JP3817713B2 - Friction welding surface shape of exhaust manifold and catalyst case - Google Patents

Friction welding surface shape of exhaust manifold and catalyst case Download PDF

Info

Publication number
JP3817713B2
JP3817713B2 JP2001088885A JP2001088885A JP3817713B2 JP 3817713 B2 JP3817713 B2 JP 3817713B2 JP 2001088885 A JP2001088885 A JP 2001088885A JP 2001088885 A JP2001088885 A JP 2001088885A JP 3817713 B2 JP3817713 B2 JP 3817713B2
Authority
JP
Japan
Prior art keywords
exhaust manifold
contact surface
pressure contact
catalyst case
cutting groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001088885A
Other languages
Japanese (ja)
Other versions
JP2002283068A (en
Inventor
雅敏 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Machine Industry Co Ltd
Original Assignee
Aichi Machine Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Machine Industry Co Ltd filed Critical Aichi Machine Industry Co Ltd
Priority to JP2001088885A priority Critical patent/JP3817713B2/en
Publication of JP2002283068A publication Critical patent/JP2002283068A/en
Application granted granted Critical
Publication of JP3817713B2 publication Critical patent/JP3817713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、排気マニホールドと触媒ケースの摩擦圧接面の形状に関するものである。
【0002】
【従来の技術及びその課題】
従来、例えば図7に示すように、排気マニホールド1と触媒ケース2を摩擦圧接により接合する際に、それぞれセット治具3,4に固定して、図8のように圧接面Pで当接させて、先ず図10に示すように、触媒ケース2側に回転を与えて、すり合わせ工程が行なわれ、所定の圧力と回転数により圧接面Pを摺動させてすり合わせる。
このすり合わせ工程により、圧接面Pを均一化させて全面接触するようにした後、摩擦工程では、圧力と回転数を高めて圧接面Pに摩擦熱を発生させ、溶融層と、ある深さまでの軟化層を生成させて、その後の最終工程であるアップセット工程では、回転を止め、高い圧力を加えて、溶融層と軟化層の一部を排出して接合させるものであり、摩擦工程に移る時の圧接面Pの状態が安定していることが、良好な摩擦圧接接合を得るための必要条件となっていた。
【0003】
しかしながら、排気マニホールド1と触媒ケース2が鋳物材料で形成されているような場合には、すり合わせ工程の初期には、鋳物材料のもろさから、材料の脱落が生じて、図9に示すように、圧接面Pで摩耗粉Mが発生し、圧接面Pは転がり摩擦のような状態となり、発熱が不安定となって、摩擦工程に移る時の圧接面Pの状態も安定しないという問題点があった。
なお、このような摩耗粉Mは、体積に対し表面積が大きいことから、摩耗粉Mが圧接面Pに長く存在すると、酸化物を生成しやすく、酸化物は金属と金属同士の融点よりも高いために分解されずに圧接面Pに残存することとなり、良好な接合面が得られなくなり、また、酸化物の存在で、摩擦工程中の軟化層の深さが減少してしまい、アップセット工程での寄り代が変化して、接合後の製品形状の長さがばらついてしまうという問題点があった。
このような摩耗粉Mを発生させないためには、圧接面Pの面粗さを平滑に精度良く加工し、セット治具3,4に対する圧接面Pの垂直度の精度を高めて、加工精度を高める必要があり、加工に時間が掛かり、コスト高となってしまうという問題点があった。
【0004】
【課題を解決するための手段】
本発明は上記従来の問題点に鑑み案出したものであって、摩耗粉を良好に排出して、圧接面が全面接触し、良好な接合状態が得られる排気マニホールドと触媒ケースの摩擦圧接面形状を提供せんことを目的とし、その要旨は、すり合わせ工程ですり合わされた後、摩擦工程で溶融される排気マニホールドと触媒ケースの圧接面において、前記すり合わせ工程時に発生する摩耗粉を排出しやすいように、前記圧接面には、内側から外側に貫通する切削溝が全周に亘り形成され、該切削溝は、すり合わせ工程時の摺動方向と交差する方向に形成されているとともに、前記摩擦工程に移る前には消滅する程度の深さに設定されていることである。
【0005】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。
図1は、排気マニホールド1と触媒ケース2を摩擦圧接により接合する際の状態図であり、排気マニホールド1の外周にボス部1aを形成させておき、これを外側より固定治具3でクランプして固定し、一方の触媒ケース2の外周にもボス部2aを形成させて、このボス部2aを外側より固定治具4でクランプして固定しておき、前述した如く、触媒ケース2側を回転させて、すり合わせ工程を行なうのであるが、図2に示すように、触媒ケース2の圧接面Pには、予め内側から外側に向かって貫通する切削溝5が全周に亘って形成されており、この切削溝5は、すり合わせ工程における圧接面Pの摺動方向と交差する方向にそれぞれ形成されており、切削溝5の深さは、すり合わせ工程中に消滅してなくなる程度の深さに切削痕状に形成されたものとなっている。
なお、一方側の排気マニホールド1の圧接面Pは平滑に加工されたものとなっている。
【0006】
図3のように、排気マニホールド1と触媒ケース2の圧接面Pを芯ズレが生じないようにセットし、触媒ケース2側を回転させて、すり合わせ工程を実施すると、すり合わせ工程中に発生する摩耗粉Mは切削溝5内に脱落して、図4に示すように、触媒ケース2の回転により生ずる遠心力により、摩耗粉Mは切削溝5に沿って外部に排出されることとなり、次第にこの切削溝5は摩耗によりなくなり、その時点では、排気マニホールド1の圧接面と触媒ケース2の圧接面は全面で接触する状態となる。
【0007】
即ち、この段階では、圧接面Pの中央部付近では金属と金属の接触状態となり、従来のように摩耗粉Mが存在して酸化物が生成されることがなく、摩擦工程に移る時点では、安定した全面接触状態となり、摩擦工程では、圧接面Pの全面に均一に摩擦熱を発生させて、溶解層と一定深さの軟化層を良好に生成させて、その後のアップセット工程では、溶融層と軟化層の一部を良好に排出し、酸化物の存在しない状態で、排気マニホールド1と触媒ケース2の接合を設定した寄り代で完了することができるものとなる。
【0008】
なお、このように摩耗粉排出用の切削溝5が形成されていることにより、従来ほど圧接面を平滑に加工する必要もなく、また、固定治具3,4のセット精度を従来ほど精密に行なう必要がないため、固定用のボス部2aを省略して、加工コストを低減させることができるものとなる。
なお、切削溝は、図5に示すようにクロスハッチ状の切削溝5aとしても良く、このクロスハッチ状の切削溝5aを介して摩耗粉を良好に外部に排出させることができるものとなる。
このようなクロスハッチ状の切削溝5aは、図6に示すようなカッター6を用いて切削加工することができ、カッター6の径と送り速度を設定することで、容易に加工することができるものとなる。
【0009】
【発明の効果】
本発明は、すり合わせ工程ですり合わされた後、摩擦工程で溶融される排気マニホールドと触媒ケースの圧接面において、前記すり合わせ工程時に発生する摩耗粉を排出しやすいように、前記圧接面には、内側から外側に貫通する切削溝が全周に亘り形成され、該切削溝は、すり合わせ工程時の摺動方向と交差する方向に形成されているとともに、前記摩擦工程に移る前には消滅する程度の深さに設定されていることにより、すり合わせ工程中に発生する摩耗粉を遠心力を利用して良好に切削溝に沿って外部に排出することができ、摩耗粉による酸化物の生成をなくし、摩擦工程に移る際には圧接面が全面接触した状態となり、摩擦面全域を均一に溶融させて、排気マニホールドと触媒ケースが鋳物材料で形成されている場合にも、良好な安定した接合状態を得ることができるものとなる。
【図面の簡単な説明】
【図1】 排気マニホールドと触媒ケースをクランプして圧接面を当接させた状態の配置構成図である。
【図2】 触媒ケースの圧接面に切削溝を形成した斜視構成図である。
【図3】 すり合わせ工程開始前の配置構成図である。
【図4】 すり合わせ工程中に発生する摩耗粉を切削溝に沿って外側へ排出している作用説明図である。
【図5】 切削溝の別例を示す斜視構成図である。
【図6】 図5の切削溝をカッターで切削加工している概略平面構成図である。
【図7】 従来の摩擦圧接部材の配置構成図である。
【図8】 従来の摩擦圧接の開始状態の概略構成図である。
【図9】 従来、すり合わせ工程で摩耗粉が発生した概略状態図である。
【図10】 摩擦圧接による寄り代と圧力と回転数の関係線図である。
【符号の説明】
1 排気マニホールド
1a ボス部
2 触媒ケース
3,4 固定治具
5 切削溝
5a クロスハッチ状切削溝
6 カッター
P 圧接面
M 摩耗粉
[0001]
[Industrial application fields]
The present invention relates to the shapes of friction welding surfaces of an exhaust manifold and a catalyst case .
[0002]
[Prior art and problems]
Conventionally, for example, as shown in FIG. 7, when the exhaust manifold 1 and the catalyst case 2 are joined by friction welding, the exhaust manifold 1 and the catalyst case 2 are fixed to the set jigs 3 and 4, respectively, and brought into contact with the pressure contact surface P as shown in FIG. First, as shown in FIG. 10, a rotation is applied to the catalyst case 2 side to perform a rubbing step, and the pressure contact surface P is slid by the predetermined pressure and the number of rotations.
In this rubbing step, the pressure contact surface P is made uniform and brought into contact with the entire surface, and in the friction step, the pressure and the number of rotations are increased to generate frictional heat on the pressure contact surface P. In the upset process, which is the final process after generating the softened layer, the rotation is stopped, a high pressure is applied, and a part of the molten layer and the softened layer is discharged and joined, and the process proceeds to the friction process. The stable state of the pressure contact surface P at the time was a necessary condition for obtaining a good friction pressure welding.
[0003]
However, in the case where the exhaust manifold 1 and the catalyst case 2 are formed of a casting material, the material falls off from the brittleness of the casting material at the beginning of the rubbing process, as shown in FIG. There is a problem that wear powder M is generated on the pressure contact surface P, the pressure contact surface P becomes like rolling friction, heat generation becomes unstable, and the state of the pressure contact surface P is not stable when moving to the friction process. It was.
In addition, since such wear powder M has a large surface area with respect to the volume, if the wear powder M exists on the pressure contact surface P for a long time, it is easy to generate an oxide, and the oxide is higher than the melting point of the metal and the metal. Therefore, it remains on the pressure contact surface P without being decomposed, and a good joint surface cannot be obtained, and the presence of the oxide reduces the depth of the softened layer during the friction process, and the upset process. There is a problem in that the length of the product shape after joining varies due to the change in the shift margin.
In order not to generate such wear powder M, the surface roughness of the pressure contact surface P is processed smoothly and accurately, the accuracy of the perpendicularity of the pressure contact surface P with respect to the set jigs 3 and 4 is increased, and the processing accuracy is increased. There is a problem that it takes a long time for processing and increases the cost.
[0004]
[Means for Solving the Problems]
The present invention has been devised in view of the above-mentioned conventional problems, and is a friction welding surface between the exhaust manifold and the catalyst case that discharges the abrasion powder well and the pressure contact surface comes into full contact with each other to obtain a good joined state. intended to not provide shape, Abstract of its, after being combined sliding in ground-step, in pressure contact surface of the exhaust manifold and catalyst case which is melted by friction step, to discharge abrasion powder generated during the break-step For the sake of simplicity , the pressure contact surface is formed with a cutting groove penetrating from the inside to the outside over the entire circumference, and the cutting groove is formed in a direction intersecting the sliding direction during the rubbing step, and The depth is set so that it disappears before moving to the friction process .
[0005]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a state diagram when the exhaust manifold 1 and the catalyst case 2 are joined by friction welding. A boss portion 1a is formed on the outer periphery of the exhaust manifold 1, and is clamped by a fixing jig 3 from the outside. The boss portion 2a is formed on the outer periphery of one catalyst case 2 and the boss portion 2a is clamped and fixed from the outside with the fixing jig 4, and the catalyst case 2 side is fixed as described above. As shown in FIG. 2, a cutting groove 5 penetrating from the inside toward the outside is formed on the entire circumference of the pressure contact surface P of the catalyst case 2 as shown in FIG. The cutting groove 5 is formed in a direction intersecting the sliding direction of the pressure contact surface P in the grinding process, and the depth of the cutting groove 5 is such that it does not disappear during the grinding process. Formed in the form of cutting marks Has become a thing was.
The pressure contact surface P of the exhaust manifold 1 on one side is processed smoothly.
[0006]
As shown in FIG. 3, when the pressure contact surface P between the exhaust manifold 1 and the catalyst case 2 is set so as not to cause misalignment, the catalyst case 2 side is rotated, and the alignment process is performed, the wear that occurs during the alignment process The powder M falls off into the cutting groove 5, and the abrasion powder M is discharged to the outside along the cutting groove 5 due to the centrifugal force generated by the rotation of the catalyst case 2 as shown in FIG. The cutting groove 5 disappears due to wear, and at that time, the pressure contact surface of the exhaust manifold 1 and the pressure contact surface of the catalyst case 2 are in contact with each other.
[0007]
That is, at this stage, the metal is in contact with the metal in the vicinity of the center portion of the pressure contact surface P, and there is no generation of oxide due to the presence of wear powder M as in the prior art. In a friction process, the frictional heat is uniformly generated over the entire surface of the pressure contact surface P, and a melted layer and a softened layer having a certain depth are generated satisfactorily in the friction process. A part of the layer and the softened layer can be discharged well, and in the state where no oxide is present, the joining of the exhaust manifold 1 and the catalyst case 2 can be completed at the set margin.
[0008]
Since the cutting grooves 5 for discharging the abrasion powder are formed in this way, it is not necessary to process the pressure contact surface as smoothly as in the conventional case, and the setting accuracy of the fixing jigs 3 and 4 is as precise as in the conventional case. Since this is not necessary, the fixing boss portion 2a can be omitted, and the processing cost can be reduced.
The cutting groove may be a cross-hatched cutting groove 5a as shown in FIG. 5, and wear powder can be discharged to the outside through the cross-hatched cutting groove 5a.
Such a cross-hatched cutting groove 5a can be cut using a cutter 6 as shown in FIG. 6, and can be easily processed by setting the diameter and feed speed of the cutter 6. It will be a thing.
[0009]
【The invention's effect】
In the present invention, the pressure contact surface of the exhaust manifold and the catalyst case melted in the friction process after being rubbed together in the friction process, the wear surface generated at the time of the friction process is easily discharged. A cutting groove penetrating from the outside to the outside is formed over the entire circumference, and the cutting groove is formed in a direction intersecting the sliding direction at the time of the rubbing process, and disappears before moving to the friction process. By setting the depth, the wear powder generated during the grinding process can be discharged to the outside along the cutting groove well by using centrifugal force , eliminating the generation of oxide by the wear powder , When moving to the friction process, the pressure contact surface is in full contact, and the entire friction surface is uniformly melted, and the exhaust manifold and catalyst case are formed of a casting material. It becomes capable of obtaining the bonded state.
[Brief description of the drawings]
FIG. 1 is an arrangement configuration diagram in a state where an exhaust manifold and a catalyst case are clamped and a pressure contact surface is brought into contact with each other.
FIG. 2 is a perspective configuration diagram in which a cutting groove is formed on a pressure contact surface of a catalyst case.
FIG. 3 is an arrangement configuration diagram before starting a rubbing process.
FIG. 4 is an operation explanatory view in which wear powder generated during the rubbing step is discharged to the outside along the cutting groove.
FIG. 5 is a perspective configuration diagram showing another example of a cutting groove.
6 is a schematic plan configuration diagram in which the cutting groove of FIG. 5 is cut by a cutter. FIG.
FIG. 7 is an arrangement configuration diagram of a conventional friction welding member.
FIG. 8 is a schematic configuration diagram of a starting state of conventional friction welding.
FIG. 9 is a schematic state diagram in which wear powder has been generated in the pasting process.
FIG. 10 is a diagram showing the relationship between the shift margin due to friction welding, the pressure, and the rotational speed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Exhaust manifold 1a Boss part 2 Catalyst case 3, 4 Fixing jig 5 Cutting groove 5a Cross hatched cutting groove 6 Cutter P Pressure-contact surface M Wear powder

Claims (1)

すり合わせ工程ですり合わされた後、摩擦工程で溶融される排気マニホールドと触媒ケースの圧接面において、前記すり合わせ工程時に発生する摩耗粉を排出しやすいように、前記圧接面には、内側から外側に貫通する切削溝が全周に亘り形成され、該切削溝は、すり合わせ工程時の摺動方向と交差する方向に形成されているとともに、前記摩擦工程に移る前には消滅する程度の深さに設定されていることを特徴とする排気マニホールドと触媒ケースの摩擦圧接面形状。After being rubbed together in the rubbing process, the pressure contact surface of the exhaust manifold and catalyst case melted in the friction process penetrates the pressure contact surface from the inside to the outside so that it is easy to discharge wear powder generated during the rubbing process. The cutting groove is formed over the entire circumference, and the cutting groove is formed in a direction that intersects the sliding direction during the rubbing process, and is set to a depth that disappears before moving to the friction process. friction welding surface shape of the exhaust manifold and the catalyst casing, characterized in that it is.
JP2001088885A 2001-03-26 2001-03-26 Friction welding surface shape of exhaust manifold and catalyst case Expired - Fee Related JP3817713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088885A JP3817713B2 (en) 2001-03-26 2001-03-26 Friction welding surface shape of exhaust manifold and catalyst case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088885A JP3817713B2 (en) 2001-03-26 2001-03-26 Friction welding surface shape of exhaust manifold and catalyst case

Publications (2)

Publication Number Publication Date
JP2002283068A JP2002283068A (en) 2002-10-02
JP3817713B2 true JP3817713B2 (en) 2006-09-06

Family

ID=18943905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088885A Expired - Fee Related JP3817713B2 (en) 2001-03-26 2001-03-26 Friction welding surface shape of exhaust manifold and catalyst case

Country Status (1)

Country Link
JP (1) JP3817713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201501884D0 (en) * 2015-02-05 2015-03-25 Rolls Royce Plc Friction welding

Also Published As

Publication number Publication date
JP2002283068A (en) 2002-10-02

Similar Documents

Publication Publication Date Title
US8393522B2 (en) Joining method and joining tool
JP3365976B2 (en) Method for forming hub disk and metal spinning roller used for the same
JP4684810B2 (en) Method for manufacturing cylindrical article
JP4388140B2 (en) Fixing member forming friction weld joint
JP2000246465A (en) Tool for friction agitation joining
JP2004308647A (en) Method for manufacturing impeller, and impeller
US6378761B2 (en) Process for joining components made from case-hardened steel to components made from cast iron
US10780521B2 (en) Metal composite and metal joining method
JP2000213551A (en) End piece pressure contact type hollow camshaft
JP3817713B2 (en) Friction welding surface shape of exhaust manifold and catalyst case
JP2006046423A (en) Rack shaft and its manufacturing method
JPH09141449A (en) Seam welding method
JP6756105B2 (en) Joining method
JP2004066325A (en) Method for producing two piece wheel
JP6699435B2 (en) Method for manufacturing cylindrical member
JP6662210B2 (en) Joining method
JPH08243764A (en) Friction welding method and base material used therefor
JP6747365B2 (en) Joining method
JP6702130B2 (en) Method for manufacturing cylindrical member
JPH06312229A (en) Method for forming engaging surface for calking by electromagnetic forming or the like
JPS63132790A (en) Manufacture of revolving shaft
WO2024190057A1 (en) Friction stir welding tool and friction stir welding method
JPH11320129A (en) Joining method of chip against shaft end of engine valve
JPH0663775A (en) Method for joining annular member and shaft member
JP6662094B2 (en) Joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060516

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060602

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees