JP3817149B2 - Manufacturing method of FRP pipe - Google Patents

Manufacturing method of FRP pipe Download PDF

Info

Publication number
JP3817149B2
JP3817149B2 JP2001115746A JP2001115746A JP3817149B2 JP 3817149 B2 JP3817149 B2 JP 3817149B2 JP 2001115746 A JP2001115746 A JP 2001115746A JP 2001115746 A JP2001115746 A JP 2001115746A JP 3817149 B2 JP3817149 B2 JP 3817149B2
Authority
JP
Japan
Prior art keywords
continuous fiber
fiber bundle
frp pipe
basis weight
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001115746A
Other languages
Japanese (ja)
Other versions
JP2002307567A (en
Inventor
紀夫 平山
直樹 友光
裕 川口
将義 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP2001115746A priority Critical patent/JP3817149B2/en
Publication of JP2002307567A publication Critical patent/JP2002307567A/en
Application granted granted Critical
Publication of JP3817149B2 publication Critical patent/JP3817149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、FRP(Fiber Reinforced Plastic:繊維強化プラスチック)橋の橋桁や液体輸送用パイプ等として利用されるFRPパイプの製造方法に関する。
【0002】
【従来の技術】
液体輸送用パイプ等の各種土木構造物として、パイプ状のFRPが利用されている。このようなFRPパイプを製造する方法の一つとして、例えばフィラメントワインディング法が知られている。この方法は、連続繊維束等を予め触媒や硬化剤を混合した液状樹脂に含浸させながら芯金に巻き付け、所定の肉厚にした後に硬化させ、脱型し、FRPパイプを得るものである。ところが、フィラメントワインディング法でFRPパイプを作製する場合、パイプの長さは芯金の長さ程度にしかすることができないという問題があった。
【0003】
このようなパイプの長さが制限される問題を解消できる方法として、引抜き成形法が利用されている。この方法は、繊維強化材(連続繊維束、マット状の繊維基材等)を強度特性に合わせて構成し引き揃えて、引抜きながら、予め触媒や硬化剤を混合した液状樹脂に含浸させ、加熱した金型内を通しながら硬化させ、連続的にFRPパイプを得るものである。この方法によれば、FRPパイプの長さが制限されることはなく、引抜いた長尺状の成形品をカッター等で切断し、FRPパイプの長さを自由に調整することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の引抜き方法には次のような問題があった。すなわち、組布は複数方向に軸が向いた連続繊維束で構成されているが、組布を金型内を引抜く際に、交叉する連続繊維束の位置がずれるいわゆる目ズレを起こすという問題があった。連続繊維束が目ズレを起こすと、FRPパイプを構成する連続繊維束の配向のバランスが崩れ、特に連続繊維束がずれて局所的に樹脂が多くなった部分は強度が弱く、その部分から破壊が進む可能性が高くなってしまう。
【0005】
本発明は、上記問題を解決するためになされたものであり、引抜き成形時に組布の目ズレを抑制できるFRPパイプの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、組布に樹脂を含浸させてなるFRPパイプの製造方法において、組布は、軸方向が同一の複数の連続繊維束により成る層を当該軸方向が3つ以上異なるように重ね合わせて備え、当該連続繊維束のうち、重ね合わせ方向で最も外側の両層に含まれるものの軸方向は一の方向である構成からなり、一の方向に沿って組布を金型を通して引き抜き、パイプ状にするステップを含むことを特徴とする。
【0007】
本発明のFRPパイプの製造方法では、複数方向の連続繊維束のうち一つの軸方向に沿って組布を引抜いているため、この連続繊維束を斜めにずらす方向に力がかからず、目ズレを起こしにくい。
【0008】
また、本発明のFRPパイプの製造方法において、前記一の連続繊維束と軸方向が異なる他の連続繊維束の目付量が、前記一の方向の連続繊維束の目付量よりも大きいことを特徴としてもよい。
【0009】
この場合、得られたFRPパイプの円周方向の連続繊維束の目付量が軸方向の連続繊維束の目付量よりも大きくなるため、パイプの周方向の強度を向上させることができる。このため、上記方法で得られたFRPパイプを大きな内圧がかかる液体輸送用パイプとして利用しても、パイプの周方向に破壊が生じることを抑制できる。
【0010】
また、本発明のFRPパイプの製造方法において、組布は、一の連続繊維束の軸方向に対して、軸方向が30°〜60°傾いた連続繊維束と、−30°〜−60°傾いた連続繊維束と、75°〜105°傾いた連続繊維束とを有し、一の方向の連続繊維束の目付量を1とした場合に、30°〜60°傾いた連続繊維束の目付量、−30°〜−60°傾いた連続繊維束の目付量、及び75°〜105°傾いた連続繊維束の目付量の合計が1.5以上であることを特徴としてもよい。
【0011】
本発明者らの有限要素法を用いた解析の結果、各連続繊維束の目付量の比率をこのような値に設定した場合に、FRPパイプが軸方向及び周方向の強度のバランスに優れたものとなることが判明した。有限要素法の数値解析においては、目的関数をFRPパイプの強度とし、設計変数を連続繊維束の配向及び構成とし、目的関数であるFRPパイプの強度が最大となるように数値実験を繰り返した。
【0012】
また、本発明のFRPパイプの製造方法において、上記の目付量が多い方向の連続繊維束は、目付量が小さな方向の連続繊維束よりもテックス番手が大きくなるようにしてもよい。このように、テックス番手を調整して目付量を増やすこともできる。
【0013】
また、本発明のFRPパイプの製造方法において、金型を通して引き抜く前に、組布に対してニードリング処理を施し、且つ、引き抜きの前に又は引き抜きと同時に、組布を溶融樹脂に含浸させることが好ましい。
【0014】
ニードリング処理を施して開繊させることにより、樹脂含浸性が高まるとともに、組布の交点の密着性が向上して目ズレを防止することもできる。
【0015】
また、本発明のFRPパイプの製造方法において、組布は、3軸組布又は4軸組布であり、且つ、組布に例えばコンティニュアスストランドマット等のマット状の繊維基材を重ねて引き抜きを行うことが好ましい。
【0016】
このようにマット状の繊維基材を組布に重ねることで、FRPパイプの外観品質及び強度を向上させることができる。
【0017】
また、連続繊維束は、ガラス繊維、炭素繊維、アルミナ繊維、又はアラミド繊維等によって形成することができる。
【0018】
【発明の実施の形態】
以下、添付図面を参照して、本発明に係るFRPパイプの製造方法の好適な実施形態について詳細に説明する。尚、同一要素には同一符号を用いるものとし、重複する説明は省略する。
【0019】
図1は、本実施形態のFRPパイプを製造するための引抜き成形装置10の概略構成図である。本実施形態では、ガラスの連続繊維で構成された4軸組布(4軸不織布ともいう)20及び同じくガラス繊維で形成されたマット状の繊維基材であるコンティニュアスストランドマット30を重ねたものを引抜いて、FRPパイプを製造する。コンティニュアスストランドマット30は、ガラス連続繊維をランダムに且つ均一に分散させバインダーでマット状にしたものであり、4軸組布20の表裏面を覆うように配される。
【0020】
引抜き成形装置10は、触媒や硬化剤を混合した溶融樹脂42を収容した樹脂槽40と、内部に円筒状の引抜き用の通路が形成された金型50と、4軸組布20及びコンティニュアスストランドマット30を金型50を通して引抜くプーラー60と、パイプ状に形成されたFRPを所望の長さにカットする切断機70と、を備えている。
【0021】
樹脂槽40の上流側には、4軸組布20の表裏面にコンティニュアスストランドマット30を積層して樹脂槽40に浸漬させるためのスリット部材44が設けられている。但し、このスリット部材44は必ずしも設ける必要はない。樹脂槽40に滞留させる溶融樹脂42としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシ樹脂、メタアクリレート樹脂等の熱硬化性樹脂や、ナイロン樹脂、ポリプロピレン樹脂等の様々な熱可塑性樹脂を利用することができる。
【0022】
樹脂槽40の下流に位置する金型50は、SKDやSCMのダイス鋼で形成されており、上型50aと下型50bを締結することで円筒状の通路が形成される。また、金型50内を通過する成形品はヒータ52によって加熱され、4軸組布20等に含浸した樹脂が硬化する。金型50の上流には、4軸組布20及びコンティニュアスストランドマット30の内部まで溶融樹脂42を浸透させるとともに余剰の溶融樹脂42を取り除き、且つ、4軸組布20等を金型50の通路に導入するための3つのローラからなるローラ群54が設けられている。
【0023】
プーラー60は、金型を通過した成形品を回転するローラで上下から挟み込むいわゆるキャタピラ方式のものである。プーラー60は、機械的、油圧的に往復動する2台のクランプで成形品を引抜くいわゆるクランプユニット方式としてもよい。切断機70は、ブレードをモータMの駆動力で回転させて、成形品を切断する。
【0024】
次に、図2を参照して、4軸組布20について説明する。4軸組布20は、上から順に、ガラス連続繊維束としての経糸11と、これに90°傾いた緯糸12と、経糸11に対して−45°傾いた斜交糸13と、経糸11に対して45°傾いた斜交糸14と、経糸11に対して90°傾いた緯糸15と、経糸11と平行な経糸16と、を備えている。上下に重なり合う各糸は、樹脂によって接着されている。
【0025】
尚、本実施形態では4軸組布20を構成する各連続繊維束はガラス繊維によって形成されているが、この他、炭素繊維、アルミナ繊維、又はアラミド繊維等によって形成してもよい。
【0026】
また、4軸組布20は、金型50内における引抜き方向が図2中の矢印Aの方向となるように配されている。つまり、成形品は、経糸11,16の軸方向(言い換えれば長手方向)に沿って引抜かれることになる。
【0027】
また、引抜き方向と異なる方向の糸、すなわち他の斜交糸13,14及び緯糸12,15の目付量は、経糸11,16の目付量よりも大きくなっている。具体的には、斜交糸13,14及び緯糸12,15のテックス番手(ストランド1000m当りの重量(g))を大きくして、目付量を大きくしている。ここで、本発明でいう目付量とは、同じ方向を向いた連続繊維束の集合体(例えば経糸11の集合体)の単位面積(1m2)あたりの重量を意味する。4軸組布20の構成を更に詳説すると、経糸11,16の目付量を1とした場合に、斜交糸13,14の目付量及び緯糸12,15の目付量の合計値が1.5以上となる関係にある。好ましくは、経糸11,16の目付量、斜交糸13の目付量、斜交糸14の目付量、経糸12,15の目付量は、1:1:1:2の関係にあるのがよい。
【0028】
以上が、本実施形態で用いる引抜き成形装置10及び4軸組布20の構成である。次に、本実施形態のFRPパイプの製造方法を説明する。
【0029】
まず、プーラー60を回転駆動させ、ドラム状に巻かれた4軸組布20及びコンティニュアスストランドマット30,30を引き出す。その後、スリット部材44でマット30,30が4軸組布20の表裏面を覆うように重ねられ、樹脂槽40内で溶融樹脂42に含浸される。
【0030】
樹脂槽40を通過した4軸組布20等は、ローラ群54で圧接されて樹脂が内部まで浸透し、金型50の円筒状の通路内に引き込まれる。この際、4軸組布20とマット30の積層体は、金型50の通路に倣って円筒状に丸められながら引き抜かれる。また、金型50の後段において、成形品はヒータ52によって加熱され、含浸した溶融樹脂42が硬化する。
【0031】
ここで、上記のように、経糸11,16の軸方向に沿って4軸組布20を引抜いているため、経糸11,16を斜めにずらす方向に力が加えられず、目ズレが起きにくい。このため、成形品の引抜き作業をスムースに行うことができる。
【0032】
金型50から引抜かれた長尺の成形品は切断機70によって所望の長さに切断されて、目的のFRPパイプ80を得ることができる。
【0033】
図3に、得られたFRPパイプ80の斜視図を示し、図4に、図3の領域Sの拡大図を示す。図3に示すように、FRPパイプ80には4軸組布20とコンティニュアスストランドマット30のラップ部として強度を向上させるため、パイプ内側に平坦部82が形成されている。また、図4に示すように、FRPパイプ80は、外側から順に、マット30、経糸11の層、緯糸12の層、斜交糸13の層、斜交糸14の層、緯糸15の層、経糸16の層、マット30という積層構造となっている。このように溶融樹脂42が含浸し易いコンティニュアスストランドマット30を4軸組布20に重ねることで、FRPパイプ80の外観品質及び強度を向上させることができる。
【0034】
ここで、本実施形態では、FRPパイプ80の円周方向の各糸の目付量が軸方向の経糸11,16の目付量よりも大きくなっているため、FRPパイプ80の周方向の強度は高いものになっている。このため、FRPパイプ80を大きな内圧がかかる液体輸送用パイプ等として利用しても、FRPパイプ80の周方向に破壊が生じることを抑制できる。
【0035】
また、閉断面のパイプに内圧が作用した場合、周方向にかかる応力はパイプの軸方向にかかる応力の約2倍となる。上記のように、経糸11,16の目付量を1として、これに対して軸方向が各々−45°,45°傾いた斜交糸13,14の目付量及び経糸に対して90°傾いた緯糸12,15の目付量の合計値が1.5以上の場合に、FRPパイプ80の軸方向及び周方向の強度のバランスが優れたものとなる。このことは、本発明者らが有限要素法を用いた解析の結果、見出した事項である。好ましくは、経糸11,16の目付量、これに対して軸方向が−45°傾いた斜交糸13の目付量、経糸に対して45°傾いた斜交糸14の目付量、経糸に対して90°傾いた緯糸12,15の目付量の比を、1:1:1:2の関係にするのがよい。
【0036】
また、斜交糸13、斜交糸14、及び経糸12,15は、経糸11,16に対して必ずしも−45、45°、及び90°傾いている必要はなく、各々−30°〜−60°、30°〜60°、及び75°〜105°の傾きを有すれば同様の効果を得ることができる。
【0037】
さらに、本実施形態において、金型50を通して引抜く前に、組布20にニードリング処理を施して開繊させてもよい。このようにニードリング処理を施して開繊処理させることにより、樹脂含浸性が高まるとともに、組布の交点の密着性が向上して目ズレを防止することもできる。
【0038】
また、本実施形態によれば、次のような効果も得ることができる。すなわち、従来の引抜き成形方法には、引抜成形品の主構成品である連続繊維束は、引抜成形品の長手方向の強度への寄与が大きく、鋼材の1/4程度の比重量で鋼材と同等の強度を実現できるが、その一方で、引抜成形品の長手方向と直交する方向の強度は極端に弱いという欠点があった。これは、引抜成形品の長手方向に連続繊維が配向されていることが最大の要因であった。特に、閉断面の角パイプや円筒状パイプ等に内圧が作用した場合、発生する応力値は長手方向と直交する周方向の応力値が、長手方向の応力値の2倍になることが知られており、強く改善が望まれていた。
【0039】
従来の引抜き成形方法では、このような問題を解決するために、連続繊維をランダムに且つ均一に分散させバインダでマット状にしたコンティニュアスストランドマットや、ストランドを短く切断してランダムに且つ均一に分散させバインダでマット状にしたチョップドストランドマットを連続繊維束と併用していた。しかしながら、このようなマット状の強化材を連続繊維束と併用しただけでは、引抜成形品の長手方向と直交する方向の強度は充分に向上させることができず、直交する方向のクラックを防止する程度の効果しか期待できなかった。
【0040】
このため、従来は、引抜き成形法で得られたパイプの周方向に、更に、ガラス繊維を巻き付けるという2段階の作業を行うことで、長手方向と周方向の強度を向上させていた。ところが、このような2段階作業を実施する場合、引抜き成形装置に加えて巻き付け用の設備が必要となり、装置全体が大型化するという問題があった。加えて、基材の供給設備等の付帯的な設備もそれに伴い大掛かりになり、結果として多額の設備投資が必要となるとともに、通常の引抜き成形法のみと比較して成形の作業性が著しく低下するという問題があった。
【0041】
これに対して、本実施形態では、3以上の方向に設けられた連続繊維のうち少なくとも2つ以上がパイプの長手方向に対して斜めの方向に配されることになるため、ガラス繊維の巻き付け作業を行うことなく、FRPパイプの周方向の強度を向上させることができる。また、ガラス繊維の巻き付け用の設備も不要となり、コストを大幅に削減することができる。
【0042】
以上、本発明者らによってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではない。例えば、溶融樹脂の組布へ含浸させる工程は引き抜きの前でなく、金型に溶融樹脂を流し込む構成を採り、引き抜きと同時に行ってもよい。また、FRPパイプに用いる組布は、4軸組布に限られず、3軸組布などの3軸以上のものであればよい。
【0043】
また、組布を引抜く型内の通路の断面形状を種々変更することで、FRPパイプを角筒形状等にしてもよい。
【0044】
【発明の効果】
以上説明したように、本発明のFRPパイプの製造方法によれば、複数方向の連続繊維束のうち一つの軸方向に沿って組布を引抜いているため、この連続繊維束を斜めにずらす方向に力が加えられず、目ズレを防止することができる。
【図面の簡単な説明】
【図1】本発明のFRPパイプの製造方法で用いる引抜き成形装置を示す概略構成図である。
【図2】本発明で用いた組布(4軸組布)を示す平面図である。
【図3】得られたFRPパイプを示す斜視図である。
【図4】図3に示す領域Sの拡大図である。
【符号の説明】
10…引抜き成形装置、11…経糸(0°)、12…緯糸(90°)、13…斜交糸(−45°)、14…斜交糸(45°)、15…緯糸(90°)、16…経糸(0°)、20…4軸組布(組布)、30…コンティニュアスストランドマット(マット状の繊維基材)、40…樹脂槽、42…溶融樹脂、44…スリット部材、50…金型、52…ヒータ、54…ローラ群、60…プーラー、70…切断機、80…FRPパイプ、A…経糸の軸方向。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an FRP pipe used as a bridge girder of an FRP (Fiber Reinforced Plastic) bridge, a pipe for transporting liquid, or the like.
[0002]
[Prior art]
Pipe-shaped FRP is used as various civil engineering structures such as liquid transport pipes. As one of methods for manufacturing such an FRP pipe, for example, a filament winding method is known. In this method, a continuous fiber bundle or the like is wound around a metal core while being impregnated with a liquid resin mixed with a catalyst or a curing agent in advance, and is cured after being made to have a predetermined thickness, and then demolded to obtain an FRP pipe. However, when an FRP pipe is manufactured by the filament winding method, there is a problem that the length of the pipe can only be about the length of the core metal.
[0003]
