JP3819446B2 - Ultra high purity gas / pure water supply system and process equipment - Google Patents

Ultra high purity gas / pure water supply system and process equipment Download PDF

Info

Publication number
JP3819446B2
JP3819446B2 JP30066993A JP30066993A JP3819446B2 JP 3819446 B2 JP3819446 B2 JP 3819446B2 JP 30066993 A JP30066993 A JP 30066993A JP 30066993 A JP30066993 A JP 30066993A JP 3819446 B2 JP3819446 B2 JP 3819446B2
Authority
JP
Japan
Prior art keywords
welding
high purity
purity gas
ultra
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30066993A
Other languages
Japanese (ja)
Other versions
JPH07151272A (en
Inventor
忠弘 大見
伸二 三好
洋志 寺西
Original Assignee
忠弘 大見
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 忠弘 大見 filed Critical 忠弘 大見
Priority to JP30066993A priority Critical patent/JP3819446B2/en
Priority to PCT/JP1994/002002 priority patent/WO1995015406A1/en
Publication of JPH07151272A publication Critical patent/JPH07151272A/en
Application granted granted Critical
Publication of JP3819446B2 publication Critical patent/JP3819446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、超高純度ガス・純水供給システム並びにプロセス装置に係わり、特に、溶接部近傍にMnの付着が無く、このガス純水供給配管を通してガスあるいは純水が導入される高清浄半導体装置等をMnの腐食により発生する金属汚染等から防ぐことが可能な超高純度ガス・純水供給システム並びにプロセス装置に関する。
【0002】
【関連する技術】
溶接部を有するガス供給系配管並びにガス部品の接合としてタングステン・イナートガス溶接、アークガス溶接、電子ビーム溶接等が広く用いられている。
これら溶接技術においては、従来、溶融部から発生するMnヒュームについて考慮が払われていなかったが、本発明者らは、LSIの超高集積化・高性能化を目的としたウルトラクリーンテクノロジーの開発を進める上で、このMnヒュームが半導体デバイスの特性、歩留まりに大きく影響することを発見した。即ち、溶接によって発生したMnヒュームは溶接部近傍に再付着し、この付着したMnは、水分を含有した腐食性ガス(例えば塩化水素ガス)を流すと腐食し、ガス雰囲気を汚染してしまうことが分かった。また、一般ガスに対しても、短期間では特に問題はないが、長期的にはガス雰囲気を汚染し、多分に問題があることが判明した。
【0003】
そこで本発明者等は溶接時に発生・再付着するMnヒューム量を極力低減するために、入熱量を低減した高速一周溶接技術を確立した。
この方法は、溶接部への入熱量を600ジュール/cm以下とする溶接方法である。この方法により、溶接後における溶接放しの被溶接体を、15L/hrの流量で6時間超純水で洗浄したときのFe,Ni,Cr及びMn溶出量の総和が溶接長さ1cmあたり0.1μg以下の溶接ステンレス材を実現している。なお、この技術は別途平成4年特許出願303681号(平成4年11月13日出願)により出願されている。
【0004】
しかし、この方法により、溶接時に発生するMnヒューム量を低減させることができたものの、完全にガス雰囲気の汚染を防止するには至っておらず、このような状況の中、現在、Mnフリーでより高清浄な半導体製造装置などのプロセス装置、ガス供給配管及び超純水供給配管、ガス供給システム及び超純水供給システムが強く望まれる。
【0005】
【発明が解決しようとする課題】
以上の点に鑑み、本発明は、溶接部表面近傍並びにガス供給系内部にMnの付着がいっさい無く、これらガス供給系を通してガスが導入される半導体装置等の汚染を未然に防ぐことが可能な超高純度ガス・純水供給配管及びシステム並びにプロセス装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の超高純度ガス・純水供給システムは、少なくとも溶接される部分が、マンガン濃度0.03重量%以下のオーステナイト系ステンレス材を溶接して構成し、溶接放しの状態で溶接部近傍におけるMn付着量は1.0xl0 l0 atоms/cm 2 以下であることを特徴とする。
【0007】
本発明の、超高純度ガスプロセス装置は、少なくとも溶接される部分が、マンガン濃度0.03重量%以下のオーステナイト系ステンレス材を溶接して構成し、溶接放しの状態で溶接部近傍におけるMn付着量は1.0xl0l0atоms/cm2以下であることを特徴とする。
前記ステンレス材としては、オーステナイト系のステンレスを用いることができる。Cr濃度は17.0〜18.0重量%が好ましく、Ni濃度は14.0〜15.0重量%が好ましい。また、前記ステンレス材は内面に酸化クロム不動態処理を施したものが望ましい。
【0008】
本発明のプロセス装置は、少なくとも一部に溶接部を有し、該溶接部近傍にMnの付着が一切無く、耐食性の高いプロセス装置であって、少なくとも前記溶接部をマンガン濃度0.03%以下のオーステナイト系ステンレス材で構成したことを特徴とする。
【0009】
【作用】
本発明者等は、溶接時に発生・再付着して、ガス、超純水等の汚染源となるMnヒュームの発生を防止する目的で、高速一周ナロービード溶接法を用い、種々のステンレス材について、Mn濃度とMnヒューム発生量の関係を調べた。
Mn含有量を従来の0.65%から0.23%に低減することによりMnヒューム発生量を低減することができ、溶接速度及び入熱量を調整して、溶接ビード幅を一層細くすることで、Mnヒューム量が大幅に低減することが分かった。しかし、低Mn材(Mn0.23%)を用い、高速l周ナロービード溶接を施しても完全にMnヒュームを消失させることはできなかった。
【0010】
そこで、更に、実験を進めて、ステンレスをオーステナイト系とし、Mn濃度0.03%以下とすると、溶接によるMnの再付着を完全に防止することが可能となることを見いだした。
この結果、これまで水分を含有したハロゲン系ガスによりガス供給系を腐食、汚染したMnを一掃することが可能になり、ガスの純度を劣化させること無くプロセス装置まで安定かつ確実にガス供給することが可能となる。
【0011】
また、Mn濃度0.03%以下のステンレス材料を用いることにより、Mnヒュームを低減するために確立し、前述した高速1周ナロービード溶接法に限らず、従来の低速2周溶接法においてもMnの付着を防止することができる。
さらに、Mn濃度を0.03%以下とし,Ni濃度を増加させることにより、入熱量を低減することができると共に、Mn以外の他の金属の発生・再付着を抑制することが可能となる。例えば、従来のオーステナイト系ステンレス材(Mn0.65%、Ni12.0〜16.0%)に対し、Mn濃度を0.03%以下、Ni濃度14.0〜15.0%とすることにより、例えば、溶接速度30rpm(1.0cm/sec)で一周行い、ビード幅を2mmとする場合、Mn0.65%材の入熱量が450J/cmであるのに対し,0.03Mn材では428〜450J/cmとなる。
【0012】
また、Cr濃度を17.0〜18.0%とすることにより、耐腐食性が一層向上する。また、脱ガス特性、耐食性のより一層の向上の観点から、ステンレス材の内面を酸化クロム不動態膜を形成するのが好ましい。
本発明の溶接手段としては、例えば放電、レーザーを用いたものが用いられる。放電を用いたものとして、例えばタングステンイナートガス溶接、アークガス溶接等が例示される。
【0013】
溶接方法としては、溶接部への入熱量を600ジュール/cm以下とする溶接方法が好ましい。溶接速度を20cm/min以上とすることが好ましく、また、溶接部の表面に対し垂直成分を有する磁場を印加しながら溶接することが好ましい。また、その磁場は50ガウス以上とすることが好ましい。溶接ビード幅を1mm以下とすることが好ましい。また、前述した平成4年特許出願303681号(平成4年11月13日出願)に開示されている溶接方法を適宜本発明で適用できる。
【0014】
本発明におけるプロセス装置とは、半導体製造装置、超電導薄膜製造装置、磁性薄膜製造装置、金属薄膜製造装置、誘電体薄膜製造装置等であり、例えばスパッタ、真空蒸着,CVD、PCVD、MOCVD、MBE、ドライエッチング、イオン注入、拡散・酸化炉等の成膜装置及び処理装置、また、例えばオージェ電子分光、XPS、SIMS、RHEED,TRXRF等の評価装置である。また、超純水製造供給装置及びその供給配管系も本発明のプロセス装置に含まれる。
【0015】
【実施例】
以下本発明実施例を挙げて詳細に説明する。
(実施例1)
電解研磨処理されたl/4インチ径のステンレス(Mn以外はSUS316Lを主要成分)配管を用いて、突き合わせ溶接を行った。溶接条件はバックシールドガスにH2とArの混合ガスを用い、溶接速度7.5rpm(0.25cm/sec)で2周溶接を行いビード幅を2mmに調整して行った。溶接後、溶接配管を長手方向に切断しESCAを用いて内表面の金属組成を測定した。測定は、バックシールガスの流れに対して溶接ビード部を基準に上流側10mmから下流側35mmの範囲において、最表面のMn組成率を調べた。その結果を図1に示す。
【0016】
図1において、横軸は測定位置を、縦軸はFe、Cr、Ni及びMnの全検出量に対するMnの検出量の比率を示す。ここで、○印は従来のMn含有量0.65%のステンレス材、●印はMn含有量0.03%のステンレス材である。
図1から明らかなように、0.03%Mn材は溶接ビード部の上流側10mmから下流側35mmの全範囲においてMnはESCAの検出限界以下であり付着はみられなかった。
【0017】
次に、溶接速度を30rpm(1.0cm/sec)で、ビード幅を2mmに調整して一周溶接を行った。ステンレス(SUS316L)配管には、Mn濃度が1.72%、0.65%、0.23%、0.03%及び0.01%のものを用いた。図1との場合と同様にして測定した結果を図2に示す。
図2が示すように、この溶接条件においても、0.03%Mn材においては溶接部近傍においてMn付着が見られなかった。なお、0.01%Mn材は図には示さなかったが、Mn0.03%材と同様、Mnの付着は観測されず、Mn濃度0.03%以下でMn付着は起こらないことが分かった。
【0018】
なお、Cr17.0〜18.0重量%、Ni14.0〜15.0重量%の範囲としたところ、優れた耐食性とともに、安定したオーステナイト相が得られた。
(実施例2)
電解研磨処理された1/4インチ径のステンレス(SUS316L)配管を用いて、溶接時に発生する金属ヒュームの汚染をTRXRFを用いて評価を行った。実験装置を図3に示す。実験方法は、図3に示すように、長さ120cmのステンレス管をアーク溶接しながら、管末端に取り付けた5インチシリコンウエハ中央にバックシールドガスを吹き付けた。ウエハは予め希フッ酸+過酸化水素水で自然酸化膜を除去したものを用いた。また、ウエハヘの外部からの汚染を防止するために実験装置はクリーンルーム内のファンフィルターユニット直下で行った。溶接ステンレス管にはMn濃度0.65%、0.23%及び0.03%の計3種類を用いた。溶接条件は30rpmで1周、ビード幅を2mmに調節し、またバックシールドガスはH2とArの混合ガスを規定流量流して条件をすべて統一した。
【0019】
ガスを一定時間吹き付けた各ウエハは、実験終了後すぐにTRXRFで表面の不純物を測定した。その結果を図4にまとめた。
図4から明らかなように、0.03%Mn材では、Mn付着量はTRXRFの検出限界(1.0xl0l0atоms/cm2)以下となり、検出されなかった。また、Mnだけに限らず、他の金属等(Fe,Cr,Ni,S)の付着量も低いことが分かった。
【0020】
【発明の効果】
以上述ベたように、本発明により、超高純度ガス供給配管系にMn含有量のきわめて少ない材料を用いることで溶接部近傍にMn付着の無いガス配管を供給することが可能となり、超高清浄なプロセス装置及び超高純度ガス供給配管系を提供することが可能となる。
【図面の簡単な説明】
【図1】溶接ビード近辺の最表面のMn組成率を示すグラフである。
【図2】種々の配管材の溶接ビード近辺の最表面のMn組成率を示すグラフである。
【図3】溶接時に発生する金属ヒュームの汚染をTRXRFを用いて測定する実験装置を示す概念図である。
【図4】種々の配管材から発生する金属ヒューム量を示すグラフである。
[0001]
[Industrial application fields]
The present invention relates to ultra-high purity gas Junmizukyo feeding system and process equipment, in particular, weld without deposition of Mn in the vicinity of the high gas or pure water is introduced through the gas-pure water supply pipe clean semiconductor device concerning corrosion by ultra high purity gas Junmizukyo feeding system and process equipment which can prevent metal contamination generated in the Mn.
[0002]
[Related technologies]
Tungsten inert gas welding, arc gas welding, electron beam welding, and the like are widely used for joining gas supply pipes having welds and gas components.
Conventionally, in these welding technologies, consideration has not been given to Mn fume generated from the melted part, but the present inventors have developed ultra-clean technology for the purpose of ultra-high integration and high performance of LSI. As a result, it was discovered that this Mn fume greatly affects the characteristics and yield of semiconductor devices. In other words, Mn fume generated by welding reattaches in the vicinity of the weld, and this adhering Mn corrodes when a corrosive gas containing moisture (for example, hydrogen chloride gas) is flowed to contaminate the gas atmosphere. I understood. In addition, although there is no particular problem with general gases in a short period, it has been found that the gas atmosphere is contaminated in the long term and there are many problems.
[0003]
Accordingly, the present inventors have established a high-speed round welding technique in which the amount of heat input is reduced in order to reduce as much as possible the amount of Mn fume generated and reattached during welding.
This method is a welding method in which the heat input to the weld is 600 joules / cm or less. By this method, the total amount of elution of Fe, Ni, Cr and Mn when the welded body to be welded after welding is washed with ultrapure water at a flow rate of 15 L / hr for 6 hours is 0. A welded stainless material of 1 μg or less is realized. This technology has been filed separately by 1992 patent application 303681 (filed on November 13, 1992).
[0004]
However, although this method has reduced the amount of Mn fume generated during welding, it has not yet completely prevented contamination of the gas atmosphere. Process devices such as highly clean semiconductor manufacturing equipment, gas supply pipes and ultrapure water supply pipes, gas supply systems and ultrapure water supply systems are strongly desired.
[0005]
[Problems to be solved by the invention]
In view of the above points, the present invention can prevent contamination of a semiconductor device or the like in which gas is introduced through these gas supply systems without any adhesion of Mn in the vicinity of the weld surface and inside the gas supply system. An object of the present invention is to provide an ultra-high purity gas / pure water supply pipe and system, and a process apparatus.
[0006]
[Means for Solving the Problems]
In the ultra high purity gas / pure water supply system of the present invention, at least a welded portion is formed by welding an austenitic stainless material having a manganese concentration of 0.03% by weight or less, and is in the vicinity of the welded portion in a state of being left unwelded. The amount of deposited Mn is 1.0 × 10 10 atoms / cm 2 or less .
[0007]
Of the present invention, ultra-high purity gas processing device, the portion being at least welded, constituted by welding a manganese concentration of 0.03 wt% or less of austenitic stainless steel, Mn of definitive near the weld state of the release welding The adhesion amount is 1.0 × 10 10 atoms / cm 2 or less.
As the stainless material, austenitic stainless steel can be used. The Cr concentration is preferably 17.0 to 18.0% by weight, and the Ni concentration is preferably 14.0 to 15.0% by weight. Further, the stainless steel preferably has a chromium oxide passivation treatment on the inner surface.
[0008]
The process apparatus of the present invention is a process apparatus having at least a weld part, no adhesion of Mn near the weld part, and high corrosion resistance, and at least the weld part has a manganese concentration of 0.03% or less. The austenitic stainless steel material is used.
[0009]
[Action]
In order to prevent the generation of Mn fumes that are generated and reattached during welding and become sources of contamination such as gas and ultrapure water, the present inventors have used a high-speed round narrow bead welding method, The relationship between the concentration and the amount of generated Mn fume was examined.
By reducing the Mn content from the conventional 0.65% to 0.23%, the amount of Mn fume generated can be reduced, and by adjusting the welding speed and heat input, the weld bead width is further reduced. It was found that the amount of Mn fume was greatly reduced. However, even if a low Mn material (Mn 0.23%) was used and high-speed l-round narrow bead welding was performed, Mn fume could not be completely eliminated.
[0010]
Therefore, further experiments were carried out, and it was found that if the stainless steel is made of austenite and the Mn concentration is 0.03% or less, the re-deposition of Mn by welding can be completely prevented.
As a result, it has become possible to wipe out Mn that has corroded and contaminated the gas supply system with a halogen-based gas containing moisture, and stably and reliably supplies gas to the process equipment without deteriorating the purity of the gas. Is possible.
[0011]
In addition, by using a stainless steel material having a Mn concentration of 0.03% or less, it has been established to reduce Mn fume, and is not limited to the high-speed one-round narrow bead welding method described above, but also in the conventional low-speed two-round welding method. Adhesion can be prevented.
Furthermore, by setting the Mn concentration to 0.03% or less and increasing the Ni concentration, it is possible to reduce the amount of heat input and to suppress generation / reattachment of metals other than Mn. For example, with respect to the conventional austenitic stainless steel material (Mn 0.65%, Ni 12.0 to 16.0%), the Mn concentration is 0.03% or less and the Ni concentration is 14.0 to 15.0%. For example, when the welding speed is 30 rpm (1.0 cm / sec) and the bead width is 2 mm, the heat input of the Mn 0.65% material is 450 J / cm, whereas the 0.03 Mn material is 428 to 450 J. / Cm.
[0012]
Moreover, by setting the Cr concentration to 17.0 to 18.0%, the corrosion resistance is further improved. Moreover, it is preferable to form a chromium oxide passivation film on the inner surface of the stainless steel from the viewpoint of further improving the degassing characteristics and corrosion resistance.
As the welding means of the present invention, for example, those using electric discharge or laser are used. Examples of using discharge include tungsten inert gas welding and arc gas welding.
[0013]
As the welding method, a welding method in which the heat input to the welded portion is 600 joules / cm or less is preferable. The welding speed is preferably 20 cm / min or more, and it is preferable to perform welding while applying a magnetic field having a vertical component to the surface of the weld. The magnetic field is preferably 50 gauss or more. The weld bead width is preferably 1 mm or less. Further, the welding method disclosed in the above-mentioned 1992 Patent Application 303681 (filed on November 13, 1992) can be appropriately applied in the present invention.
[0014]
The process apparatus in the present invention is a semiconductor manufacturing apparatus, a superconducting thin film manufacturing apparatus, a magnetic thin film manufacturing apparatus, a metal thin film manufacturing apparatus, a dielectric thin film manufacturing apparatus, etc., for example, sputtering, vacuum deposition, CVD, PCVD, MOCVD, MBE, It is a film forming apparatus and a processing apparatus such as dry etching, ion implantation, diffusion / oxidation furnace, and an evaluation apparatus such as Auger electron spectroscopy, XPS, SIMS, RHEED, TRXRF. Further, the ultrapure water production and supply apparatus and its supply piping system are also included in the process apparatus of the present invention.
[0015]
【Example】
Examples of the present invention will be described in detail below.
Example 1
Butt welding was performed using an electrolytically polished l / 4 inch diameter stainless steel pipe (SUS316L is the main component except for Mn). Welding conditions were performed by using a mixed gas of H 2 and Ar as the back shield gas, welding twice at a welding speed of 7.5 rpm (0.25 cm / sec), and adjusting the bead width to 2 mm. After welding, the welded pipe was cut in the longitudinal direction and the metal composition on the inner surface was measured using ESCA. In the measurement, the Mn composition ratio on the outermost surface was examined in the range of 10 mm upstream to 35 mm downstream with respect to the flow of the back seal gas with reference to the weld bead. The result is shown in FIG.
[0016]
In FIG. 1, the horizontal axis represents the measurement position, and the vertical axis represents the ratio of the detected amount of Mn to the total detected amounts of Fe, Cr, Ni, and Mn. Here, a circle indicates a conventional stainless steel material having a Mn content of 0.65%, and a mark ● indicates a stainless steel material having a Mn content of 0.03%.
As is clear from FIG. 1, in the 0.03% Mn material, Mn was below the detection limit of ESCA and no adhesion was observed in the entire range from 10 mm upstream to 35 mm downstream of the weld bead.
[0017]
Next, the welding speed was 30 rpm (1.0 cm / sec), the bead width was adjusted to 2 mm, and one-round welding was performed. Stainless steel (SUS316L) pipes having Mn concentrations of 1.72%, 0.65%, 0.23%, 0.03% and 0.01% were used. The results measured in the same manner as in FIG. 1 are shown in FIG.
As shown in FIG. 2, even under this welding condition, no adhesion of Mn was observed in the vicinity of the weld in the 0.03% Mn material. Although the 0.01% Mn material was not shown in the figure, as with the Mn 0.03% material, no Mn adhesion was observed, and it was found that no Mn adhesion occurred when the Mn concentration was 0.03% or less. .
[0018]
In addition, when it was set as the range of Cr17.0-18.0 weight% and Ni14.0-15.0 weight%, the stable austenite phase was obtained with the outstanding corrosion resistance.
(Example 2)
Using a 1/4 inch diameter stainless steel (SUS316L) pipe subjected to electrolytic polishing, the contamination of metal fume generated during welding was evaluated using TRXRF. The experimental apparatus is shown in FIG. In the experimental method, as shown in FIG. 3, a back shield gas was sprayed on the center of a 5-inch silicon wafer attached to the end of the tube while arc welding a stainless steel tube having a length of 120 cm. The wafer was obtained by removing the natural oxide film with dilute hydrofluoric acid + hydrogen peroxide solution in advance. Further, in order to prevent contamination from the outside of the wafer, the experimental apparatus was directly under the fan filter unit in the clean room. Three types of Mn concentrations of 0.65%, 0.23% and 0.03% were used for the welded stainless steel pipe. Welding conditions were adjusted to 1 round at 30 rpm, the bead width to 2 mm, and the back shield gas was a mixed flow of H 2 and Ar, and the conditions were all unified.
[0019]
Each wafer sprayed with gas for a certain period of time was measured for surface impurities by TRXRF immediately after the experiment was completed. The results are summarized in FIG.
As apparent from FIG. 4, in the 0.03% Mn material, the Mn adhesion amount was not detected because it was below the TRXRF detection limit (1.0 × 10 10 atoms / cm 2 ). Moreover, it turned out that the adhesion amount of not only Mn but other metals etc. (Fe, Cr, Ni, S) is also low.
[0020]
【The invention's effect】
As described above, according to the present invention, it is possible to supply a gas pipe without Mn adhesion in the vicinity of the welded portion by using a material having an extremely low Mn content in the ultra high purity gas supply pipe system. It becomes possible to provide a clean process device and an ultra-high purity gas supply piping system.
[Brief description of the drawings]
FIG. 1 is a graph showing the Mn composition ratio on the outermost surface in the vicinity of a weld bead.
FIG. 2 is a graph showing Mn composition ratios on the outermost surface in the vicinity of weld beads of various piping materials.
FIG. 3 is a conceptual diagram showing an experimental apparatus for measuring the contamination of metal fume generated during welding using TRXRF.
FIG. 4 is a graph showing the amount of metal fume generated from various piping materials.

Claims (6)

少なくとも溶接される部分が、マンガン濃度0.03重量%以下のオーステナイト系ステンレス材を溶接して構成し、溶接放しの状態で溶接部近傍におけるMn付着量は1.0×l0 l0 atоms/cm 2 以下であることを特徴とする超高純度ガス・純水供給システム。Portion to be at least welding, manganese concentrations 0.03 constituted by welding wt% or less of austenitic stainless steel, Mn deposition amount of definitive welds vicinity in a state of releasing welding 1.0 × l0 l0 atоms / cm Ultra-high purity gas / pure water supply system characterized by being 2 or less . 前記ステンレス材は、Cr濃度が17.0〜18.0重量%、Ni濃度が14.0〜15.0重量%であることを特徴とする請求項に記載の超高純度ガス・純水供給システム。The ultra-high purity gas / pure water according to claim 1 , wherein the stainless material has a Cr concentration of 17.0 to 18.0 wt% and an Ni concentration of 14.0 to 15.0 wt%. Supply system. 前記ステンレス材は内面に酸化クロム不動態処理を施したことを特徴とする請求項またはに記載の超高純度ガス・純水供給システム。The ultra-high purity gas / pure water supply system according to claim 1 or 2 , wherein the stainless steel is subjected to chromium oxide passivation treatment on the inner surface. 少なくとも溶接される部分が、マンガン濃度0.03重量%以下のオーステナイト系ステンレス材を溶接して構成し、溶接放しの状態で溶接部近傍におけるMn付着量は1.0×l0l0atоms/cm2以下であることを特徴とする超高純度ガスプロセス装置。Portion to be at least welding, manganese concentrations 0.03 constituted by welding wt% or less of austenitic stainless steel, Mn deposition amount of definitive welds vicinity in a state of releasing welding 1.0 × l0 l0 atоms / cm Ultra-high purity gas process equipment characterized by being 2 or less. 前記ステンレス材は、Cr濃度が17.0〜18.0重量%、Ni濃度が14.0〜15.0重量%であることを特徴とする請求項に記載の超高純度ガスプロセス装置。The ultra high purity gas process apparatus according to claim 4 , wherein the stainless material has a Cr concentration of 17.0 to 18.0 wt% and an Ni concentration of 14.0 to 15.0 wt%. 前記ステンレス材は内面に酸化クロム不動態処理を施したことを特徴とする請求項またはに記載の超高純度ガスプロセス装置。The ultra-high purity gas process apparatus according to claim 4 or 5 , wherein the stainless steel is subjected to chromium oxide passivation treatment on an inner surface.
JP30066993A 1993-11-30 1993-11-30 Ultra high purity gas / pure water supply system and process equipment Expired - Fee Related JP3819446B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30066993A JP3819446B2 (en) 1993-11-30 1993-11-30 Ultra high purity gas / pure water supply system and process equipment
PCT/JP1994/002002 WO1995015406A1 (en) 1993-11-30 1994-11-29 Ultrapure gas and pure water feed duct, system and process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30066993A JP3819446B2 (en) 1993-11-30 1993-11-30 Ultra high purity gas / pure water supply system and process equipment

Publications (2)

Publication Number Publication Date
JPH07151272A JPH07151272A (en) 1995-06-13
JP3819446B2 true JP3819446B2 (en) 2006-09-06

Family

ID=17887650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30066993A Expired - Fee Related JP3819446B2 (en) 1993-11-30 1993-11-30 Ultra high purity gas / pure water supply system and process equipment

Country Status (2)

Country Link
JP (1) JP3819446B2 (en)
WO (1) WO1995015406A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436353B1 (en) 1997-06-13 2002-08-20 Tadahiro Ohmi Gas recovering apparatus
JP4125406B2 (en) 1997-08-08 2008-07-30 忠弘 大見 Welding method, refluorination passivation treatment method and welded part of welding member subjected to fluorination passivation treatment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826571B1 (en) * 1968-12-28 1973-08-13
JPS4855118A (en) * 1971-11-15 1973-08-02
JPS57140896A (en) * 1981-02-21 1982-08-31 Kobayashi Sachiko Metallic material having chromium coated layer
JPS63161145A (en) * 1986-12-25 1988-07-04 Nkk Corp Steel pipe for clean room
JPS63274741A (en) * 1987-05-01 1988-11-11 Kawasaki Steel Corp Austenitic stainless steel for seamless steel tube

Also Published As

Publication number Publication date
WO1995015406A1 (en) 1995-06-08
JPH07151272A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
JP3576598B2 (en) Method for forming oxidation passivation film, ferritic stainless steel, fluid supply system, and fluid contact parts
EP0612580B1 (en) Corrosion resistant welding of stainless steel
JP3558672B2 (en) Austenitic stainless steel, piping systems and fluid contact parts
JP3298999B2 (en) Welding method, welding apparatus, and process apparatus for forming a chromium oxide passivation film on a weld
JP3819446B2 (en) Ultra high purity gas / pure water supply system and process equipment
JP3286697B2 (en) Method and process apparatus for forming an oxide passivation film on a weld
JP2000291850A (en) Stainless steel tube, and its joining method
EP0621103A1 (en) Welding and cleaning method for superhigh purity fluid pipe system
JP3261768B2 (en) Welded stainless steel, process equipment, ultrapure water production and supply equipment, ultrapure gas supply piping system and welding method
JP2716072B2 (en) Welding method
WO1994015749A1 (en) Welding method and welded structure for forming passivated chromium oxide film on weld
WO1995033592A1 (en) Material to be butt welded, cutting method and welding method therefor, and wire
US6220500B1 (en) Welding method for fluorine-passivated member for welding, fluorine-passivation method after being weld, and welded parts
JP3240169B2 (en) Welding system for ultra high purity gas supply piping system
JP2836531B2 (en) Method for producing stainless steel member with excellent corrosion resistance
JP2000176643A (en) Method for forming oxidized passive state film in weld zone
JP3362357B2 (en) Welded joints and welding methods
JP4016073B2 (en) Method for forming aluminum oxide passive film, welding method, fluid contact member and fluid supply / exhaust system
WO1995018246A1 (en) Stainless steel and piping system
JP2004315975A (en) Ferritic stainless steel, part in fluid, and method of forming oxide passive film
JP7222374B2 (en) PIPE CONNECTION METHOD AND SEMICONDUCTOR WAFER HEAT TREATMENT APPARATUS
JPH0544068A (en) Cleaning method for welded part of aluminum alloy
JPH07118808A (en) Stainless steel for high purity gas excellent in weldability and corrosion resistance
JPH07116851A (en) Method for welding stainless steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees