JP3818459B2 - Boiler control device - Google Patents

Boiler control device Download PDF

Info

Publication number
JP3818459B2
JP3818459B2 JP12225396A JP12225396A JP3818459B2 JP 3818459 B2 JP3818459 B2 JP 3818459B2 JP 12225396 A JP12225396 A JP 12225396A JP 12225396 A JP12225396 A JP 12225396A JP 3818459 B2 JP3818459 B2 JP 3818459B2
Authority
JP
Japan
Prior art keywords
boiler
once
unit
control device
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12225396A
Other languages
Japanese (ja)
Other versions
JPH09287704A (en
Inventor
和彦 鈴木
正宏 岡田
公博 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP12225396A priority Critical patent/JP3818459B2/en
Publication of JPH09287704A publication Critical patent/JPH09287704A/en
Application granted granted Critical
Publication of JP3818459B2 publication Critical patent/JP3818459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、貫流ボイラと該貫流ボイラとは異なった形式の異種ボイラとを統合して共通蒸気供給部から共通負荷に対して蒸気を供給するようにしたボイラプラントのボイラ制御装置に関する。
【0002】
【従来の技術】
工場等における需要に基づいて蒸気を供給するボイラプラントには、多数のボイラの発生蒸気を統合して供給するようにしたものがある。その中には、貫流ボイラと、水管ボイラや炉筒煙管ボイラ等の貫流ボイラとは異なった形式のボイラとが並設されたボイラプラントがある。又、水管ボイラや炉筒煙管ボイラ等が既に設置されていて、運転の容易な貫流ボイラを追加又は一部置換して設置したボイラプラントもある。このようなボイラプラントでは、従来、種類の異なったそれぞれのボイラ群が独立して運転制御されていた。そして、通常、貫流ボイラは三位置制御で運転され、水管ボイラ等の異種ボイラは比例制御又は比例積分制御で運転されていた。
【0003】
しかしながら、このような制御では、それぞれのボイラが勝手な制御を行うので、貫流ボイラが頻繁にオン/オフしたり低燃焼/高燃焼を繰り返し、安定した運転が行われなかったり、その反対に、異種ボイラに余力がなくなってから貫流ボイラを運転することになり、負荷追従性が悪くなるという問題があった。又、異種ボイラが比例積分制御されている場合には、異種ボイラの蒸発量が最大もしくは最小になってもはや負荷変動に追従できなくなり、蒸気圧力の低下もしくは上昇が生じてから貫流ボイラがオン/オフしたり高燃焼/低燃焼に切り換わることになり、その時期が一層遅れるという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は従来技術に於ける上記問題を解決し、貫流ボイラと他の形式のボイラとを併用するボイラプラントにおいて、負荷変動に対する追従性が良く且つボイラを効率良く運転できるボイラ制御装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するために、請求項1の発明は、貫流ボイラと該貫流ボイラとは異なった形式の異種ボイラとを統合して共通蒸気供給部から共通負荷に対して蒸気を供給するようにしたボイラプラントのボイラ制御装置において、
前記貫流ボイラの運転を制御する貫流ボイラ個別制御部と、
前記共通蒸気供給部の蒸気圧力を検出する圧力検出部と、
前記圧力検出部の検出圧力に対応して前記異種ボイラの燃料量を制御する異種ボイラ制御部と、
前記燃料量に対応する量である燃料量対応信号を発信する燃料量対応信号発信部と、
前記燃料量対応信号の下方値と上方値とを決定する蒸発量増減決定部と、
前記蒸発量増減決定部の決定値と前記燃料量対応信号発信部の発信値とを入力してこれらを比較して前記発信値が前記上方値より大きくなると前記貫流ボイラの蒸発量を増加し前記発信値が前記下方値より小さくなると前記貫流ボイラの蒸発量を減少するように前記貫流ボイラ個別制御部に信号を発信する貫流ボイラ運転指令部と、
を有することを特徴とする。
【0006】
請求項2の発明は、上記に加えて、前記貫流ボイラは複数台設けられていて、該複数台の貫流ボイラの運転順位を決定する運転順位決定部を有し、前記貫流ボイラ運転指令部は前記運転順位決定部の決定した順位に従って前記貫流ボイラの蒸発量を増減することを特徴とする。
【0007】
請求項3の発明は、上記に加えて、前記運転順位を自動的に変更できることを特徴とする。
【0008】
【発明の実施の形態】
図1は本発明を適用したボイラ制御装置を含むボイラプラントの一例を示す。
ボイラプラントは、貫流ボイラとしての第1乃至第3貫流ボイラ1、2、3と、貫流ボイラとは異なった形式の異種ボイラとしての炉筒煙管ボイラ4とを統合し、共通蒸気供給部である蒸気ヘッダ5から共通負荷に対して蒸気を供給する。ボイラ制御装置は、貫流ボイラ個別制御部としてのそれぞれの貫流ボイラ制御装置11、21、31、圧力検出部としての圧力検出器6、異種ボイラ制御部としての炉筒ボイラ制御装置41、その中の比例制御部41a、蒸発量増減決定部7、貫流ボイラ運転指令部としての運転台数制御装置8、運転順位決定部9等を備えている。
【0009】
貫流ボイラ1、2、3は、本例では同じ構成のものである。従って、第1貫流ボイラ1について説明する。第1貫流ボイラ1は、停止、低燃焼、高燃焼の3状態のうちの1つの状態に制御される三位置制御のボイラで、低燃焼用の燃料弁12、高燃焼用の燃料弁13、三位置のそれぞれに対応した開度に設定されるダンパ14等を備えている。貫流ボイラ制御装置11は、低燃焼させるときには、燃料弁12を開き燃料弁13を閉じてダンパ14を低燃焼位置に設定し、高燃焼させるときには、燃料弁12、13を開いてダンパ14を高燃焼位置に設定する。運転は、停止−低燃焼−高燃焼の順に行われ、停止−低燃焼間ではプレパージ及びポストパージが行われる。
【0010】
炉筒煙管ボイラ4は、前記炉筒ボイラ制御装置41、その中の比例制御器41a、燃料弁42、空気ダンパ43、サーボモータ44等を備えている。圧力検出器6は蒸気ヘッダ5の圧力を検出し、炉筒ボイラ制御装置41は、圧力検出器6が検出した圧力に対応して燃料量を制御するが、本例では比例制御部41aによって比例制御する。従って、例えば図2に示す如く、蒸気圧力として7kgf/cm2 と8kgf/cm2 との間において、7kgf/cm2 では最大信号100%を出力し、8kgf/cm2 では最小信号として10%を出力し、この間ではリニアーに信号Fpvを出力し、この信号がサーボモータ44に与えられ、サーボモータ44が例えば0°から90°の範囲でリニアーに回転する。この回転がリンク機構等によって燃料弁42及び空気ダンパ43に伝達され、結局蒸気圧力に反比例的に対応して燃料量が制御され、それに必要な空気量が供給されることになる。
【0011】
燃料量に対応する量である燃料量対応信号を発信する燃料量対応信号発信部としては、本例では、前記炉筒ボイラ制御装置41内の比例制御部41aが用いられる。即ち、比例制御部41aの発信する前記信号Fpvは、サーボモータ44の回転角度を介して燃料量を制御するので、結果的にその信号は燃料量に対応した信号になっている。但し、燃料量対応信号発信部としては、上記の比例制御部41aに限らず、例えばサーボモータの回転角度、実際の燃料流量、蒸気圧力の変換値等を検出して発信する検出器等の適当なものでもよい。
【0012】
蒸発量増減信号決定部7は、図2に示す如く、10%〜100%の範囲の燃料量対応信号Fpvの下方値Fsv1 として例えば40%と上方値Fsv2 として例えば80%を決定する。この決定は、通常、調整可能な設定器を設けて人が設定することによって行われるが、初めから一定値に定められていてもよく、又、比例制御帯の値から自動的に決定されるようになっていてもよい。
【0013】
運転順位決定部9は、複数台のボイラの運転順位を決定するが、この決定も上記と同様に、通常、調整可能な設定器を設け、本例では例えば貫流ボイラ1、2、3をこの順に運転するように人が設定することによって行われるが、初めから一定の順位が定められていてもよい。但し、それぞれの貫流ボイラの運転時間を均一化するために、例えばカレンダータイマー等によって1週間毎に運転順位を自動的にローテーションさせることが望ましい。
【0014】
運転台数制御装置8は、例えばマイコン等で形成され、蒸発量増減決定部7の決定値Fsv1 (前例では40%)、Fsv2 (前例では80%)と炉筒ボイラ制御装置の比例制御部からの発信値Fpv(前例では10%〜100%の範囲)とを入力してこれらを比較し、発信値が上方値Fsv2 より大きくなると貫流ボイラの蒸発量を増加し、発信値が下方値Fsv1 より小さくなると貫流ボイラの蒸発量を減少するように、運転順位決定部9の決定に従って貫流ボイラ制御装置11、21、31に信号を発信する。この場合、本例の如く三位置制御されている貫流ボイラでは、蒸発量の増減は、停止−低燃焼(以下「L」という)−高燃焼(以下「H」という)の3状態に段階的に行われる。なお、図1では、運転台数制御装置8が蒸発量増減決定部7及び運転順位決定部9を包含している例を示したが、運転台数制御装置8をボイラの機側に設置し、決定部7、9を遠隔で設定できるようにボイラプラントの運転監視室等に設置するようにしてもよい。
【0015】
図3は、以上のような制御によるボイラプラントの運転状態を示す。
例えば、ある運転状態Aでは、貫流ボイラ1、2、3の運転順位がこの順に決定されていて、炉筒ボイラ4及び貫流ボイラ1が低燃焼Lで運転されていて、圧力検出器6で検出した蒸気圧力が7.5kgf/cm2 であり、炉筒ボイラ4は60%の燃料量で安定して比例制御運転されている。このときの運転状態を「A:R+1L」で示す。
【0016】
次に、工場等における蒸気需要側での蒸気消費量が急増したとすると、蒸気圧力が80%燃料量に相当する約7.2kgf/cm2 以下に低下し、炉筒ボイラ4の燃料量が80%以上になると共に、蒸発量を増加するように三位置制御されている貫流ボイラ1がLから高燃焼Hとなり、蒸気需要に対応しようとする。
この制御によれば、炉筒ボイラの比例制御による迅速な蒸発量増加、保有水量が多く時定数の大きい炉筒ボイラの保有水の蒸発による蒸発量の補充、及び貫流ボイラの瞬時の蒸発量の増加により、負荷の急増に対して極めて効果的に両ボイラが対応することになる。このときの運転状態を「B:R+1H」で示す。
【0017】
負荷の急増の程度が大きく、更に蒸気圧力が低下するか又は燃料量80%に相当する圧力7.2kgf/cm2 まで回復しない場合には、優先順位に従って、更に蒸発量を増やすように貫流ボイラ2が運転される。この場合、貫流ボイラ1のLからHへの切換等による蒸発量増加の効果を反映するために、タイマー等で例えば20秒位の或る程度の時間を設定し、この時間が経過した後に貫流ボイラ2の蒸発量を増加することが望ましい。
【0018】
貫流ボイラ2は、停止から起動されてLになるが、このときには例えば30秒程度のプレパージ時間が必要になる。本例の蒸気プラントでは、時定数の大きい炉筒ボイラがあるので、このようなプレパージ時間があっても、蒸気圧力が余り低下しない場合もある。但し、プレパージのための時間遅れを防止するために、貫流ボイラ1がHになると、直ちに貫流ボイラ2のプレパージを開始させるような制御にしてもよい。このときの状態を「C:R+1H+2L」で示す。なお、制御が多少複雑になるが、前記Bの状態、即ち貫流ボイラ1がHになると、次の貫流ボイラの蒸発量を直ちに増加できるように、貫流ボイラ2を起動してLにすると共に、貫流ボイラ1をHからLにして、常にLボイラを確保し、プレパージの必要なく蒸発量を増加できるような制御方法を用いることもできる。
【0019】
このように、負荷の急増の程度の大きい場合でも、本例の制御によれば、炉筒ボイラの燃料量が100%になる前に、即ち炉筒ボイラが蒸発量を増加できる余力のある間に、貫流ボイラを急速起動して対応していることと、炉筒ボイラの大きな時定数とによって、蒸気圧力の低下が極めて効果的に抑制される。
【0020】
このような制御によって、更に「E:R+1H+2H+3L」後に蒸気圧力が例えば7.5kgf/cm2 まで上昇回復してF点で安定したとすると、この運転状態が維持される。ボイラ負荷が減少する場合には、上記と同様な経過をたどり、今度は貫流ボイラが順次蒸発量を下げていく。この状態を、図3(b)のG、H、I、J、Kで示す。この場合にも、迅速に負荷を減少できる貫流ボイラによって、蒸気圧力の過度な上昇が効果的に防止される。更に、以上のような制御によれば、貫流ボイラを運転しつつ炉筒ボイラを低負荷で長時間運転する状態が回避されるので、ボイラプラントを全体的に効率良く運転することができる。
【0021】
なお以上では、炉筒煙管ボイラが比例制御されている例について説明したが、比例積分制御されている場合にも全く同様に本発明を適用できる。この場合には、圧力検出器6で検出した蒸気圧力が一定になるように燃料量の制御信号PIDが発信されてそのように制御される。従って、比例制御の場合と同様に、このPID信号の上方値及び下方値を用いて、貫流ボイラの蒸発量を増減させることができる。
【0022】
なお、炉筒ボイラ4が運転されていないときには、炉筒ボイラ制御装置41により燃料対応量の信号が発信されないので、貫流ボイラ1、2、3による貫流ボイラのみの運転状態になる。この場合には、例えば上記のような優先順位を用いる方法等によって、通常の貫流ボイラ群の制御が行われる。そのために、図1に示すように、圧力検出器6の圧力が運転台数制御装置8に導入され、この圧力を用いた制御が行われる。なお、炉筒ボイラ4のトリップなどの突然の停止時にも制御が混乱しないように、炉筒ボイラ4の運転信号を運転台数制御装置8に導入し、運転が停止すると、直ちに貫流ボイラ群のみの運転に切り換えるようにすることが望ましい。
【0023】
又以上では、貫流ボイラが3台設けられている例を示したが、本発明は当然このような台数には限られず、例えば貫流ボイラが1台のみである場合にも適用できる。この場合には、運転台数制御装置8は、蒸発量切換制御装置となる。この装置は、貫流ボイラ制御装置11と一体化されてもよい。
【0024】
更に、以上では、異種ボイラが1台の炉筒ボイラである場合について説明したが、炉筒ボイラが複数台あっても同様に本発明を適用できる。この場合には、何れか1台の運転されている炉筒ボイラの制御装置から、運転台数制御装置8に燃料対応量信号を送ることになる。更に、異種ボイラは水管ボイラ等の他の形式のボイラであってもよい。この場合、異種ボイラが異なった複数の形式のものであってもよい。何れの場合にも、本発明の適用により既述のような効果が発揮される。
【0025】
【発明の効果】
以上の如く本発明によれば、請求項1の発明においては、貫流ボイラと異種ボイラとを備えたボイラプラントにおいて、燃料量対応信号発信部と蒸発量増減信号決定部とを設け、貫流ボイラ運転指令部が、両信号を比較して、前者が後者の上下方値を超えると貫流ボイラの蒸発量を増減するように制御するので、負荷変動に対して、時定数の大きい異種ボイラの蒸発量増減能力と共に、貫流ボイラの迅速な蒸発量増減能力を有効に活用し、負荷変動に対して極めて追従性の良い制御を行うことができる。又、貫流ボイラを運転しつつ炉筒ボイラを長時間低負荷で運転することがなくなるので、ボイラプラントを効率良く運転することができる。
【0026】
請求項2の発明においては、貫流ボイラが複数台設けられている場合に、これらのボイラの運転順位を決定する運転順位決定部を設け、その決定に従って貫流ボイラの蒸発量を増減するので、複数台の貫流ボイラが円滑に制御され、上記効果を得ることができる。
【0027】
請求項3の発明においては、上記の運転順位が自動的に変更されるので、複数台の貫流ボイラの運転時間を平均化することができる。
【図面の簡単な説明】
【図1】本発明のボイラ制御装置を適用したボイラプラントの説明図である。
【図2】 上記制御装置における燃料量対応信号とその上下方値との関係を示す説明図である。
【図3】 上記制御装置を用いたボイラプラントの運転状態を示し、(a)はボイラ負荷が増加する場合で(b)はボイラ負荷が減少する場合である。
【符号の説明】
1、2、3 第1乃至第3貫流ボイラ(貫流ボイラ)
4 炉筒煙管ボイラ(異種ボイラ)
5 蒸気ヘッダ(共通蒸気供給部)
11、21、31 貫流ボイラ制御装置(貫流ボイラ個別制御部)
6 圧力検出器(圧力検出部)
7 蒸発量増減信号決定部
8 運転台数制御装置(貫流ボイラ運転指令部)
9 運転順位決定部
41 炉筒ボイラ制御装置(異種ボイラ制御部)
41a 比例制御部(燃料量対応信号発信部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boiler control device for a boiler plant in which a once-through boiler and a different type of boiler different from the once-through boiler are integrated to supply steam to a common load from a common steam supply unit.
[0002]
[Prior art]
Some boiler plants that supply steam based on demand in factories or the like integrate and supply steam generated by many boilers. Among them, there is a boiler plant in which a once-through boiler and a boiler of a different type from a once-through boiler such as a water tube boiler and a flue tube boiler are arranged in parallel. In addition, there is a boiler plant in which a water tube boiler, a furnace flue tube boiler, and the like are already installed, and an once-through boiler that is easy to operate is added or partially replaced. In such a boiler plant, conventionally, different types of boiler groups have been independently operated and controlled. Usually, the once-through boiler is operated by three-position control, and a different type boiler such as a water tube boiler is operated by proportional control or proportional-integral control.
[0003]
However, in such control, each boiler performs self-control, so the once-through boiler frequently turns on / off or repeats low combustion / high combustion, and stable operation is not performed. There is a problem in that the load followability is deteriorated because the once-through boiler is operated after the remaining capacity of the different types of boilers is lost. Also, when the different types of boilers are controlled by proportional integral control, the amount of evaporation of the different types of boilers becomes the maximum or minimum and can no longer follow the load fluctuation, and the once-through boiler is turned on / off after the steam pressure drops or rises. There was a problem that it would be turned off or switched to high combustion / low combustion, and that time would be further delayed.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-described problems in the prior art, and provides a boiler control apparatus that can follow a load variation and can operate a boiler efficiently in a boiler plant that uses both a once-through boiler and another type of boiler. This is the issue.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a steam supply system for supplying a steam to a common load from a common steam supply unit by integrating a once-through boiler and a different type of boiler different from the once-through boiler. In the boiler control device of the boiler plant
A once-through boiler individual control unit for controlling the operation of the once-through boiler;
A pressure detection unit for detecting a vapor pressure of the common steam supply unit;
A heterogeneous boiler control unit that controls the amount of fuel of the heterogeneous boiler corresponding to the detected pressure of the pressure detection unit;
A fuel amount corresponding signal transmitting unit for transmitting a fuel amount corresponding signal which is an amount corresponding to the fuel amount;
An evaporation amount increase / decrease determination unit for determining a lower value and an upper value of the fuel amount corresponding signal;
The determined value of the evaporation amount increase / decrease determination unit and the transmission value of the fuel amount corresponding signal transmission unit are input and compared, and when the transmission value becomes larger than the upper value, the evaporation amount of the once-through boiler is increased, and A once-through boiler operation command unit that sends a signal to the once-through boiler individual control unit so as to reduce the evaporation amount of the once-through boiler when the transmitted value is smaller than the lower value;
It is characterized by having.
[0006]
In addition to the above, the invention of claim 2 is provided with a plurality of the once-through boilers, and has an operation order determining unit that determines an operation order of the plurality of once-through boilers, and the once-through boiler operation command unit includes: The evaporation amount of the once-through boiler is increased or decreased according to the order determined by the operation order determining unit.
[0007]
The invention of claim 3 is characterized in that, in addition to the above, the operation order can be automatically changed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of a boiler plant including a boiler control device to which the present invention is applied.
The boiler plant integrates the first to third once-through boilers 1, 2, and 3 as the once-through boiler and the flue tube boiler 4 as the different type boiler different from the once-through boiler, and is a common steam supply unit. Steam is supplied from the steam header 5 to the common load. The boiler control device includes each of the once-through boiler control devices 11, 21, and 31 as the once-through boiler individual control unit, the pressure detector 6 as the pressure detection unit, the furnace boiler control device 41 as the different boiler control unit, A proportional control unit 41a, an evaporation amount increase / decrease determination unit 7, an operation number control device 8 as a once-through boiler operation command unit, an operation order determination unit 9 and the like are provided.
[0009]
The once-through boilers 1, 2, and 3 have the same configuration in this example. Therefore, the first once-through boiler 1 will be described. The first once-through boiler 1 is a three-position controlled boiler that is controlled to one of three states of stop, low combustion, and high combustion, and includes a low combustion fuel valve 12, a high combustion fuel valve 13, The damper 14 etc. which are set to the opening degree corresponding to each of three positions are provided. The once-through boiler control device 11 opens the fuel valve 12 and closes the fuel valve 13 to set the damper 14 at the low combustion position when performing low combustion, and opens the fuel valves 12 and 13 to raise the damper 14 when performing high combustion. Set to combustion position. The operation is performed in the order of stop-low combustion-high combustion, and pre-purge and post-purge are performed between the stop-low combustion.
[0010]
The furnace tube smoke tube boiler 4 includes the furnace tube boiler control device 41, a proportional controller 41a therein, a fuel valve 42, an air damper 43, a servo motor 44, and the like. The pressure detector 6 detects the pressure of the steam header 5, and the furnace boiler control device 41 controls the fuel amount corresponding to the pressure detected by the pressure detector 6, but in this example, it is proportional by the proportional control unit 41 a. Control. Thus, for example, as shown in FIG. 2, between 7 kgf / cm 2 and 8 kgf / cm 2 as a vapor pressure, and outputs a maximum signal of 100% at 7 kgf / cm 2, 10% as the minimum signal at 8 kgf / cm 2 In this period, the signal Fpv is output linearly, and this signal is given to the servo motor 44, and the servo motor 44 rotates linearly in the range of 0 ° to 90 °, for example. This rotation is transmitted to the fuel valve 42 and the air damper 43 by a link mechanism or the like, and eventually the fuel amount is controlled in inverse proportion to the steam pressure, and the necessary air amount is supplied thereto.
[0011]
In this example, a proportional control unit 41 a in the furnace boiler control device 41 is used as a fuel amount corresponding signal transmitting unit that transmits a fuel amount corresponding signal that is an amount corresponding to the fuel amount. That is, the signal Fpv transmitted from the proportional control unit 41a controls the amount of fuel via the rotation angle of the servo motor 44, so that the signal is a signal corresponding to the amount of fuel. However, the fuel amount corresponding signal transmitting unit is not limited to the proportional control unit 41a, and may be an appropriate detector such as a detector that detects and transmits the rotation angle of the servo motor, the actual fuel flow rate, the converted value of the steam pressure, and the like. It may be anything.
[0012]
As shown in FIG. 2, the evaporation amount increase / decrease signal determination unit 7 determines, for example, 40% as the lower value Fsv 1 and 80% as the upper value Fsv 2 of the fuel amount corresponding signal Fpv in the range of 10% to 100%. This determination is usually made by setting an adjustable setter by a person, but it may be set to a constant value from the beginning, or automatically determined from the value of the proportional control band. It may be like this.
[0013]
The operation order determining unit 9 determines the operation order of a plurality of boilers, and this determination is also usually provided with an adjustable setter, and in this example, for example, the once-through boilers 1, 2, 3 Although it is performed by a person setting to drive sequentially, a certain order may be determined from the beginning. However, in order to equalize the operation time of each once-through boiler, it is desirable to automatically rotate the operation order every week by, for example, a calendar timer.
[0014]
The number-of-operations control device 8 is formed by, for example, a microcomputer or the like, and the determined values Fsv 1 (40% in the previous example) and Fsv 2 (80% in the previous example) of the evaporation amount increase / decrease determination unit 7 and the proportional control unit of the furnace boiler control device The transmission value Fpv (from 10% to 100% in the previous example) is input and compared. When the transmission value exceeds the upper value Fsv 2 , the evaporation amount of the once-through boiler increases, and the transmission value is the lower value. When it becomes smaller than Fsv 1 , a signal is transmitted to the once-through boiler control devices 11, 21, and 31 according to the determination of the operation order determination unit 9 so as to reduce the evaporation amount of the once- through boiler. In this case, in the once-through boiler controlled at three positions as in this example, the increase or decrease in the evaporation amount is stepwise in three states: stop-low combustion (hereinafter referred to as “L”) — high combustion (hereinafter referred to as “H”). To be done. 1 shows an example in which the operation number control device 8 includes the evaporation amount increase / decrease determination unit 7 and the operation order determination unit 9, but the operation number control device 8 is installed on the boiler side and determined. The units 7 and 9 may be installed in the operation monitoring room of the boiler plant so that they can be set remotely.
[0015]
FIG. 3 shows the operation state of the boiler plant by the above control.
For example, in a certain operation state A, the operation order of the once-through boilers 1, 2, and 3 is determined in this order, and the furnace boiler 4 and the once-through boiler 1 are operated at the low combustion L and are detected by the pressure detector 6. The steam pressure is 7.5 kgf / cm 2 , and the furnace boiler 4 is stably controlled in proportion to the fuel amount of 60%. The operation state at this time is indicated by “A: R + 1L”.
[0016]
Next, assuming that the steam consumption on the steam demand side in factories and the like increases rapidly, the steam pressure drops to about 7.2 kgf / cm 2 or less, which corresponds to an 80% fuel amount, and the fuel amount of the furnace boiler 4 is reduced. The flow-through boiler 1, which is controlled at three positions so as to increase the amount of evaporation, becomes 80% or more and changes from L to high combustion H, and tries to respond to steam demand.
According to this control, rapid evaporation increase by proportional control of the furnace boiler, replenishment of evaporation due to evaporation of the retained water in the furnace boiler with a large amount of water and a large time constant, and instantaneous evaporation of the once-through boiler With the increase, both boilers will respond very effectively to the sudden increase in load. The operating state at this time is indicated by “B: R + 1H”.
[0017]
If the degree of rapid increase in load is large and the steam pressure further decreases or does not recover to a pressure of 7.2 kgf / cm 2 corresponding to 80% of the fuel amount, the once-through boiler will increase the evaporation amount according to priority. 2 is driven. In this case, in order to reflect the effect of increasing the evaporation amount due to the switching of the once-through boiler 1 from L to H, etc., a certain time of about 20 seconds, for example, is set with a timer or the like, and after this time has passed, It is desirable to increase the evaporation amount of the boiler 2.
[0018]
The once-through boiler 2 is started from the stop and becomes L. At this time, for example, a pre-purge time of about 30 seconds is required. In the steam plant of this example, there is a furnace boiler with a large time constant, so even if there is such a pre-purge time, the steam pressure may not decrease much. However, in order to prevent a time delay for pre-purging, when the once-through boiler 1 becomes H, control may be performed so that pre-purge of the once-through boiler 2 is started immediately. The state at this time is indicated by “C: R + 1H + 2L”. Although the control is somewhat complicated, when the state of B, that is, the once-through boiler 1 becomes H, the once-through boiler 2 is activated and set to L so that the evaporation amount of the next once-through boiler can be immediately increased. It is also possible to use a control method in which the once-through boiler 1 is changed from H to L, the L boiler is always secured, and the evaporation amount can be increased without the need for pre-purge.
[0019]
Thus, even when the degree of sudden increase in the load is large, according to the control of this example, before the fuel amount of the furnace boiler reaches 100%, that is, while the furnace boiler has sufficient capacity to increase the evaporation amount. Further, the rapid activation of the once-through boiler and the large time constant of the furnace tube boiler can suppress the decrease in steam pressure very effectively.
[0020]
If the steam pressure rises and recovers to, for example, 7.5 kgf / cm 2 and stabilizes at the point F after “E: R + 1H + 2H + 3L” by such control, this operation state is maintained. When the boiler load decreases, the same process as described above is followed, and the once-through boiler sequentially decreases the evaporation amount. This state is indicated by G, H, I, J, and K in FIG. Even in this case, the excessive increase in the steam pressure is effectively prevented by the once-through boiler capable of quickly reducing the load. Further, according to the control as described above, a state in which the furnace boiler is operated at a low load for a long time while operating the once-through boiler is avoided, so that the boiler plant can be efficiently operated as a whole.
[0021]
In the above description, the example in which the furnace flue tube boiler is proportionally controlled has been described. However, the present invention can also be applied to a case where proportional integral control is performed. In this case, the fuel amount control signal PID is transmitted and controlled so that the vapor pressure detected by the pressure detector 6 becomes constant. Therefore, as in the case of proportional control, the evaporation amount of the once-through boiler can be increased or decreased using the upper and lower values of the PID signal.
[0022]
Note that when the furnace tube boiler 4 is not in operation, the fuel supply amount signal is not transmitted by the furnace tube boiler control device 41, so that only the once-through boilers with the once-through boilers 1, 2, and 3 are in an operating state. In this case, the normal once-through boiler group is controlled by, for example, a method using the priority order as described above. For this purpose, as shown in FIG. 1, the pressure of the pressure detector 6 is introduced into the operation number control device 8, and control using this pressure is performed. In order to prevent the control from being confused even when a sudden stop such as a trip of the furnace tube boiler 4 is performed, when the operation signal of the furnace tube boiler 4 is introduced into the operation number control device 8 and the operation is stopped, only the once-through boiler group is immediately It is desirable to switch to operation.
[0023]
In the above, an example in which three once-through boilers are provided has been described. However, the present invention is naturally not limited to such a number, and can be applied to a case in which only one once-through boiler is provided. In this case, the operating number control device 8 is an evaporation amount switching control device. This device may be integrated with the once-through boiler control device 11.
[0024]
Furthermore, although the case where the dissimilar boiler is one furnace tube boiler has been described above, the present invention can be similarly applied even when there are a plurality of furnace tube boilers. In this case, a fuel corresponding amount signal is sent from the control device for any one of the operated furnace boilers to the operating number control device 8. Further, the different type boiler may be another type of boiler such as a water tube boiler. In this case, the different types of boilers may be of a plurality of different types. In any case, the effects as described above are exhibited by the application of the present invention.
[0025]
【The invention's effect】
As described above, according to the present invention, in a boiler plant including a once-through boiler and a heterogeneous boiler, a fuel amount corresponding signal transmission unit and an evaporation amount increase / decrease signal determination unit are provided, and a once-through boiler operation is performed. The command unit compares both signals, and controls to increase / decrease the evaporation amount of the once-through boiler when the former exceeds the upper / lower value of the latter. Along with the increase / decrease capability, the rapid evaporation amount increase / decrease capability of the once-through boiler can be effectively utilized to perform control with extremely good followability to load fluctuations. Further, since the furnace tube boiler is not operated at a low load for a long time while operating the once-through boiler, the boiler plant can be operated efficiently.
[0026]
In the invention of claim 2, when a plurality of once-through boilers are provided, an operation order determining unit for determining the operation order of these boilers is provided, and the evaporation amount of the once-through boiler is increased or decreased according to the determination. The once-through boiler of the table is smoothly controlled, and the above effect can be obtained.
[0027]
In the invention of claim 3, since the operation order is automatically changed, the operation time of a plurality of once-through boilers can be averaged.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a boiler plant to which a boiler control device of the present invention is applied.
FIG. 2 is an explanatory diagram showing a relationship between a fuel amount correspondence signal and its upper and lower values in the control device.
FIG. 3 shows an operation state of a boiler plant using the control device, where (a) shows a case where the boiler load increases and (b) shows a case where the boiler load decreases.
[Explanation of symbols]
1, 2, 3 1st to 3rd once-through boiler (through-flow boiler)
4 Furnace fire tube boiler (different type boiler)
5 Steam header (common steam supply part)
11, 21, 31 Cross-flow boiler control device (through-flow boiler individual control unit)
6 Pressure detector (pressure detector)
7 Evaporation amount increase / decrease signal determination unit 8 Number of units control device (through-flow boiler operation command unit)
9 Operation order determination unit 41 Furnace boiler control device (heterogeneous boiler control unit)
41a Proportional control unit (fuel quantity compatible signal transmitter)

Claims (3)

貫流ボイラと該貫流ボイラとは異なった形式の異種ボイラとを統合して共通蒸気供給部から共通負荷に対して蒸気を供給するようにしたボイラプラントのボイラ制御装置において、
前記貫流ボイラの運転を制御する貫流ボイラ個別制御部と、
前記共通蒸気供給部の蒸気圧力を検出する圧力検出部と、
前記圧力検出部の検出圧力に対応して前記異種ボイラの燃料量を制御する異種ボイラ制御部と、
前記燃料量に対応する量である燃料量対応信号を発信する燃料量対応信号発信部と、
前記燃料量対応信号の下方値と上方値とを決定する蒸発量増減決定部と、
前記蒸発量増減決定部の決定値と前記燃料量対応信号発信部の発信値とを入力してこれらを比較して前記発信値が前記上方値より大きくなると前記貫流ボイラの蒸発量を増加し前記発信値が前記下方値より小さくなると前記貫流ボイラの蒸発量を減少するように前記貫流ボイラ個別制御部に信号を発信する貫流ボイラ運転指令部と、
を有することを特徴とするボイラ制御装置。
In a boiler control device for a boiler plant in which a once-through boiler and a different type of boiler different from the once-through boiler are integrated to supply steam to a common load from a common steam supply unit,
A once-through boiler individual control unit for controlling the operation of the once-through boiler;
A pressure detection unit for detecting a vapor pressure of the common steam supply unit;
A heterogeneous boiler control unit that controls the amount of fuel of the heterogeneous boiler corresponding to the detected pressure of the pressure detection unit;
A fuel amount corresponding signal transmitting unit for transmitting a fuel amount corresponding signal which is an amount corresponding to the fuel amount;
An evaporation amount increase / decrease determination unit for determining a lower value and an upper value of the fuel amount corresponding signal;
The determined value of the evaporation amount increase / decrease determination unit and the transmission value of the fuel amount corresponding signal transmission unit are input and compared, and when the transmission value becomes larger than the upper value, the evaporation amount of the once-through boiler is increased, and A once-through boiler operation command unit that sends a signal to the once-through boiler individual control unit so as to reduce the evaporation amount of the once-through boiler when the transmitted value is smaller than the lower value;
A boiler control device comprising:
前記貫流ボイラは複数台設けられていて、該複数台の貫流ボイラの運転順位を決定する運転順位決定部を有し、前記貫流ボイラ運転指令部は前記運転順位決定部の決定した順位に従って前記貫流ボイラの蒸発量を増減することを特徴とする請求項1に記載のボイラ制御装置。A plurality of the once-through boilers are provided, and an operation order determining unit that determines an operation order of the plurality of once-through boilers is provided, and the once-through boiler operation command unit is arranged according to the order determined by the operation order determining unit. The boiler control device according to claim 1, wherein the amount of evaporation of the boiler is increased or decreased. 前記運転順位を自動的に変更できることを特徴とする請求項2に記載のボイラ制御装置。The boiler control device according to claim 2, wherein the operation order can be automatically changed.
JP12225396A 1996-04-18 1996-04-18 Boiler control device Expired - Lifetime JP3818459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12225396A JP3818459B2 (en) 1996-04-18 1996-04-18 Boiler control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12225396A JP3818459B2 (en) 1996-04-18 1996-04-18 Boiler control device

Publications (2)

Publication Number Publication Date
JPH09287704A JPH09287704A (en) 1997-11-04
JP3818459B2 true JP3818459B2 (en) 2006-09-06

Family

ID=14831382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12225396A Expired - Lifetime JP3818459B2 (en) 1996-04-18 1996-04-18 Boiler control device

Country Status (1)

Country Link
JP (1) JP3818459B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006538B2 (en) * 2001-02-09 2007-11-14 株式会社サムソン Steam supply system with backup boiler
JP4505850B2 (en) * 2003-06-26 2010-07-21 三浦工業株式会社 Number control method of boiler
JP5200752B2 (en) * 2008-08-11 2013-06-05 三浦工業株式会社 Boiler control method and boiler system using this control method
JP6119505B2 (en) * 2013-08-19 2017-04-26 三浦工業株式会社 Boiler system
JP6255795B2 (en) * 2013-08-19 2018-01-10 三浦工業株式会社 Boiler system

Also Published As

Publication number Publication date
JPH09287704A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
EP0081974B1 (en) Condition control system for heat transfer
US7819334B2 (en) Multi-stage boiler staging and modulation control methods and controllers
US5513979A (en) Control or regulating system for automatic gas furnaces of heating plants
JP7466228B2 (en) Water heating device, program and control method
JP3818459B2 (en) Boiler control device
JP2002013701A (en) Method for controlling the number of boiler
JP2696267B2 (en) Boiler parallel operation controller
JP3551497B2 (en) Hot water storage system
JP2668441B2 (en) Automatic setting method of number control pattern in boiler automatic number control device
JPH0350401A (en) Automatic controller for number of apparatuses such as boilers
JPH09159103A (en) Boiler control device
JPS6239655B2 (en)
JP3551498B2 (en) Hot water storage system
JP2002195508A (en) Feed water control device and method of steam boiler
JP3551496B2 (en) Hot water storage system
JPH033805Y2 (en)
JPH0615256Y2 (en) Water heater
JPH0233003Y2 (en)
SU1092284A2 (en) System for controlling a heat and power steam turbine unit
JPH06174303A (en) Hot water supplier
JPS6239654B2 (en)
JPH0616290Y2 (en) Blower fan controller for water heater
JPH07269891A (en) Heat insulation circulation apparatus in centralized hot water supply system
JPS6025681B2 (en) Boiler furnace internal pressure control device
JP2765683B2 (en) Water flow control method in water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

EXPY Cancellation because of completion of term