As a method for solving such a problem that the length of the pipe is limited, a pultrusion method is used. In this method, fiber reinforcing materials (continuous fiber bundles, mat-like fiber base materials, etc.) are constructed according to strength characteristics and drawn, and while being drawn, they are impregnated with a liquid resin mixed with a catalyst and a curing agent in advance and heated. The FRP pipe is continuously obtained by curing while passing through the mold. According to this method, the length of the FRP pipe is not limited, and the length of the FRP pipe can be freely adjusted by cutting the drawn long molded product with a cutter or the like.
[0004]
[Problems to be solved by the invention]
However, the conventional drawing method has the following problems. In other words, the braid is composed of continuous fiber bundles whose axes are oriented in a plurality of directions, but when drawing the braid into the mold, there is a problem of causing a so-called misalignment in which the positions of the intersecting continuous fiber bundles are shifted. was there. If the continuous fiber bundle is misaligned, the orientation balance of the continuous fiber bundle constituting the FRP pipe is lost. Especially, the portion where the continuous fiber bundle is shifted and the resin is locally increased is weak in strength and breaks from that portion. Is likely to advance.
[0005]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing an FRP pipe that can suppress misalignment of a braid during pultrusion molding.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for manufacturing an FRP pipe obtained by impregnating a resin into a braided fabric, wherein the braided fabric includes a layer composed of a plurality of continuous fiber bundles having the same axial direction. Three or more different bundles are provided so that the axial direction of the continuous fiber bundles included in both outermost layers in the overlapping direction is one direction, and is assembled along one direction. It is characterized in that it includes the step of drawing the cloth through a mold and making it into a pipe shape.
[0007]
In the FRP pipe manufacturing method of the present invention, the braided fabric is pulled out along one axial direction among the continuous fiber bundles in a plurality of directions, so that no force is applied in the direction of obliquely shifting the continuous fiber bundles. Difficult to cause misalignment.
[0008]
In the FRP pipe manufacturing method of the present invention, the basis weight of another continuous fiber bundle having an axial direction different from that of the one continuous fiber bundle is larger than the basis weight of the continuous fiber bundle in the one direction. It is good.
[0009]
In this case, since the basis weight of the continuous fiber bundle in the circumferential direction of the obtained FRP pipe becomes larger than the basis weight of the continuous fiber bundle in the axial direction, the strength in the circumferential direction of the pipe can be improved. For this reason, even if the FRP pipe obtained by the above-described method is used as a liquid transport pipe to which a large internal pressure is applied, the occurrence of breakage in the circumferential direction of the pipe can be suppressed.
[0010]
Moreover, in the manufacturing method of the FRP pipe of this invention, a braid is a continuous fiber bundle with which the axial direction inclined 30 degrees-60 degrees with respect to the axial direction of one continuous fiber bundle, and -30 degrees--60 degrees. An inclined continuous fiber bundle, and a continuous fiber bundle inclined by 75 ° to 105 °, and a continuous fiber bundle inclined by 30 ° to 60 ° when the basis weight of the continuous fiber bundle in one direction is 1. The total of the basis weight, the basis weight of the continuous fiber bundle tilted by −30 ° to −60 °, and the basis weight of the continuous fiber bundle tilted by 75 ° to 105 ° may be 1.5 or more.
[0011]
As a result of the analysis using the finite element method of the present inventors, when the ratio of the basis weight of each continuous fiber bundle was set to such a value, the FRP pipe was excellent in the balance of strength in the axial direction and the circumferential direction. It turned out to be something. In the numerical analysis of the finite element method, the objective function was the strength of the FRP pipe, the design variable was the orientation and configuration of the continuous fiber bundle, and the numerical experiment was repeated so that the strength of the FRP pipe as the objective function was maximized.
[0012]
In the FRP pipe manufacturing method of the present invention, the continuous fiber bundle in the direction with the larger basis weight may have a higher tex count than the continuous fiber bundle in the direction with the smaller basis weight. In this way, the basis weight can be increased by adjusting the tex count.
[0013]
Further, in the method for producing an FRP pipe of the present invention, before the drawing through the mold, the braid is subjected to a needling treatment, and before or simultaneously with the drawing, the braid is impregnated with the molten resin. Is preferred.
[0014]
By performing the needling treatment and opening the fiber, the resin impregnation property can be improved, and the adhesion at the intersection of the braided fabric can be improved to prevent misalignment.
[0015]
In the FRP pipe manufacturing method of the present invention, the braided fabric is a triaxial braided fabric or a four-shaft braided fabric, and a mat-like fiber substrate such as a continuous strand mat is stacked on the braided fabric. Drawing is preferably performed.
[0016]
Thus, the appearance quality and strength of the FRP pipe can be improved by overlapping the mat-like fiber base material on the braided fabric.
[0017]
The continuous fiber bundle can be formed of glass fiber, carbon fiber, alumina fiber, aramid fiber, or the like.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a method for producing an FRP pipe according to the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol shall be used for the same element and the overlapping description is abbreviate | omitted.
[0019]
FIG. 1 is a schematic configuration diagram of a pultrusion apparatus 10 for manufacturing the FRP pipe of the present embodiment. In the present embodiment, a four-axis assembly fabric (also referred to as a four-axis nonwoven fabric) 20 composed of continuous glass fibers and a continuous strand mat 30 that is a mat-like fiber substrate formed of glass fibers are stacked. Pull out things to make FRP pipes. The continuous strand mat 30 is obtained by dispersing glass continuous fibers randomly and uniformly and matting with a binder, and is arranged so as to cover the front and back surfaces of the four-axis assembly fabric 20.
[0020]
The pultrusion molding apparatus 10 includes a resin tank 40 containing a molten resin 42 mixed with a catalyst and a curing agent, a mold 50 in which a cylindrical drawing passage is formed, a four-axis assembly fabric 20 and a continuum. A puller 60 that pulls out the asstrand mat 30 through the mold 50 and a cutting machine 70 that cuts the FRP formed in a pipe shape to a desired length are provided.
[0021]
On the upstream side of the resin tank 40, a slit member 44 for laminating the continuous strand mat 30 on the front and back surfaces of the four-axis assembly fabric 20 and immersing the continuous strand mat 30 in the resin tank 40 is provided. However, the slit member 44 is not necessarily provided. As the molten resin 42 to be retained in the resin tank 40, various thermoplastic resins such as thermosetting resins such as unsaturated polyester resins, vinyl ester resins, phenol resins, epoxy resins, and methacrylate resins, and nylon resins and polypropylene resins. Can be used.
[0022]
The mold 50 located downstream of the resin tank 40 is formed of SKD or SCM die steel, and a cylindrical passage is formed by fastening the upper mold 50a and the lower mold 50b. Further, the molded product passing through the mold 50 is heated by the heater 52, and the resin impregnated in the four-axis assembly fabric 20 is cured. Upstream of the mold 50, the molten resin 42 is infiltrated into the 4-axis assembly fabric 20 and the continuous strand mat 30, the excess molten resin 42 is removed, and the 4-axis assembly fabric 20 and the like are removed from the mold 50. A roller group 54 composed of three rollers for introduction into the passage is provided.
[0023]
The puller 60 is a so-called caterpillar type in which a molded product that has passed through a mold is sandwiched from above and below by a rotating roller. The puller 60 may be a so-called clamp unit system in which a molded product is pulled out by two clamps that reciprocate mechanically and hydraulically. The cutting machine 70 rotates the blade with the driving force of the motor M to cut the molded product.
[0024]
Next, with reference to FIG. 2, the 4-axis assembly fabric 20 is demonstrated. The four-axis braided fabric 20 includes, in order from the top, a warp 11 as a continuous glass fiber bundle, a weft 12 inclined by 90 ° thereto, an oblique yarn 13 inclined by −45 ° with respect to the warp 11, and a warp 11 An oblique thread 14 inclined by 45 °, a weft 15 inclined by 90 ° with respect to the warp 11, and a warp 16 parallel to the warp 11 are provided. The yarns that overlap vertically are bonded by resin.
[0025]
In the present embodiment, each continuous fiber bundle constituting the four-axis assembly fabric 20 is formed of glass fibers, but may be formed of carbon fibers, alumina fibers, aramid fibers, or the like.
[0026]
Further, the four-axis assembly fabric 20 is arranged such that the drawing direction in the mold 50 is the direction of the arrow A in FIG. That is, the molded product is pulled out along the axial direction (in other words, the longitudinal direction) of the warps 11 and 16.
[0027]
Further, the basis weights of the yarns in the direction different from the drawing direction, that is, the other oblique yarns 13 and 14 and the wefts 12 and 15 are larger than the basis weights of the warp yarns 11 and 16. Specifically, the tex count (weight (g) per 1000 m of strands) of the oblique yarns 13 and 14 and the weft yarns 12 and 15 is increased to increase the basis weight. Here, the basis weight referred to in the present invention means the weight per unit area (1 m 2 ) of an assembly of continuous fiber bundles (for example, an assembly of warps 11) oriented in the same direction. More specifically, the configuration of the four-shaft fabric 20 will be described. When the basis weight of the warps 11 and 16 is 1, the total amount of the basis weights of the oblique yarns 13 and 14 and the basis weight of the wefts 12 and 15 is 1.5. This is the relationship. Preferably, the basis weight of the warps 11 and 16, the basis weight of the oblique yarn 13, the basis weight of the oblique yarn 14, and the basis weight of the warp yarns 12 and 15 are preferably 1: 1: 1: 2. .
[0028]
The above is the configuration of the pultrusion apparatus 10 and the four-axis assembly fabric 20 used in the present embodiment. Next, the manufacturing method of the FRP pipe of this embodiment is demonstrated.
[0029]
First, the puller 60 is driven to rotate, and the 4-axis assembly fabric 20 and the continuous strand mats 30 and 30 wound in a drum shape are pulled out. Thereafter, the mats 30, 30 are overlapped by the slit member 44 so as to cover the front and back surfaces of the four-axis assembly fabric 20, and are impregnated in the molten resin 42 in the resin tank 40.
[0030]
The 4-axis assembly fabric 20 and the like that have passed through the resin tank 40 are pressed into contact with each other by the roller group 54 and the resin penetrates into the interior, and is drawn into the cylindrical passage of the mold 50. At this time, the laminate of the four-axis assembly fabric 20 and the mat 30 is pulled out while being rounded into a cylindrical shape following the path of the mold 50. Further, in the subsequent stage of the mold 50, the molded product is heated by the heater 52, and the impregnated molten resin 42 is cured.
[0031]
Here, as described above, since the four-axis assembly fabric 20 is pulled out along the axial direction of the warp yarns 11 and 16, no force is applied in a direction in which the warp yarns 11 and 16 are shifted obliquely, and misalignment is unlikely to occur. . For this reason, it is possible to smoothly perform the drawing operation of the molded product.
[0032]
The long molded product drawn from the mold 50 is cut into a desired length by the cutting machine 70, and the target FRP pipe 80 can be obtained.
[0033]
FIG. 3 shows a perspective view of the obtained FRP pipe 80, and FIG. 4 shows an enlarged view of the region S in FIG. As shown in FIG. 3, the FRP pipe 80 has a flat portion 82 formed on the inner side of the pipe in order to improve the strength as a wrap portion between the four-axis assembly fabric 20 and the continuous strand mat 30. Further, as shown in FIG. 4, the FRP pipe 80 includes, in order from the outside, a mat 30, a warp 11 layer, a weft 12 layer, an oblique yarn 13 layer, an oblique yarn 14 layer, a weft 15 layer, It has a laminated structure of a warp 16 layer and a mat 30. Thus, the appearance quality and strength of the FRP pipe 80 can be improved by stacking the continuous strand mat 30 that is easily impregnated with the molten resin 42 on the four-axis assembly fabric 20.
[0034]
Here, in this embodiment, since the basis weight of each yarn in the circumferential direction of the FRP pipe 80 is larger than the basis weight of the warp yarns 11 and 16 in the axial direction, the strength in the circumferential direction of the FRP pipe 80 is high. It is a thing. For this reason, even if the FRP pipe 80 is used as a liquid transport pipe or the like to which a large internal pressure is applied, it is possible to prevent the FRP pipe 80 from being broken in the circumferential direction.
[0035]
Further, when an internal pressure is applied to a pipe having a closed cross section, the stress applied in the circumferential direction is approximately twice the stress applied in the axial direction of the pipe. As described above, the basis weights of the warps 11 and 16 are set to 1, and the basis weights of the oblique threads 13 and 14 whose axial directions are inclined by −45 ° and 45 °, respectively, are inclined by 90 ° with respect to this. When the total value of the basis weights of the wefts 12 and 15 is 1.5 or more, the balance of strength in the axial direction and the circumferential direction of the FRP pipe 80 is excellent. This is a matter found by the present inventors as a result of analysis using the finite element method. Preferably, the basis weight of the warp yarns 11 and 16, the basis weight of the oblique yarn 13 whose axial direction is inclined by -45 °, the basis weight of the oblique yarn 14 inclined by 45 ° relative to the warp yarn, and the warp yarn The ratio of the basis weights of the wefts 12 and 15 inclined 90 ° is preferably 1: 1: 1: 2.
[0036]
The oblique yarn 13, the oblique yarn 14, and the warp yarns 12 and 15 do not necessarily have to be inclined at −45, 45 °, and 90 ° with respect to the warp yarns 11 and 16, respectively. The same effect can be obtained if it has inclinations of °, 30 ° to 60 °, and 75 ° to 105 °.
[0037]
Furthermore, in this embodiment, before drawing through the mold 50, the braid 20 may be subjected to a needling treatment to be opened. By performing the needling treatment in this way and performing the fiber opening treatment, the resin impregnation property is enhanced, and the adhesion at the intersection of the braided fabric is improved, thereby preventing misalignment.
[0038]
Moreover, according to this embodiment, the following effects can also be acquired. That is, in the conventional pultrusion method, the continuous fiber bundle, which is the main component of the pultruded product, greatly contributes to the strength in the longitudinal direction of the pultruded product, and the steel material has a specific weight of about 1/4 of the steel material. Although equivalent strength can be realized, on the other hand, there is a drawback that the strength in the direction perpendicular to the longitudinal direction of the pultruded product is extremely weak. The biggest factor was that the continuous fibers were oriented in the longitudinal direction of the pultruded product. In particular, when internal pressure is applied to a square pipe or cylindrical pipe with a closed cross section, it is known that the generated stress value is twice as long as the stress value in the circumferential direction perpendicular to the longitudinal direction. The improvement was strongly desired.
[0039]
In the conventional pultrusion method, in order to solve such a problem, continuous strand mats in which continuous fibers are randomly and uniformly dispersed and matted with a binder, or strands are cut short and randomly and uniformly. A chopped strand mat dispersed in a binder and matted with a binder was used in combination with a continuous fiber bundle. However, the strength in the direction orthogonal to the longitudinal direction of the pultruded product cannot be sufficiently improved only by using such a mat-like reinforcing material together with the continuous fiber bundle, and cracks in the orthogonal direction are prevented. Only a moderate effect could be expected.
[0040]
For this reason, conventionally, the strength in the longitudinal direction and the circumferential direction has been improved by carrying out a two-stage operation of further wrapping glass fibers in the circumferential direction of the pipe obtained by the pultrusion method. However, when carrying out such a two-stage operation, there is a problem that a facility for winding is required in addition to the pultrusion molding apparatus, and the entire apparatus becomes large. In addition, incidental facilities such as base material supply facilities have become large, resulting in a large capital investment and a significant decrease in molding workability compared to ordinary pultrusion methods alone. There was a problem to do.
[0041]
On the other hand, in the present embodiment, at least two or more of the continuous fibers provided in three or more directions are arranged in an oblique direction with respect to the longitudinal direction of the pipe. The strength of the FRP pipe in the circumferential direction can be improved without performing work. Further, the equipment for winding the glass fiber is not necessary, and the cost can be greatly reduced.
[0042]
As mentioned above, although the invention made by the present inventors has been specifically described based on the embodiment, the present invention is not limited to the above embodiment. For example, the step of impregnating the molten resin into the fabric may be performed at the same time as the drawing without adopting a configuration in which the molten resin is poured into a mold, not before the drawing. Moreover, the braiding used for the FRP pipe is not limited to the four-shaft braiding, and may be any one having three or more axes such as a triaxial braiding.
[0043]
Further, the FRP pipe may be formed into a rectangular tube shape or the like by variously changing the cross-sectional shape of the passage in the mold through which the braid is pulled out.
[0044]
【The invention's effect】
As described above, according to the method for manufacturing an FRP pipe of the present invention, the braided fabric is pulled out along one axial direction among the continuous fiber bundles in a plurality of directions. No force is applied to the lens, and misalignment can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a pultrusion apparatus used in a method for producing an FRP pipe of the present invention.
FIG. 2 is a plan view showing a braid (four-axis braid) used in the present invention.
FIG. 3 is a perspective view showing the obtained FRP pipe.
4 is an enlarged view of a region S shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Pull-out molding apparatus, 11 ... Warp (0 degree), 12 ... Weft (90 degree), 13 ... Oblique thread (-45 degree), 14 ... Oblique thread (45 degree), 15 ... Weft (90 degree) , 16 ... Warp (0 °), 20 ... 4-axis braid (braid), 30 ... Continuous strand mat (mat-like fiber substrate), 40 ... Resin tank, 42 ... Molten resin, 44 ... Slit member , 50 ... mold, 52 ... heater, 54 ... roller group, 60 ... puller, 70 ... cutting machine, 80 ... FRP pipe, A ... axial direction of warp.

Claims (5)

組布に樹脂を含浸させてなるFRPパイプの製造方法において、
前記組布は、軸方向が同一の複数の連続繊維束により成る層を当該軸方向が3つ以上異なるように重ね合わせて備え、当該連続繊維束のうち、重ね合わせ方向で最も外側の両層に含まれるものの軸方向は一の方向である構成からなり、
前記一の方向に沿って前記組布を金型を通して引き抜き、パイプ状にするステップを含むことを特徴とするFRPパイプの製造方法。
In the manufacturing method of the FRP pipe formed by impregnating the fabric with resin,
The braided fabric includes a plurality of layers of continuous fiber bundles having the same axial direction stacked so that three or more of the axial directions are different from each other, and both outermost layers in the overlapping direction of the continuous fiber bundles The axial direction of what is included in is composed of one direction,
A method of manufacturing an FRP pipe, comprising a step of drawing the braided fabric through a mold along the one direction to form a pipe.
前記一の連続繊維束と軸方向が異なる他の連続繊維束の目付量が、前記一の方向の連続繊維束の目付量よりも大きいことを特徴とする請求項1記載のFRPパイプの製造方法。2. The method for manufacturing an FRP pipe according to claim 1, wherein the basis weight of another continuous fiber bundle having an axial direction different from that of the one continuous fiber bundle is larger than the basis weight of the continuous fiber bundle in the one direction. . 前記組布は、前記一の連続繊維束の軸方向に対して、軸方向が30°〜60°傾いた連続繊維束と、−30°〜−60°傾いた連続繊維束と、75°〜105°傾いた連続繊維束とを有し、
前記一の方向の連続繊維束の目付量を1とした場合に、前記30°〜60°傾いた連続繊維束の目付量、前記−30°〜−60°傾いた連続繊維束の目付量、及び前記75°〜105°傾いた連続繊維束の目付量の合計が1.5以上であることを特徴とする請求項1又は請求項2記載のFRPパイプの製造方法。
The braided fabric has a continuous fiber bundle whose axial direction is inclined by 30 ° to 60 ° with respect to the axial direction of the one continuous fiber bundle, a continuous fiber bundle inclined by −30 ° to −60 °, and 75 ° to A continuous fiber bundle inclined by 105 °,
When the basis weight of the continuous fiber bundle in the one direction is 1, the basis weight of the continuous fiber bundle inclined by 30 ° to 60 °, the basis weight of the continuous fiber bundle inclined by −30 ° to −60 °, 3. The method of manufacturing an FRP pipe according to claim 1, wherein a total basis weight of the continuous fiber bundle inclined by 75 ° to 105 ° is 1.5 or more.
前記金型を通して引き抜く前に、前記組布に対してニードリング処理を施し、且つ、前記引き抜きの前又は引き抜きと同時に、前記組布を溶融樹脂に含浸させることを特徴とする請求項1〜請求項3のうち何れか一項記載のFRPパイプの製造方法。Before the drawing through the mold, the braided fabric is subjected to needling treatment, and before or simultaneously with the drawing, the braided fabric is impregnated with a molten resin. Item 4. The method for producing an FRP pipe according to any one of Items 3 to 3. 前記組布は、3軸組布又は4軸組布であり、且つ、前記組布にマット状の繊維基材を重ねて前記引き抜きを行うことを特徴とする請求項1〜請求項4のうち何れか一項記載のFRPパイプの製造方法。The said assembly is a triaxial assembly fabric or a 4-axis assembly fabric, The mat-like fiber base material is piled up on the said assembly fabric, and the said extraction is carried out, The Claim 1-Claim 4 characterized by the above-mentioned. The manufacturing method of the FRP pipe as described in any one.
JP2001115746A 2001-04-13 2001-04-13 Manufacturing method of FRP pipe Expired - Fee Related JP3817149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115746A JP3817149B2 (en) 2001-04-13 2001-04-13 Manufacturing method of FRP pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115746A JP3817149B2 (en) 2001-04-13 2001-04-13 Manufacturing method of FRP pipe

Publications (2)

Publication Number Publication Date
JP2002307567A JP2002307567A (en) 2002-10-23
JP3817149B2 true JP3817149B2 (en) 2006-08-30

Family

ID=18966597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115746A Expired - Fee Related JP3817149B2 (en) 2001-04-13 2001-04-13 Manufacturing method of FRP pipe

Country Status (1)

Country Link
JP (1) JP3817149B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550827B2 (en) * 2008-11-26 2014-07-16 福井ファイバーテック株式会社 FRP drawn structure member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002307567A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
RU2583017C2 (en) Unidirectional fibrous tape-containing fibrous workpiece made from bundles of reinforcing fibres and structural element made from composite material
EP2874802B1 (en) A unidirectional reinforcement and a method of producing a unidirectional reinforcement
US5082701A (en) Multi-directional, light-weight, high-strength interlaced material and method of making the material
EP2874803B1 (en) A stitched unidirectional or multi-axial reinforcement and a method of producing the same
EP2687356A1 (en) A unidirectional reinforcement and a method of producing a unidirectional reinforcement
WO2015075190A1 (en) A unidirectional reinforcement, a method of producing a unidirectional reinforcement and the use thereof
JP6138045B2 (en) Method for producing high-weight carbon fiber sheet for RTM method and RTM method
EP3758923B1 (en) A stitched multi-axial reinforcement and a method of producing the same
EP3938189B1 (en) A stitched multi-axial reinforcement
JP3817149B2 (en) Manufacturing method of FRP pipe
JP2003011241A (en) Frp reinforcing member
JP2003071941A (en) Frp laminate and frp reinforcing member
CN111566064B (en) Fiber reinforced material with improved fatigue properties
JP2002283466A (en) Braided cloth for frp pipe and frp pipe
US11873590B1 (en) Carbon fiber—carbon nanotube tow hybrid reinforcement with enhanced toughness
JPH04312659A (en) Fiber reinforcing member and its production and structural member by use of it
JP2002248693A (en) Frp long molded object and method for manufacturing the same
JPS61211005A (en) Resin impregnated fiber reinforced molding material and manufacture thereof
KR20230157384A (en) Novel reinforcing materials, methods and uses based on S- and Z-twisted yarns for manufacturing composite parts
JPH045544B2 (en)
JP2888600B2 (en) Skeleton-like fiber structure, method for producing the same, and fiber-reinforced composite material using the same
JPS61199931A (en) Manufacture of fiber reinforced plastic threaded product

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees