using the same dry polymer powder, and the difference between them is only the amount of polymer added (0.5 ppm). And 0.35 ppm). Even in Example 8 in which the amount added was reduced by 70% compared to Example 6, almost good results were obtained. Therefore, according to the present invention, excellent aggregation performance can be obtained even if the amount added is reduced. I understand.
[0053]
【The invention's effect】
As described above, according to the present invention, a water-soluble vinyl polymer having a long spinnability, a high molecular weight, and good solubility can be produced with high productivity. If this water-soluble vinyl polymer is used as a flocculant or the like, a significantly fast sedimentation rate can be obtained, an efficient flocculation operation can be performed, and the amount of the polymer used can be reduced. In particular, the nonionic or anionic water-soluble acrylamide polymer produced by the present invention is suitable for a wide range of uses such as a flocculant for purification, a papermaking viscosity agent, a papermaking yield improver, and a petroleum recovery agent. Can be used.
Claims (2)
前記光重合させる工程において、前記光重合開始剤を含む前記ビニル系単量体水溶液を、前記基体と共に移動する前記基体上に敷かれたフィルムの上に層状になるよう供給し、前記基体と前記基体上に敷かれたフィルムの間に液体媒体を存在させた状態でその供給されたビニル系単量体水溶液を光重合させることを特徴とする水溶性ビニル系重合体の製造方法。In a method for producing a water-soluble vinyl polymer, the method includes a step of irradiating a vinyl monomer aqueous solution containing a photopolymerization initiator existing on a film laid on a substrate with an active energy ray to cause photopolymerization.
In the step of the photopolymerization, the vinyl monomer aqueous solution containing the photopolymerization initiator, was supplied so as to be layered on top of said laid on a substrate film which moves together with said substrate, and prior SL base A method for producing a water-soluble vinyl polymer , wherein the supplied vinyl monomer aqueous solution is photopolymerized in a state where a liquid medium is present between films laid on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002047824A JP3820164B2 (en) | 2002-02-25 | 2002-02-25 | Method for producing water-soluble vinyl polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002047824A JP3820164B2 (en) | 2002-02-25 | 2002-02-25 | Method for producing water-soluble vinyl polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003246805A JP2003246805A (en) | 2003-09-05 |
JP3820164B2 true JP3820164B2 (en) | 2006-09-13 |
Family
ID=28660787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002047824A Expired - Lifetime JP3820164B2 (en) | 2002-02-25 | 2002-02-25 | Method for producing water-soluble vinyl polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3820164B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4522692B2 (en) * | 2003-11-28 | 2010-08-11 | ダイヤニトリックス株式会社 | Paper making adhesive |
JP5030390B2 (en) * | 2005-03-31 | 2012-09-19 | アキレス株式会社 | Method for producing conductive composite laminate |
JP5084119B2 (en) * | 2005-08-26 | 2012-11-28 | 株式会社日本触媒 | Method for producing acrylic acid (salt) water-soluble polymer |
JP5405053B2 (en) * | 2008-06-12 | 2014-02-05 | 三菱レイヨン株式会社 | Polymer gel sheet production method, powder polymer production method, and photopolymerization reactor |
-
2002
- 2002-02-25 JP JP2002047824A patent/JP3820164B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003246805A (en) | 2003-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101037492A (en) | Method for preparing propylene amides copolymer with regular branch structure by inverse emulsion method | |
TW200300775A (en) | Process for production of water-soluble (meth)acrylic polymers, water-soluble (meth)acrylic polymers, and use thereof | |
JP2015515526A (en) | New cationic polymer | |
JPH02222404A (en) | Preparation of stable water-in-oil type emulsion of hydrolysed n-vinylamide polymer, and dehydrating agent, retention agent and coagulating agent consisting of said emulsion for manufacturing paper and paper product | |
JP2000500387A (en) | High performance polymer flocculant | |
JP3820164B2 (en) | Method for producing water-soluble vinyl polymer | |
US20130274369A1 (en) | New cationic polymers | |
KR20210018191A (en) | Sludge dehydration agent and sludge dehydration method | |
JPH07256299A (en) | Amphoteric polymeric sludge dehydrating agent | |
JP2019069442A (en) | Sludge dehydrating agent and sludge dewatering method | |
JP6546188B2 (en) | Structured block copolymer | |
JP2006182816A (en) | Crosslinked water-soluble polymer dispersion liquid and paper making method using the same | |
JP5299935B2 (en) | Nonionic or anionic water-soluble acrylamide polymer and process for producing the same | |
JP2012213769A (en) | Polymer flocculant | |
JP2006104433A (en) | Cross-linking anionic water soluble polymer dispersion and paper production method using the same | |
JP2017100111A (en) | Cross-linking type polymer coagulant, manufacturing method of the same and waste water treating method using the same | |
JP4161559B2 (en) | Composition, amphoteric polymer flocculant and method for dewatering sludge | |
JP4661998B2 (en) | Sludge dewatering method | |
JPH08283349A (en) | Amphoteric polymeric flocculant | |
JPS5828284B2 (en) | Method for producing water-soluble cationic polymer | |
JP3561839B2 (en) | Cationic polymer composite with enhanced aggregation effect | |
JP2013078755A (en) | Amphoteric polymer flocculant, method of manufacturing the same, and sludge dehydration method using the same | |
JP3260729B2 (en) | Polymer flocculant | |
JP4175194B2 (en) | Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt polymer | |
CN100417674C (en) | Aqueous high molecular polymer, coagulated dehydrant for sludge and sludge coagulating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060616 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3820164 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |