JP3820070B2 - Reactor for previtamin D synthesis - Google Patents

Reactor for previtamin D synthesis Download PDF

Info

Publication number
JP3820070B2
JP3820070B2 JP35287099A JP35287099A JP3820070B2 JP 3820070 B2 JP3820070 B2 JP 3820070B2 JP 35287099 A JP35287099 A JP 35287099A JP 35287099 A JP35287099 A JP 35287099A JP 3820070 B2 JP3820070 B2 JP 3820070B2
Authority
JP
Japan
Prior art keywords
quartz
previtamin
provitamin
tube
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35287099A
Other languages
Japanese (ja)
Other versions
JP2001163856A (en
Inventor
真人 岡本
淳一 押田
静男 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP35287099A priority Critical patent/JP3820070B2/en
Publication of JP2001163856A publication Critical patent/JP2001163856A/en
Application granted granted Critical
Publication of JP3820070B2 publication Critical patent/JP3820070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は医薬品として有用なビタミンD類を製造するための反応装置、およびそれを用いた製造方法に関する。さらに詳細には、ビタミンD類の製造法として有用なプロビタミンD類の光照射によるプレビタミン類の合成に用いる反応装置、およびそれを用いたプレビタミン類の製造方法に関する。
【0002】
【従来の技術】
プロビタミンD類に光照射を行いプレビタミンD類を得た後、そのプレビタミンD類の熱異性化を行ってビタミンD類を得る合成法は、最も確実なビタミンD類の合成法の一つである。本法を医薬品の製造に適用する場合は、原料の溶液を送液しつつ、光照射を行う方法(連続式)と、原料溶液を送液せずに光照射を行う方法(バッチ式)とがあるが、効率上からは前者が好ましい。
【0003】
連続式の光反応装置としては、ランプのまわりに石英管を螺旋状に巻いた反応装置(パイプ型反応装置)が光の利用効率が優れているため、よく利用されている。この反応装置は、ランプの出力を変えるか、あるいは直列に連結する反応装置の数を変化させることにより、反応のスケールを容易に変更可能であるというメリットもあり、一般的に反応装置により大きく収率が変動するといわれる光反応にとって非常に有用な反応装置である(図3参照)。また、この反応装置はピストンフロー性がよく、滞留による過照射は起こりにくい利点がある。
【0004】
ところで、プロビタミンD類の高圧水銀灯による光照射では、まず得られるプレビタミンD類がさらに光を吸収し、ルミステロール類、タキステロール類等に変化することが知られている。そこで、収率よくプレビタミンD類を得るためには、プレビタミンD類がさらに光を吸収する前に反応を停止する(プロビタミンDの転化率を低く押さえる:低転化法)か、あるいは一旦光照射により生成したタキステロール類に、さらに短波長をカットした光を照射することでタキステロール類からプレビタミンD類への異性化を起こす(2段照射法)ことが一般に行われている(次式参照)。
【0005】
【化3】

Figure 0003820070
【0006】
こうしたことから、低転化法では残存する原料(プロビタミンD類)を回収再反応することを前提としているので、低転化法での反応の良否は反応で消費されたプロビタミンD類に対する生成したプレビタミンD類の割合(選択率)で評価されることになる。一方、2段照射法を用いる場合は、タキステロール類をほとんど総てプレビタミンD類とする技術が既に知られているので(特開昭60−25965号公報参照)、プロビタミンD類の1段目の光照射においては、プレビタミンD類とタキステロール類の合計の収率が重要となる。
【0007】
ところで、前述した反応装置によりプロビタミンD類の光照射を行う際に、プロビタミンD類の濃度を上げていくと、プレビタミンD類の選択率(低転化法の場合)にしても、プレビタミンD類とタキステロール類の合計の収率(2段照射法の場合)にしても、いずれも低下してしまう問題点があることが本発明者の実験により明らかになった。
【0008】
医薬品の製造おいては、光照射されるプロビタミンD類の濃度が高いほど使用溶媒の量を減少できるので、コスト的に有利である。また、使用溶媒の量を減少できると廃棄物の処理といった環境の面でも好ましい。つまり、収率を考慮してプロビタミンD類濃度を低く設定せざるを得ないことは、この反応装置の欠点である。
【0009】
本発明者らは、この反応装置では円周方向の攪拌がないため、ランプに近い側の液の過照射が進んでしまい、これがためにプロビタミンD類の濃度を高くできないのではないかと考察した。
【0010】
円周方向の攪拌を向上する方法としては、流路上に邪魔板を設けて流れを分割し、流路を変更するスタティックミキサーが考えられるが、ほぼ直管部への導入に限られ、パイプ型反応装置への導入は困難である。また、スタティックミキサーを用いて反応装置自体を大幅に変更した場合には、光源に流路を近づけるため、流路を垂直方向に取らざるを得ず、パイプ型の反応装置ほど光の有効利用およびピストンフロー性が確保できない問題がある。
【0011】
なお、パイプ型の反応管内に石英製の充填物を挿入した反応装置はこれまでに知られていない。
【0012】
【発明が解決しようとする課題】
上記従来技術の状況のもとに、本発明の目的は、連続反応に適しているパイプ型反応装置のメリットを維持しつつ、医薬品たるビタミンD類の製造に適した光反応装置を提供することである。具体的には、従来よりも高い濃度でプロビタミンD類を反応させ、従来以上の選択率でプレビタミンD類を、または従来以上の収率でプレビタミン類とタキステロール類の混合物を得ることができる反応装置を提供することである。
【0013】
さらに本発明の目的は、従来以上の選択率でプレビタミンD類を製造できる方法、または従来以上の収率でプレビタミン類とタキステロール類の混合物を製造できる方法を提供することである。
【0014】
【課題を解決するための手段】
上述のように、本発明者らは、従来のパイプ型反応装置を用いた場合、投入するプロビタミンD類の濃度を上げていくとプレビタミンD類の選択率(低転化法の場合)にしても、プレビタミンD類とタキステロール類の合計の収率(2段照射法の場合)にしても、いずれも低下してしまうという問題点があることを知見した。
【0015】
本発明者らはさらに、従来のパイプ型反応装置においてプロビタミンD類の濃度を高くすると選択率や収率が低下する原因として、円周方向の攪拌がないため、ランプに近い側の液の過照射が進んでしまうためと考察した。
【0016】
そこで、本発明者らはかかる考察に基づいて、円周方向の撹拌を向上させるべく、石英管内に石英充填物を挿入することを検討した。その結果、石英充填物を挿入することで反応装置の容積は低下するものの、石英充填物の効果により光の利用効率はむしろ向上することを見出した。すなわち、同程度のプロビタミンDの転化率を得るために石英充填物を挿入した反応装置は、挿入していない反応装置以上の流量で送液することが可能であることが判明した。また、石英充填物を挿入することでプレビタミンD類の選択率、あるいはプレビタミン類とタキステロール類の合計の収率が向上することも明らかとなった。つまり、処理能力を低下させることなく、従来より高濃度プロビタミンD類を投入しても同程度の収率が得られる反応装置を開発するに至った。
【0017】
すなわち本発明は、螺旋状に巻いた石英管(反応管)の中央部の空間に光源を挿入したパイプ型反応装置において、その石英管内に石英の充填物を有することを特徴とするプロビタミン類からプレビタミンD類を製造するための反応装置である。
【0018】
また、本発明は、かかる反応装置を用い、光を照射させつつプロビタミンD類の溶液を送液することにより、プレビタミンD類を効率的に製造する方法である。
【0019】
【発明の実施の形態】
本発明のパイプ型反応装置における反応管たる石英管の太さは、光源のまわりに光源からの距離が離れすぎないように螺旋状に巻くことができる太さであればよい。通常はランプを冷却するための冷却管をランプとパイプ型反応管の間に置くので、その周りにできるだけ接するようにランプの発光部の長さをカバーするように石英管の螺旋が作成できればよい。例えば450W程度の高圧水銀灯であれば、内径が6mmから10mm程度が好ましい。また、石英管の肉厚についても、強度、工作性、光照射の効率等を考慮して適宜決定すればよい。
【0020】
石英管に挿入する石英充填物の形状はビーズ、棒状、不定形等どのようなものでもよい。大きさは化学反応の点からは小さいほど好ましいが、送液に伴い充填物が流出しないようにする必要があり、さらに反応管の圧損を考慮すると1mm以上のものが好ましい。1mm以上であれば、単に石英管に括れを作るだけで充填物の飛び出しの抑制が可能である。また、管への充填のしやすさや反応の再現性を考慮すると、形状の揃っている石英ビーズが好ましく、なかでも充填物の作成の容易さ、つまり石英の細工の容易さを考慮すると、3mm程度のものが特に好ましい。
【0021】
通常、石英充填物は管一杯につめる。そして、液の出側において管に括れを作るか、あるいはテフロン製のフィルターを取り付ける等により、充填物の流出を防ぐ必要がある。もっとも、低流量の場合には、これらの充填物飛び出し抑制は必ずしも要しない。
【0022】
光源としては、通常、高圧水銀灯を用い、冷却管を石英管(反応管)との間に置く。この冷却管には必要に応じてフィルター溶液を循環させ、所望の波長の光のみを取り出すようにすることも可能である。
【0023】
送液量は得るべき転化率、ランプの強度により調整される。送液量が少ない場合にはピストンフロー性を保つため、脈流が少ないポンプを使用することが望ましい。
【0024】
以下に本発明の反応装置の具体例を示す。
図1は本発明の反応装置の概念図である。主要部分を説明すると、11はプロビタミンD類送液用ポンプ、12は石英充填物を挿入した石英コイル管、13は石英充填物止め、14はランプ冷却管、15はランプ、16はプロビタミンD類のフィードタンク、17は反応液のリザーバーである。ランプ冷却管14に冷却水を流し、ランプ15を点灯し、フィードタンク16から送液ポンプ11によりプロビタミンD類の溶液を反応管12に送液し、リザーバー17で受けることで光反応を行う。波長を変え2段反応を実施する場合、あるいは処理能力を上げる場合は、石英充填物を挿入した石英コイル管12、石英充填物止め13、ランプ冷却管14、ランプ15からなるパイプ型反応装置を直列に連結することも可能である。ランプ冷却管には冷却水の他、所望の波長の光源を取り出すために冷却した溶液を循環させることができる。プロビタミンD類、プレビタミンD類、タキステロール類は酸素、光に敏感な場合が多いので、それらによる分解抑制のためフィードタンク16およびリザーバー17は遮光の上、窒素雰囲気下に保っておくことも容易にできる。また、プレビタミンD類からビタミンD類への熱異性化を防ぐため、フィードタンク16、リザーバー17あるいは石英コイル管12を冷水浴等につけ、液温を低温に保つことも可能である。
【0025】
なお、図1では石英管(反応管)の断面が円形となっていおり、螺旋の形状も最も単純なものが示されている。これらは本発明の実施のために好ましい形状ではあるが、本発明の目的が達成される範囲での変形である限り、これらの形状に限定されないことは当業者であれば容易に理解できるだろう。
【0026】
図2は、管内部に石英充填物18が挿入された石英コイル管の構造を示すものであり、これが円周方向の撹拌を生む。
【0027】
本発明の反応装置または製造方法において用いられるプロビタミンD類は、下記式(I)
【0028】
【化4】
Figure 0003820070
【0029】
[式中、R1は水素原子または水酸基の保護基を示し、R2、R3およびR4はそれぞれ独立に、水素原子、水酸基、または保護された水酸基を示す。]
で表される化合物が好ましい。ここで、 R1についての「水酸基の保護基」としては、例えばアシル基、トリアルキルシリル基が挙げられるが、本発明の製造方法で行われる反応についての保護基であれば他のものでもよい。同様に、 R2、R3およびR4についての「保護された水酸基」としては、例えばアシル基やトリアルキルシリル基により保護された水酸基が挙げられるが、本発明の製造方法で行われる反応に関して保護された水酸基である限り、他のものでもよい。
【0030】
【実施例】
[実施例1]
【0031】
【化5】
Figure 0003820070
【0032】
1α,3β,24(S)−トリヒドロキシコレスタ−5,7−ジエン(1)のTHF溶液を転化率が90%程度になるように流量を調整し、8mmφの石英管に5mmφの石英ビーズを詰めた反応管に高圧水銀灯(Hanovia製)を照射しつつ送液した。液温は10−20℃であった。得られた反応液のHPLC分析(カラム:YMC−AM303、溶離液:アセトニトリル/水=6/5、流量:1.0ml/分、検出:254nm、温度:25℃)を行い、1α,24(S)−ジヒドロキシプレビタミンD3(2)と対応するタキステロール(3)の収率を算出した。なお、比較のため石英ビーズを充填しない場合の実験も併せて行った。結果を表1に示す。
【0033】
【表1】
Figure 0003820070
【0034】
[実施例2]
【0035】
【化6】
Figure 0003820070
【0036】
1α,3β,24(R)−トリヒドロキシコレスタ−5,7−ジエン(4)の2.0mmol/LのTHF溶液を転化率が80%程度になるように流量を調整し、10mmφの石英管に粒径の異なる石英ビーズを詰めた反応管に、高圧水銀灯(Hanovia製450W)を照射しつつ送液した。液温は10−20℃であった。得られた反応液のHPLC分析(カラム:YMC−AM303、溶離液:アセトニトリル/水=6/5、流量:1.0ml/分、検出:254nm、温度:35℃)を行い、1α,24(R)−ジヒドロキシプレビタミンD3(5)と対応するタキステロール(6)の収率を算出した。結果を表2に示す。
【0037】
【表2】
Figure 0003820070
【0038】
[実施例3]
【0039】
【化7】
Figure 0003820070
【0040】
1α,3β,24(R)−トリヒドロキシコレスタ−5,7−ジエン(4)のTHF溶液を転化率が85%程度になるように流量を調整し、8mmφの石英管に5mmφの石英ビーズまたは1mmφの石英棒を1mmに切ったもの(石英チップ)を充填した反応管に、高圧水銀灯(Hanovia製)を照射しつつ送液した。液温は10−20℃であった。得られた反応液のHPLC分析(カラム:YMC−AM303、溶離液:アセトニトリル/水=6/5、流量:1.0ml/分、検出:254nm、温度:35℃)を行い、1α,24(R)−ジヒドロキシプレビタミンD3(5)と対応するタキステロール(6)の収率を算出した。結果を表3に示す。
【0041】
【表3】
Figure 0003820070
【0042】
[実施例4]
【0043】
【化8】
Figure 0003820070
【0044】
1α,3β−ジエトキシカルボニルオキシコレスタ−5,7−ジエン(7)のトルエン溶液を転化率が20%程度になるように流量を調整し、8mmφの石英管に3mmφの石英ビーズを充填した反応管に、高圧水銀灯(Hanovia製200W)を照射しつつ送液した。液温は10−20℃であった。得られた反応液のHPLC分析(カラム:DEVELOSIL ODS A−5、溶離液:アセトニトリル/水=95/5、流量:1.0ml/分、検出:254nm、温度:35℃)を行い、(7)の転化率および1α−エトキシカルボニルオキシプレビタミンD3 エトキシカルボニルエステル(8)の選択率(消費された(7)に対する(8)の収率の割合)を算出した。なお、比較のため石英ビーズを充填しない場合の実験も併せて行った。結果を表4に示す。
【0045】
【表4】
Figure 0003820070
【0046】
【発明の効果】
本発明の反応装置または製造方法によれば、連続式でプレビタミンを製造する場合、低転化法においては従来以上の選択率でプレビタミンD類を得ることができる。また、2段照射法においては従来以上の収率でプレビタミン類とタキステロール類の混合物を得ることができる。したがって、光照射されるプロビタミンD類の濃度をその分高くすることができる。
【図面の簡単な説明】
【図1】本発明のプレビタミン類合成用反応装置の概念図を示す。
【図2】本発明のプレビタミン類合成用反応装置の石英管(反応管)部分を示す。
【図3】一般的なパイプ型反応装置の説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reaction apparatus for producing vitamin D useful as a pharmaceutical product, and a production method using the same. More specifically, the present invention relates to a reactor used for synthesizing previtamins by light irradiation of provitamin Ds useful as a method for producing vitamin Ds, and a method for producing previtamins using the same.
[0002]
[Prior art]
The synthesis method of obtaining vitamin D by irradiating provitamin D with light to obtain previtamin D and then performing thermal isomerization of the previtamin D is one of the most reliable methods for synthesizing vitamin D One. When this method is applied to the manufacture of pharmaceuticals, a method of performing light irradiation while feeding a raw material solution (continuous type), a method of performing light irradiation without feeding a raw material solution (batch type), However, the former is preferable from the viewpoint of efficiency.
[0003]
As a continuous photoreaction apparatus, a reaction apparatus (pipe-type reaction apparatus) in which a quartz tube is spirally wound around a lamp is often used because of its excellent light utilization efficiency. This reactor also has the merit that the scale of the reaction can be easily changed by changing the output of the lamp or changing the number of reactors connected in series. It is a very useful reactor for photoreactions whose rate is said to vary (see FIG. 3). In addition, this reactor has an advantage of good piston flow and is less prone to over-irradiation due to residence.
[0004]
By the way, it is known that previtamin D obtained by light irradiation of a provitamin D with a high-pressure mercury lamp further absorbs light and changes to luminosterols, taxolols and the like. Therefore, in order to obtain previtamin D with a high yield, the previtamin D further stops the reaction before absorbing light (the conversion rate of provitamin D is kept low: a low conversion method), or once It is generally carried out to cause isomerization from a taxosterol to a previtamin D by irradiating the taxosterols generated by light irradiation with light having a shorter wavelength cut (two-stage irradiation method) ( (See the following formula).
[0005]
[Chemical 3]
Figure 0003820070
[0006]
For this reason, the low conversion method is based on the premise that the remaining raw materials (provitamin Ds) are recovered and re-reacted. Therefore, the quality of the reaction in the low conversion method is generated for the provitamin Ds consumed in the reaction. It will be evaluated by the ratio (selectivity) of previtamin Ds. On the other hand, in the case of using the two-stage irradiation method, since the technology for almost all the taxosterols to be previtamin D is already known (see JP-A-60-25965), 1 of provitamin D In the light irradiation at the stage, the total yield of previtamin Ds and taxols is important.
[0007]
By the way, when provitamin Ds are irradiated with the above-mentioned reaction apparatus, if the concentration of provitamins D is increased, the previtamin Ds can be selected even if the previtamin Ds are selected (in the case of a low conversion method). The inventors' experiments have revealed that there is a problem that both the yields of vitamin Ds and taxols (in the case of the two-stage irradiation method) decrease.
[0008]
In the manufacture of pharmaceutical products, the higher the concentration of provitamin D irradiated with light, the more the amount of solvent used can be reduced, which is advantageous in terms of cost. Further, if the amount of the solvent used can be reduced, it is preferable from the viewpoint of environment such as waste disposal. That is, it is a drawback of this reactor that the concentration of provitamin Ds must be set low in consideration of the yield.
[0009]
The present inventors consider that in this reactor, there is no circumferential stirring, so that over-irradiation of the liquid on the side close to the lamp proceeds, which may not increase the concentration of provitamin Ds. did.
[0010]
As a method for improving the circumferential stirring, a static mixer can be considered in which a baffle plate is provided on the flow path to divide the flow and the flow path is changed. Introduction to the reactor is difficult. In addition, when the reactor itself is significantly changed using a static mixer, the flow path is brought closer to the light source, so the flow path must be taken in the vertical direction. There is a problem that piston flowability cannot be secured.
[0011]
A reaction apparatus in which a quartz packing is inserted into a pipe-type reaction tube has not been known so far.
[0012]
[Problems to be solved by the invention]
Under the circumstances of the above prior art, an object of the present invention is to provide a photoreaction apparatus suitable for the production of vitamin D as a pharmaceutical product while maintaining the merits of a pipe-type reaction apparatus suitable for continuous reaction. It is. Specifically, provitamin D is reacted at a higher concentration than before, and previtamin D is obtained at a selectivity higher than conventional, or a mixture of previtamin and taxosterol is obtained at a higher yield than conventional. It is providing the reaction apparatus which can do.
[0013]
Furthermore, the object of the present invention is to provide a method capable of producing previtamin Ds with a selectivity higher than conventional or a method capable of producing a mixture of previtamins and taxols in a yield higher than conventional.
[0014]
[Means for Solving the Problems]
As described above, the present inventors, when using a conventional pipe reactor, increase the selectivity of previtamin D (in the case of a low conversion method) by increasing the concentration of provitamin D to be added. However, even if it was the total yield (in the case of a two-stage irradiation method) of previtamin Ds and taxols, it was found that there was a problem that both were reduced.
[0015]
Furthermore, the inventors of the conventional pipe-type reactor increase the concentration of provitamin Ds as a cause of the decrease in selectivity and yield, because there is no circumferential stirring, so the liquid on the side closer to the lamp It was considered that over-irradiation would progress.
[0016]
Therefore, the present inventors have examined insertion of a quartz filler into a quartz tube in order to improve circumferential stirring based on such consideration. As a result, it was found that although the volume of the reaction apparatus is reduced by inserting the quartz packing, the light utilization efficiency is rather improved due to the effect of the quartz packing. That is, it has been found that a reaction apparatus in which a quartz packing is inserted in order to obtain the same conversion rate of provitamin D can be fed at a flow rate higher than that of a reaction apparatus in which no quartz vitamin is inserted. It was also found that the insertion of quartz fillers improves the previtamin D selectivity or the total yield of previtamins and taxols. That is, it has led to the development of a reactor capable of obtaining a similar yield even when a high-concentration provitamin D is introduced conventionally without reducing the processing capacity.
[0017]
That is, the present invention relates to a provitamin characterized in that in a pipe-type reactor in which a light source is inserted into a space in the center of a spirally wound quartz tube (reaction tube), the quartz tube has a quartz filling. Is a reactor for producing previtamin D from
[0018]
In addition, the present invention is a method for efficiently producing previtamin D by using such a reaction apparatus and feeding a solution of provitamin D while irradiating light.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The thickness of the quartz tube as the reaction tube in the pipe type reactor of the present invention may be any thickness that can be spirally wound around the light source so that the distance from the light source is not too far away. Normally, a cooling tube for cooling the lamp is placed between the lamp and the pipe-type reaction tube, so it is only necessary to create a spiral of the quartz tube so as to cover the length of the light emitting part of the lamp so as to contact as much as possible around it. . For example, in the case of a high pressure mercury lamp of about 450 W, the inner diameter is preferably about 6 mm to 10 mm. Further, the thickness of the quartz tube may be appropriately determined in consideration of strength, workability, light irradiation efficiency, and the like.
[0020]
The shape of the quartz filler to be inserted into the quartz tube may be any shape such as beads, rods, and irregular shapes. The size is preferably as small as possible from the point of chemical reaction, but it is necessary to prevent the packing from flowing out as the liquid is fed. If it is 1 mm or more, it is possible to suppress the popping out of the filler by simply forming a constriction in the quartz tube. Also, considering the ease of filling into the tube and the reproducibility of the reaction, quartz beads having a uniform shape are preferable, and in particular, considering the ease of creating a packing material, that is, the ease of quartz work, 3 mm A thing of a grade is especially preferable.
[0021]
Usually, the quartz filling is filled into a tube. Then, it is necessary to prevent the filling material from flowing out by, for example, forming a constriction on the tube on the outlet side of the liquid or attaching a Teflon filter. However, in the case of a low flow rate, it is not always necessary to suppress these packing pop-outs.
[0022]
As the light source, a high-pressure mercury lamp is usually used, and a cooling tube is placed between the quartz tube (reaction tube). It is also possible to circulate the filter solution in the cooling pipe as necessary to extract only light having a desired wavelength.
[0023]
The amount of liquid fed is adjusted by the conversion rate to be obtained and the intensity of the lamp. When the amount of liquid to be fed is small, it is desirable to use a pump with a small pulsating flow in order to keep the piston flow.
[0024]
Specific examples of the reaction apparatus of the present invention are shown below.
FIG. 1 is a conceptual diagram of the reaction apparatus of the present invention. The main parts are explained as follows: 11 is a pump for feeding provitamin Ds, 12 is a quartz coil tube with a quartz filler inserted therein, 13 is a quartz filler stopper, 14 is a lamp cooling tube, 15 is a lamp, 16 is a provitamin A D type feed tank, 17 is a reservoir for the reaction solution. Cooling water is supplied to the lamp cooling tube 14, the lamp 15 is turned on, and a solution of provitamin Ds is fed from the feed tank 16 to the reaction tube 12 by the liquid feeding pump 11 and received by the reservoir 17 to perform a photoreaction. . When carrying out a two-stage reaction by changing the wavelength or increasing the processing capacity, a pipe type reactor comprising a quartz coil tube 12, quartz filler stopper 13, lamp cooling tube 14, and lamp 15 inserted with a quartz filler is used. It is also possible to connect in series. In addition to cooling water, a cooled solution can be circulated in the lamp cooling tube to extract a light source having a desired wavelength. Provitamin Ds, pre-vitamin Ds and taxols are often sensitive to oxygen and light, so the feed tank 16 and the reservoir 17 should be kept in a nitrogen atmosphere with light shielding in order to suppress decomposition by them. Can also be easily done. In order to prevent thermal isomerization from pre-vitamin D to vitamin D, the feed tank 16, reservoir 17 or quartz coil tube 12 can be attached to a cold water bath or the like to keep the liquid temperature low.
[0025]
In FIG. 1, the quartz tube (reaction tube) has a circular cross section, and the simplest spiral shape is shown. Although these are preferred shapes for carrying out the present invention, those skilled in the art will readily understand that they are not limited to these shapes as long as they are variations within the scope of achieving the object of the present invention. .
[0026]
FIG. 2 shows the structure of a quartz coil tube with a quartz filler 18 inserted inside the tube, which produces circumferential agitation.
[0027]
The provitamin Ds used in the reaction apparatus or production method of the present invention are represented by the following formula (I)
[0028]
[Formula 4]
Figure 0003820070
[0029]
[Wherein, R 1 represents a hydrogen atom or a hydroxyl protecting group, and R 2 , R 3 and R 4 each independently represents a hydrogen atom, a hydroxyl group or a protected hydroxyl group. ]
The compound represented by these is preferable. Here, examples of the “hydroxyl-protecting group” for R 1 include an acyl group and a trialkylsilyl group, but other groups may be used as long as they are protective groups for the reaction performed in the production method of the present invention. . Similarly, as the “protected hydroxyl group” for R 2 , R 3 and R 4 , for example, a hydroxyl group protected by an acyl group or a trialkylsilyl group can be mentioned. Regarding the reaction carried out in the production method of the present invention, Others may be used as long as they are protected hydroxyl groups.
[0030]
【Example】
[Example 1]
[0031]
[Chemical formula 5]
Figure 0003820070
[0032]
The flow rate of THF solution of 1α, 3β, 24 (S) -trihydroxycholesta-5,7-diene (1) was adjusted so that the conversion was about 90%, and 5 mmφ quartz beads were placed in an 8 mmφ quartz tube. The reaction tube packed with was fed while irradiating with a high-pressure mercury lamp (manufactured by Hanovia). The liquid temperature was 10-20 ° C. The obtained reaction solution was subjected to HPLC analysis (column: YMC-AM303, eluent: acetonitrile / water = 6/5, flow rate: 1.0 ml / min, detection: 254 nm, temperature: 25 ° C.), and 1α, 24 ( The yield of S) -dihydroxy previtamin D 3 (2) and the corresponding taxolol (3) was calculated. For comparison, an experiment in which the quartz beads were not filled was also performed. The results are shown in Table 1.
[0033]
[Table 1]
Figure 0003820070
[0034]
[Example 2]
[0035]
[Chemical 6]
Figure 0003820070
[0036]
The flow rate of a 2.0 mmol / L THF solution of 1α, 3β, 24 (R) -trihydroxycholesta-5,7-diene (4) was adjusted so that the conversion was about 80%, and 10 mmφ quartz Liquid was fed into a reaction tube in which quartz beads having different particle diameters were packed in a tube while being irradiated with a high-pressure mercury lamp (450 W manufactured by Hanovia). The liquid temperature was 10-20 ° C. The obtained reaction solution was subjected to HPLC analysis (column: YMC-AM303, eluent: acetonitrile / water = 6/5, flow rate: 1.0 ml / min, detection: 254 nm, temperature: 35 ° C.), and 1α, 24 ( The yield of R) -dihydroxy previtamin D 3 (5) and the corresponding taxolol (6) was calculated. The results are shown in Table 2.
[0037]
[Table 2]
Figure 0003820070
[0038]
[Example 3]
[0039]
[Chemical 7]
Figure 0003820070
[0040]
The flow rate of THF solution of 1α, 3β, 24 (R) -trihydroxycholesta-5,7-diene (4) was adjusted so that the conversion was about 85%, and 5 mmφ quartz beads were placed in an 8 mmφ quartz tube. Alternatively, the solution was fed to a reaction tube filled with a 1 mmφ quartz rod cut into 1 mm (quartz chip) while irradiating a high-pressure mercury lamp (manufactured by Hanovia). The liquid temperature was 10-20 ° C. The obtained reaction solution was subjected to HPLC analysis (column: YMC-AM303, eluent: acetonitrile / water = 6/5, flow rate: 1.0 ml / min, detection: 254 nm, temperature: 35 ° C.), and 1α, 24 ( The yield of R) -dihydroxy previtamin D 3 (5) and the corresponding taxolol (6) was calculated. The results are shown in Table 3.
[0041]
[Table 3]
Figure 0003820070
[0042]
[Example 4]
[0043]
[Chemical 8]
Figure 0003820070
[0044]
The flow rate of a toluene solution of 1α, 3β-diethoxycarbonyloxycholesta-5,7-diene (7) was adjusted so that the conversion was about 20%, and 3 mmφ quartz beads were filled in an 8 mmφ quartz tube. The reaction tube was fed while being irradiated with a high-pressure mercury lamp (200 W manufactured by Hanovia). The liquid temperature was 10-20 ° C. HPLC analysis of the resulting reaction solution (column: DEVELOSIL ODS A-5, eluent: acetonitrile / water = 95/5, flow rate: 1.0 ml / min, detection: 254 nm, temperature: 35 ° C.) was carried out (7 ) And 1α-ethoxycarbonyloxyprevitamin D 3 ethoxycarbonyl ester (8) selectivity (ratio of yield of (8) to consumed (7)). For comparison, an experiment in which the quartz beads were not filled was also performed. The results are shown in Table 4.
[0045]
[Table 4]
Figure 0003820070
[0046]
【The invention's effect】
According to the reaction apparatus or production method of the present invention, when previtamin is produced in a continuous manner, previtamin D can be obtained with a selectivity higher than that in the conventional conversion method. In addition, in the two-stage irradiation method, a mixture of previtamins and taxosterols can be obtained with a yield higher than conventional. Therefore, the concentration of provitamin Ds irradiated with light can be increased accordingly.
[Brief description of the drawings]
FIG. 1 shows a conceptual diagram of a previtamin synthesis reactor according to the present invention.
FIG. 2 shows a quartz tube (reaction tube) portion of the previtamin synthesis reactor according to the present invention.
FIG. 3 is an explanatory diagram of a general pipe reactor.

Claims (6)

螺旋状に巻いた石英管の中央部の空間に光源を挿入したパイプ型反応装置において、その石英管内に石英製の充填物を有することを特徴とする、プロビタミン類からプレビタミン類を製造するための反応装置。A pre-vitamin is produced from provitamins, characterized in that in a pipe-type reactor in which a light source is inserted into the central space of a spirally wound quartz tube, the quartz tube has a quartz filling. Reactor for. プロビタミンD類が下記式(I)
Figure 0003820070
[式中、R1は水素原子または水酸基の保護基を示し、R2、R3およびR4はそれぞれ独立に、水素原子、水酸基、または保護された水酸基を示す。]
で表される化合物である請求項1記載の反応装置。
Provitamin Ds are represented by the following formula (I)
Figure 0003820070
[Wherein, R 1 represents a hydrogen atom or a hydroxyl protecting group, and R 2 , R 3 and R 4 each independently represents a hydrogen atom, a hydroxyl group or a protected hydroxyl group. ]
The reaction apparatus according to claim 1, which is a compound represented by the formula:
螺旋状に巻いた石英管の内径が6−10mmであり、石英製の充填物が直径1−5mmのビーズである請求項1または請求項2記載の反応装置。The reaction apparatus according to claim 1 or 2, wherein the spirally wound quartz tube has an inner diameter of 6 to 10 mm, and the quartz packing is beads having a diameter of 1 to 5 mm. 請求項1に記載の反応装置を用いてプロビタミンD類の溶液を光源の光を照射させつつ送液することを特徴とするプレビタミンD類の製造方法。A method for producing previtamin D, wherein the solution of provitamin D is fed using the reaction apparatus according to claim 1 while irradiating light from a light source. プロビタミンD類が下記式(I)
Figure 0003820070
[式中、R1は水素原子、または水酸基の保護基を示し、R2、R3およびR4はそれぞれ独立に、水素原子、水酸基、または保護された水酸基を示す。]
で表される化合物である請求項4記載のプレビタミンD類の製造方法。
Provitamin Ds are represented by the following formula (I)
Figure 0003820070
[Wherein, R 1 represents a hydrogen atom or a protecting group for a hydroxyl group, and R 2 , R 3 and R 4 each independently represents a hydrogen atom, a hydroxyl group or a protected hydroxyl group. ]
The method for producing previtamin D according to claim 4, wherein the compound is represented by the formula:
螺旋状に巻いた石英管の内径が6−10mmであり、石英製の充填物が直径1−5mmのビーズである請求項4または請求項5記載のプレビタミンD類の製造方法。The method for producing previtamin D according to claim 4 or 5, wherein the spirally wound quartz tube has an inner diameter of 6 to 10 mm, and the quartz filler is a bead having a diameter of 1 to 5 mm.
JP35287099A 1999-12-13 1999-12-13 Reactor for previtamin D synthesis Expired - Lifetime JP3820070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35287099A JP3820070B2 (en) 1999-12-13 1999-12-13 Reactor for previtamin D synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35287099A JP3820070B2 (en) 1999-12-13 1999-12-13 Reactor for previtamin D synthesis

Publications (2)

Publication Number Publication Date
JP2001163856A JP2001163856A (en) 2001-06-19
JP3820070B2 true JP3820070B2 (en) 2006-09-13

Family

ID=18427018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35287099A Expired - Lifetime JP3820070B2 (en) 1999-12-13 1999-12-13 Reactor for previtamin D synthesis

Country Status (1)

Country Link
JP (1) JP3820070B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008011557A (en) * 2006-03-17 2008-12-09 Leo Pharma As Isomerisation of pharmaceutical intermediates.
KR101440840B1 (en) 2012-10-17 2014-09-25 주식회사 토바 Method for producing Vitamin film, roll-to-roll system tererfor and vitamin film thereof
CN110694566A (en) * 2018-07-09 2020-01-17 中国科学院上海有机化学研究所 Flow type photochemical reaction device

Also Published As

Publication number Publication date
JP2001163856A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP5204088B2 (en) Isomerization of pharmaceutical intermediates
US2688592A (en) Photochemical process for preparing carbon tetrachloride
US20020125122A1 (en) UV-activated chlorination process
US4686023A (en) Sensitized photochemical preparation of vitamin D
Kinzyabaeva et al. A selective synthesis of the fullerene-fused dioxane adduct via heterogeneous reaction of C60 with α-diols and NaOH under ultrasonication
JP3820070B2 (en) Reactor for previtamin D synthesis
Darko et al. Large-scale flow photochemical synthesis of functionalized trans-cyclooctenes using sulfonated silica gel
Frutos et al. Photochemical benzylic bromination in continuous flow using BrCCl 3 and its application to telescoped p-methoxybenzyl protection
JPH07206757A (en) Production of polyfluorochloro- and perfluorocarboxylic acid chlorides
Schwack Photoinduced additions of pesticides to biomolecules. 2. Model reactions of DDT and methoxychlor with methyl oleate
Ardakani et al. Highly Efficient and Selective Oxidation of Sulfides to Sulfones with Hydrogen Peroxide Under Ultrasonic Irradiation Catalyzed by Copper (II) Schiff Base Complex Supported on Mesoporous MCM-41
US3840447A (en) Process and apparatus for chlorinating methylchlorosilanes
US6180805B1 (en) Photochemical process for the production of previtamin D3
CN116963829A (en) Ultraviolet irradiation device and method for purifying organic compound
TW580497B (en) Process for the preparation of monohalogenated 2-oxo-1,3-dioxolanes
Pickel et al. A Simple, Readily Accessible, and Effective Apparatus for the Photoisomerization of cis-Cyclooctenes to trans-Cyclooctenes
ES2411834B1 (en) Industrial process to obtain intermediates suitable for the synthesis of Vitamin D analogues
US3926757A (en) Process for preparing straight-chain aliphatic and cyclo-aliphatic sulfonic acids
US20080306313A1 (en) Non Thermal Plasma Method to Prepare [11C] Methyl Iodide From [11C] Methane and Iodine Methane and Iodine
US20090326282A1 (en) Process for the manufacture of bicyclic molecules by copper-catalysed photochemical cyclisation
JPH0576461B2 (en)
Zimmerman et al. Reactivity of low energy excited states: Mechanistic and exploratory organic photochemistry
Epling et al. Regioselective reduction of epoxides by electron transfer—a photochemical approach
Maheshwari Scalability of Photochemical Processes
JP2000211902A (en) Production of singlet oxygen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060616

R150 Certificate of patent or registration of utility model

Ref document number: 3820070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

EXPY Cancellation because of completion of term