JP3816409B2 - Method for measuring interface thickness of polymer alloy and apparatus for measuring interface thickness of polymer alloy - Google Patents

Method for measuring interface thickness of polymer alloy and apparatus for measuring interface thickness of polymer alloy Download PDF

Info

Publication number
JP3816409B2
JP3816409B2 JP2002038945A JP2002038945A JP3816409B2 JP 3816409 B2 JP3816409 B2 JP 3816409B2 JP 2002038945 A JP2002038945 A JP 2002038945A JP 2002038945 A JP2002038945 A JP 2002038945A JP 3816409 B2 JP3816409 B2 JP 3816409B2
Authority
JP
Japan
Prior art keywords
probe
polymer alloy
interface thickness
sample
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002038945A
Other languages
Japanese (ja)
Other versions
JP2003240699A (en
Inventor
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2002038945A priority Critical patent/JP3816409B2/en
Publication of JP2003240699A publication Critical patent/JP2003240699A/en
Application granted granted Critical
Publication of JP3816409B2 publication Critical patent/JP3816409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリマーアロイの界面厚み測定方法、及びポリマーアロイの界面厚み測定装置に関し、詳しくは、ブレンドポリマーや共重合ポリマー等のポリマーアロイの界面厚みの測定に関するものである。
【0002】
【従来の技術】
従来、ブレンドポリマーや共重合ポリマー等のポリマーアロイの観察手法としては、一般的に、走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)が用いられている。これらの電子顕微鏡観察において、モルフォロジー観察等のために、試料に染色が施されることがある。
【0003】
例えば、二重結合を有するポリマーと二重結合を有さないポリマーがブレンドされた試料では、付加反応を起こし二重結合部分に付加するオスミウム酸あるいはヌテニウム酸が染料として用いられる。走査型電子顕微鏡では、付加したオスミウム酸・ルテニウム酸が白色を呈し、また透過型電子顕微鏡では黒色に呈するので、これにより、二重結合を有するポリマーと二重結合を有さないポリマーを区別して観察している。
【0004】
また、上記のような染色技術に依存しない顕微鏡観察手法として、走査型プローブ顕微鏡が挙げられる。走査型プローブ顕微鏡は、試料台にセットされた試料に対して探針が相対的に移動し、カンチレバーのたわみ、振動位相変化、振幅変化、共振周波数変化等を検知することで試料の表面状態を観察している。例えば、特開平9−297148号では、プローブのたわみ測定が容易な顕微鏡用プローブが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のような走査型電子顕微鏡や透過型電子顕微鏡を用いて界面の状態を距離と濃淡で断面のプロファイルを描き、その断面プロファイルからポリマー界面の厚みを測定しようとすると、分解能や超薄切片の厚み制御が困難となり、正確にポリマー界面の厚みを測定できないという問題がある。
【0006】
具体的には、走査型電子顕微鏡では、空間分解能が悪く正確な界面厚みを測定することが困難である。また、透過型電子顕微鏡では、試料を超薄切片化(約数十mm〜百数十mm)する必要があるが、その厚み制御はほぼ不可能であり、その厚みの違いによって得られた界面厚みデータに大きく左右するため、正確な界面厚みを測定できない。即ち、透過型電子顕微鏡は試料の透過像を観察しているため試料が厚いと界面が不鮮明になり、見かけ上界面が厚く観察され、逆に試料が薄いと電子が透過し過ぎて界面が薄く観察され、実際の界面厚みを測定することが困難である。
【0007】
一方、走査型プローブ顕微鏡では、探針の形状・押し込み量が画像分解能に大きく関与するが、従来の走査型プローブ顕微鏡の測定方法では探針の押し込み量が不明であるため正確な界面厚みを測定できなかった。
【0008】
本発明は上記した問題に鑑みてなされたものであり、ポリマーアロイの界面厚みを正確に測定することができるポリマーアロイの界面厚み測定方法、及びポリマーアロイの界面厚み測定装置を提供することを課題としている。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明は、カンチレバー及び探針を有するプローブと試料台とを備え、探針を試料台上のポリマーアロイからなる試料に対して相対的に移動させることにより試料の表面観察を行う走査型プローブ型顕微鏡を用いてポリマーアロイの界面厚みを測定する、ポリマーアロイの界面厚み測定方法であって、
上記カンチレバー及び探針の振幅減衰率により探針の試料への押し込み量を設定して、上記試料の少なくとも1ヶ所以上で、上記探針の押し込み量を変化させてポリマーアロイの位相像を測定し、
上記位相像からポリマーアロイの仮の界面厚みを求め、
上記仮の界面厚みと、上記位相像測定時の振幅減衰率との相関関係を導出し、上記相関関係において、振幅減衰率をゼロとした時の仮の界面厚みの値を真の界面厚みとすることを特徴とするポリマーアロイの界面厚み測定方法を提供している。
【0010】
このように、上記カンチレバー及び探針の振幅減衰率により探針の試料への押し込み量を変化させて設定し、上記試料の少なくとも1ヶ所以上で、ポリマーアロイの位相像を測定し、上記位相像からポリマーアロイの仮の界面厚みを求め、該仮の界面厚みと位相像測定時の振幅減衰率とから導出された相関関係より真の界面厚みを得ている。このため、探針形状や試料凹凸の影響を受けることなく、あらゆるポリマーアロイについて、硬相と柔相との実際の界面厚みを正確に測定することができる。
【0011】
具体的には、上記試料の少なくとも1ヶ所以上で探針の押し込み量を1点以上変化させ、それぞれの位相像を測定する。押し込み量は、圧電素子で共振振動させているカンチレバー及び探針の振幅減衰率により設定する。例えば、振幅減衰率を大きくすると探針の押し込み量は深く分解能が悪くなり、逆に減衰率を小さくすると押し込み量は浅くなり分解能が上がる。このように、探針の押し込み量を変化させることにより任意に画像分解能を変化させている。ただし、押し込み量(深さ)の絶対値は算出できない。上記のようなカンチレバー及び探針により入出力の位相差を検出し、これによりポリマーアロイの位相像を得ている。硬相では位相のずれが少なく、柔相では位相のずれが多くなることから、位相像において硬相、柔相、及び硬相と柔相の界面を可視化することができる。
【0012】
また、上記位相像からポリマーアロイの仮の界面厚みを求める。具体的には、上記位相像において任意のドメインに対して接線を引き、該接線に対する垂線上の断面プロファイルを導出し、該断面プロファイルから得られる曲線における2つの変曲点により、上記仮の界面厚みを求めていることが好ましい。
得られた位相像からポリマーアロイの海島構造のドメイン(島)とマトリックス(海)の任意の界面に接線を引き、その接線に対して垂線を引く。その垂線上の断面プロファイル(縦軸:位相差、横軸:距離)を取り出す。この断面プロファイルから得られた2つの変曲点間における横軸上の距離を各押し込み量での仮の界面厚みとする。なお、仮の界面厚みは、1つの位相像について1点以上測定し、その平均値を代表させるのが好ましい。
【0013】
さらに、上記仮の界面厚みと、上記位相像測定時の振幅減衰率との相関関係を導出し、上記相関関係において、振幅減衰率をゼロとした時の仮の界面厚みの値を真の界面厚みとする。
具体的には、上記で得られた仮の界面厚みを縦軸に、各振幅減衰率(押し込み量)を横軸にとりプロットし、1次の近似曲線を引き相関式を導出する。1次相関式において、振幅減衰率をゼロ(カンチレバーの押し込み量をゼロ)とした時の仮の界面厚みの値、即ち、そのy切片の値が、探針形状や試料凹凸の影響を受けない、真の界面厚みとなる。
【0014】
上記探針は錐形状としていることが好ましい。これにより、より精度良く界面厚みを測定することができる。
【0015】
本発明は、走査型プローブ顕微鏡(SPM)のダイナミックフォースモード(DFM:別名タッピングAFM)を用い、探針の押し込み量と分解能の関係を応用するのが好ましい。
DFMの原理として、まず、原子間力顕微鏡(AFM)では探針が試料表面の原子間力を検出あるいは表面をなぞった時のカンチレバーのたわみを検出することにより試料表面の凹凸を検出している。それに対しDFMではカンチレバー先の振幅及び位相を検出している。試料表面凹凸の検出には、探針が試料に接触しスキャンする際、表面凹凸により振幅が変化するが、この変化を元に戻すようなスキャナーへのフィードバック制御をすることにより表面形状を測定する。この際、振幅の設定は探針が試料に触れていない状態での振幅を1とし、試料に接触させたとき、どの程度振幅を減少させるか振幅減衰率によって設定する。その設定値により探針と試料表面に働く原子間力を検知して測定することが可能であり、あるいは試料を探針でタッピングしながら測定することができ、振幅減衰率を任意に変え、いろいろな探針の押し込み深さで測定することが可能である。ポリマーアロイ(ポリマーブレンド)を観察するには、試料表面をタッピングし、圧電素子とカンチレバー先の位相のずれを検出することによって、物性の違いを画像化(一般に位相像という)し、ポリマーアロイを観察している。
【0016】
さらに、上記発明はDFM以外の下記の▲1▼〜▲3▼の測定方法でも応用可能である。
▲1▼マイクロ粘弾性モード(VE−AFMあるいはVE−DFM)
AFMあるいはDFM測定で表面形状測定と同時に、試料に探針を任意量押し込み、カンチレバーまたは試料を周期的に共振させ相対的な物性のマッピングを測定する方法。
▲2▼摩擦力顕微鏡(FFM)
表面形状測定中に探針と試料との間に働く摩擦力(カンチレバーの横方向のたわみ)を測定する方法。
▲3▼横振動FFM(LM−FFM)
試料を横方向に周期的に共振させることにより生じるカンチレバーの横方向のたわみを検出することにより、表面凹凸やスキャン方向に依存しない高品質なFFM像が得られる方法。
【0017】
また、本発明は、ポリマーアロイからなる試料に対して相対的に移動可能なカンチレバー及び探針を有するプローブと、試料を載置する試料台とを有すると共に、上記探針の試料に対する押し込み量をカンチレバー及び探針の振幅減衰率により設定して上記ポリマーアロイの位相像を測定する構成としている走査型プローブ顕微鏡と、
上記位相像からポリマーアロイの仮の界面厚みを求める位相像解析手段と、
上記仮の界面厚みと、上記位相像測定時の振幅減衰率との相関関係を導出し、該相関関係より真の界面厚みを算出する演算手段とを備えることを特徴とするポリマーアロイの界面厚み測定装置を提供している。
【0018】
上記のように、探針の試料への押し込み量を設定可能な走査型プローブ顕微鏡により測定されたポリマーアロイの位相像を解析し、仮の界面厚みを求める位相像解析手段を備え、仮の界面厚みと振動減衰率との相関関係より真の界面厚みを算出する演算手段を備えているため、探針形状や試料凹凸の影響を受けないポリマーアロイの各相の界面厚みを正確に測定することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
ポリマーアロイの界面厚み測定装置は、ポリマーアロイの位相像を測定する走査型プローブ顕微鏡と、位相像からポリマーアロイの仮の界面厚みを求める位相像解析手段(図示せず)と、仮の界面厚みと位相像測定時の振幅減衰率との相関関係を導出し、該相関関係より真の界面厚みを算出する演算手段(図示せず)とを備えている。
【0020】
走査型プローブ顕微鏡10は、図1(A)に示すように、ポリマーアロイからなる試料Sに対して相対的に移動可能なカンチレバー11及び探針12を有するプローブ13と、表面観察を行う試料Sを載置する試料台14とを有すると共に、図1(B)(C)に示すように、探針12の試料Sに対する押し込み量をカンチレバー11及び探針12の振幅減衰率により任意に変化させて設定してポリマーアロイの位相像を測定する構成としている。なお、探針12は、その先端12aが試料Sに押し込まれるような錐形状としている。
【0021】
以下、本発明のポリマーアロイの界面厚み測定方法について詳述する。
まず、走査型プローブ型顕微鏡10を用いて、圧電素子で共振振動させているカンチレバー11及び探針12の振幅減衰率により探針12の試料Sへの押し込み量を設定して、カンチレバー11及び探針12により入出力の位相差を検出し、これにより位相像を得る。試料Sの少なくとも1ヶ所以上で、探針12の押し込み量を変化させてポリマーアロイの位相像を測定する。
【0022】
次に、位相像解析手段により、走査型プローブ顕微鏡で測定された位相像からポリマーアロイの仮の界面厚みを求める。詳しくは、得られた位相像において任意のドメインに対して接線を引き、該接線に対する垂線上の断面プロファイルを導出し、該断面プロファイルから得られる曲線における2つの変曲点により、仮の界面厚みを求める。
【0023】
仮の界面厚みの求め方について、具体的に、模式図を用いて説明する。
図2に走査型プローブ顕微鏡で得られた位相像のイメージ図を示す。探針の押し込み量を変化させることにより任意に画像分解能を変化させており、カンチレバー及び探針により入出力の位相差を検出し、位相のずれが少ない硬相21(図中の黒点模様部)、位相のずれが多い柔相22(図中の白色部)とが示されている。
得られた位相像からポリマーアロイの海島構造において、柔相22であるドメイン(島)Dと、硬相21であるマトリックス(海)Mの任意の界面に接線Lを引き、その接線Lに対して垂線Hを引く。その垂線H上の断面プロファイル(縦軸:位相差、横軸:距離d(垂線H上の位置))を取り出す。
【0024】
図3に上記で得られた断面プロファイルを示す。この断面プロファイルから得られ曲線Cにおける2つの変曲点X1、X2間の横軸上の距離Yを各押し込み量での仮の界面厚みとする。なお、仮の界面厚みは、1つの位相像について1点以上測定し、その平均値を代表させるのが好ましい。
【0025】
さらに、演算手段により、仮の界面厚みと、位相像測定時の振幅減衰率との相関関係を導出し、相関関係において、振幅減衰率をゼロとした時の仮の界面厚みの値を真の界面厚みとする。
具体的には、図4に示すように、図3に示す上記のような方法で得られた仮の界面厚みを縦軸に、その位相像を測定した時の各振幅減衰率(押し込み量)を横軸にとりプロットし、1次の近似曲線を引き相関式を導出する。図4では、5つの振幅減衰率の各値に対して、それぞれ5つの仮の界面厚みを求め、5点プロットし、一次近似曲線tを得ている。1次近似曲線tにおいて、振幅減衰率をゼロとした時の仮の界面厚みの値、即ち、そのy切片の値を、真の界面厚みとしている。本実施形態では、真の界面厚みは19.1nmとなっている。
【0026】
このように、カンチレバー11及び探針12の振幅減衰率により探針12の試料Sへの押し込み量を変化させて設定し、試料Sの少なくとも1ヶ所以上で、ポリマーアロイの位相像を測定し、位相像からポリマーアロイの仮の界面厚みを求め、該仮の界面厚みと位相像測定時の振幅減衰率とから導出された相関関係より真の界面厚みを得ている。このため、探針12の形状や試料Sの凹凸の影響を受けることなく、あらゆるポリマーアロイについて、硬相21と柔相22との実際の界面厚みを正確に測定することができる。
【0027】
以下、本発明の実施例について詳述する。
下記の表1に示すように、天然ゴム(NR)を60phrに固定し、ガラス転移点(Tg)の異なる4種類のスチレン−ブタジエン共重合ゴム(SBR)40phrと、各種加硫剤を配合し、ロールにて十分に分散させ、加硫したゴムを試料▲1▼〜▲4▼として用いた。また、試料▲1▼〜▲4▼の各試料の位相像を図5に示す。
【0028】
【表1】

Figure 0003816409
【0029】
上記実施形態と同様の方法により、得られた位相像から仮の界面厚みを求め、各試料▲1▼〜▲4▼について、仮の界面厚みと振幅減衰率の関係を図6にプロットした。プロット点より各試料▲1▼〜▲4▼について一次近似曲線を引き、各一次曲線において、振幅減衰率がゼロとなるときの界面厚みの値を、真の界面厚みとした。図6より得られた真の界面厚みの値を下記の表2に示す。なお、各振幅減衰率での仮の界面厚みの値は40点の平均値を用いた。
【0030】
【表2】
Figure 0003816409
【0031】
また、各試料▲1▼〜▲4▼の100%モジュラスと上記SPMを用いた方法で得られた真の界面厚みの関係を図7に示す。さらに、各試料▲1▼〜▲4▼について高分解能固体13C−NMR測定から水素核の緩和時間を測定した水素核スピン拡散により測定した界面厚みと、上記SPMを用いた方法で得られた真の界面厚みの関係を図8に示す。
【0032】
図5の各位相像より判断すると、▲1▼>▲2▼>▲3▼≧▲4▼の順にドメイン(島)が微分散しているので、NRとSBRの相容性は、▲1▼<▲2▼<▲3▼≦▲4▼の順に相容性が良くなっていることが確認できた。また、図6、表2より、SBRのTgが低いほど、NRとの相容性が上がり、界面厚みが厚くなる傾向であることが確認できた。
【0033】
さらに、図7より、界面が厚いほどモジュラスが高くなることがわかり、物性と界面の関係が明らかになった。また、図8より、水素核スピン拡散により測定した界面厚みと、上記SPMを用いた方法で得られた真の界面厚みとは相関があり、正確に界面厚みが測定できることが確認できた。なお、物性との相関で考えると、SPMの方が精度が良いと考えられる。
【0034】
【発明の効果】
以上の説明より明らかなように、本発明によれば、カンチレバー及び探針の振幅減衰率により探針の試料への押し込み量を変化させて設定し、試料の少なくとも1ヶ所以上で、ポリマーアロイの位相像を測定し、位相像からポリマーアロイの仮の界面厚みを求め、該仮の界面厚みと位相像測定時の振幅減衰率とから導出された相関関係より真の界面厚みを得ている。このため、探針形状や試料凹凸の影響を受けることなく、あらゆるポリマーアロイについて、硬相と柔相との実際の界面厚みを正確に測定することができる。
【0035】
従って、従来の方法に比べ、非常に簡便かつ精度良く、界面厚みを測定することができ、今まで解明できなかったブレンドポリマーあるいは共重合ポリマーの物性発現メカニズムの解明に役立てることができる。さらに、カーボンブラック、その他無機充填剤等のモルフォロジーが物性に及ぼす有力な情報を与え、機能性材料、複合材料開発、動的な劣化解析の1つの手法として有効に用いることができる。
【図面の簡単な説明】
【図1】 (A)は本発明のポリマーアロイの界面厚み測定装置の走査型顕微鏡を示し、(B)(C)は探針の試料への押し込み状態を示す図である。
【図2】 位相像の測定結果の模式図である。
【図3】 図2の位相像の断面プロファイルを示す図である。
【図4】 仮の界面厚みと振幅減衰率の関係を示す図である。
【図5】 実施例の各試料の位相像を示す図である。
【図6】 実施例の各試料の仮の界面厚みと振幅減衰率の関係を示す図である。
【図7】 界面厚みとモジュラスの関係を示す図である。
【図8】 13C−NMR水素核スピン拡散とSPM界面厚みの関係を示す図である。
【符号の説明】
10 走査型プローブ型顕微鏡
11 カンチレバー11
12 探針
13 プローブ
S 試料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the interface thickness of a polymer alloy and an apparatus for measuring the interface thickness of a polymer alloy, and more particularly to measurement of the interface thickness of a polymer alloy such as a blend polymer or a copolymer.
[0002]
[Prior art]
Conventionally, a scanning electron microscope (SEM) and a transmission electron microscope (TEM) are generally used as an observation method for polymer alloys such as blend polymers and copolymer polymers. In these electron microscope observations, a sample may be dyed for morphological observation or the like.
[0003]
For example, in a sample in which a polymer having a double bond and a polymer not having a double bond are blended, osmic acid or nuthenic acid that undergoes an addition reaction and is added to the double bond portion is used as a dye. In the scanning electron microscope, the added osmic acid / ruthenic acid is white, and in the transmission electron microscope, it is black, so this distinguishes polymers with double bonds from those without double bonds. Observe.
[0004]
Moreover, a scanning probe microscope is mentioned as a microscope observation technique not depending on the above staining techniques. The scanning probe microscope moves the probe relative to the sample set on the sample stage and detects the surface condition of the sample by detecting the deflection of the cantilever, vibration phase change, amplitude change, resonance frequency change, etc. Observe. For example, Japanese Patent Laid-Open No. 9-297148 proposes a microscope probe that allows easy measurement of probe deflection.
[0005]
[Problems to be solved by the invention]
However, using the scanning electron microscope or transmission electron microscope as described above, if the profile of the interface is drawn by distance and shading and the thickness of the polymer interface is measured from the profile, the resolution and ultrathinness It becomes difficult to control the thickness of the section, and there is a problem that the thickness of the polymer interface cannot be measured accurately.
[0006]
Specifically, with a scanning electron microscope, it is difficult to measure an accurate interface thickness because of poor spatial resolution. In addition, in a transmission electron microscope, it is necessary to make a sample into an ultrathin section (about several tens to several hundreds of mm), but the thickness control is almost impossible, and the interface obtained by the difference in thickness Because it greatly depends on the thickness data, the accurate interface thickness cannot be measured. In other words, since the transmission electron microscope observes the transmission image of the sample, if the sample is thick, the interface becomes unclear, and the interface is apparently thick. Observed and difficult to measure the actual interface thickness.
[0007]
On the other hand, with the scanning probe microscope, the probe shape and the amount of push-in greatly contribute to the image resolution. However, since the push-in amount of the probe is unknown with the conventional scanning probe microscope measurement method, the accurate interface thickness is measured. could not.
[0008]
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a polymer alloy interface thickness measuring method and a polymer alloy interface thickness measuring apparatus capable of accurately measuring the interface thickness of a polymer alloy. It is said.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention comprises a probe having a cantilever and a probe and a sample stage, and the surface of the sample is moved by moving the probe relative to a sample made of a polymer alloy on the sample stage. A method for measuring the interface thickness of a polymer alloy using a scanning probe microscope for observation, and measuring the interface thickness of the polymer alloy,
The amount of pushing of the probe into the sample is set by the amplitude attenuation rate of the cantilever and the probe, and the phase image of the polymer alloy is measured by changing the amount of pushing of the probe at at least one of the samples. ,
Obtain the temporary interface thickness of the polymer alloy from the above phase image,
The correlation between the temporary interface thickness and the amplitude attenuation rate at the time of phase image measurement is derived. In the correlation, the value of the temporary interface thickness when the amplitude attenuation rate is zero is set as the true interface thickness. A method for measuring the interfacial thickness of a polymer alloy is provided.
[0010]
As described above, the amount of pushing of the probe into the sample is changed according to the amplitude attenuation rate of the cantilever and the probe, and the phase image of the polymer alloy is measured at at least one location of the sample. Thus, the temporary interface thickness of the polymer alloy is obtained, and the true interface thickness is obtained from the correlation derived from the temporary interface thickness and the amplitude attenuation rate at the time of phase image measurement. For this reason, the actual interface thickness between the hard phase and the soft phase can be accurately measured for any polymer alloy without being affected by the probe shape or the sample irregularity.
[0011]
Specifically, the amount of pressing of the probe is changed by one or more points at least at one or more points of the sample, and each phase image is measured. The push-in amount is set by the amplitude attenuation rate of the cantilever and the probe that are resonantly oscillated by the piezoelectric element. For example, when the amplitude attenuation rate is increased, the probe push-in amount is deep and the resolution is deteriorated. Conversely, when the attenuation rate is reduced, the push-in amount is reduced and the resolution is increased. Thus, the image resolution is arbitrarily changed by changing the push-in amount of the probe. However, the absolute value of the push-in amount (depth) cannot be calculated. The input / output phase difference is detected by the cantilever and the probe as described above, thereby obtaining a phase image of the polymer alloy. Since the hard phase has a small phase shift and the soft phase has a large phase shift, the hard phase, the soft phase, and the interface between the hard phase and the soft phase can be visualized in the phase image.
[0012]
Further, a temporary interface thickness of the polymer alloy is obtained from the phase image. Specifically, a tangent line is drawn with respect to an arbitrary domain in the phase image, a cross-sectional profile on a perpendicular line to the tangent line is derived, and two temporary inflection points in a curve obtained from the cross-sectional profile are used to calculate the temporary interface. It is preferable to obtain the thickness.
From the obtained phase image, a tangent line is drawn to an arbitrary interface between the domain (island) and the matrix (sea) of the sea-island structure of the polymer alloy, and a perpendicular line is drawn to the tangent line. A cross-sectional profile (vertical axis: phase difference, horizontal axis: distance) on the perpendicular is taken out. The distance on the horizontal axis between two inflection points obtained from this cross-sectional profile is defined as a temporary interface thickness at each indentation amount. The provisional interface thickness is preferably measured at one or more points for one phase image, and the average value is representative.
[0013]
Further, a correlation between the temporary interface thickness and the amplitude attenuation rate at the time of measuring the phase image is derived, and in the correlation, the value of the temporary interface thickness when the amplitude attenuation rate is zero is set as the true interface thickness. Thickness.
Specifically, the temporary interface thickness obtained above is plotted on the vertical axis, and each amplitude attenuation rate (push-in amount) is plotted on the horizontal axis, and a linear approximation curve is drawn to derive a correlation equation. In the first-order correlation equation, the value of the provisional interface thickness when the amplitude attenuation rate is zero (the amount of pushing of the cantilever is zero), that is, the value of the y-intercept is not affected by the probe shape or the sample unevenness. , True interface thickness.
[0014]
The probe is preferably conical. Thereby, the interface thickness can be measured with higher accuracy.
[0015]
The present invention preferably uses a dynamic force mode (DFM: also known as tapping AFM) of a scanning probe microscope (SPM) and applies the relationship between the probe push-in amount and the resolution.
As the principle of DFM, first, in the atomic force microscope (AFM), the probe detects irregularities on the sample surface by detecting the atomic force on the sample surface or detecting the deflection of the cantilever when the surface is traced. . On the other hand, DFM detects the amplitude and phase of the cantilever tip. When detecting the surface irregularities of the sample, the amplitude changes due to the surface irregularities when the probe touches the sample, and the surface shape is measured by feedback control to the scanner to restore this change. . At this time, the amplitude is set to 1 when the probe is not in contact with the sample, and how much the amplitude is reduced when the probe is brought into contact with the sample is set according to the amplitude attenuation rate. Depending on the set value, it is possible to detect and measure the atomic force acting on the probe and the sample surface, or to measure while tapping the sample with the probe. It is possible to measure with the depth of the probe push. To observe a polymer alloy (polymer blend), the sample surface is tapped, and the difference in physical properties is imaged (generally called a phase image) by detecting the phase shift between the piezoelectric element and the cantilever tip. Observe.
[0016]
Furthermore, the above invention can be applied to the following measurement methods (1) to (3) other than DFM.
(1) Micro viscoelastic mode (VE-AFM or VE-DFM)
A method of measuring the mapping of relative physical properties by pushing an arbitrary amount of a probe into a sample simultaneously with surface shape measurement by AFM or DFM measurement, and periodically resonating the cantilever or the sample.
(2) Friction force microscope (FFM)
A method of measuring the frictional force (lateral deflection of the cantilever) acting between the probe and the sample during surface shape measurement.
(3) Lateral vibration FFM (LM-FFM)
A method of obtaining a high-quality FFM image independent of surface irregularities and scanning direction by detecting lateral deflection of a cantilever caused by periodically resonating a sample in the lateral direction.
[0017]
In addition, the present invention includes a probe having a cantilever and a probe that can move relative to a sample made of a polymer alloy, a sample stage on which the sample is placed, and an amount by which the probe is pushed into the sample. A scanning probe microscope configured to measure the phase image of the polymer alloy by setting the amplitude attenuation rate of the cantilever and the probe;
A phase image analysis means for obtaining a temporary interface thickness of the polymer alloy from the phase image;
An interface thickness of a polymer alloy, comprising a calculation means for deriving a correlation between the temporary interface thickness and the amplitude attenuation rate during the phase image measurement, and calculating a true interface thickness from the correlation A measuring device is provided.
[0018]
As described above, a phase image analyzing means for analyzing a phase image of a polymer alloy measured by a scanning probe microscope capable of setting the amount of the probe to be pushed into the sample and obtaining a temporary interface thickness is provided. Because it is equipped with a calculation means to calculate the true interface thickness from the correlation between the thickness and vibration damping rate, it is possible to accurately measure the interface thickness of each phase of the polymer alloy that is not affected by the probe shape or sample irregularities. Can do.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The polymer alloy interface thickness measuring apparatus includes a scanning probe microscope for measuring a phase image of the polymer alloy, a phase image analysis means (not shown) for obtaining a temporary interface thickness of the polymer alloy from the phase image, and a temporary interface thickness. And an arithmetic means (not shown) for deriving a correlation between the amplitude attenuation rate at the time of phase image measurement and calculating a true interface thickness from the correlation.
[0020]
As shown in FIG. 1A, the scanning probe microscope 10 includes a probe 13 having a cantilever 11 and a probe 12 that can move relative to a sample S made of a polymer alloy, and a sample S for surface observation. 1B and 1C, the pushing amount of the probe 12 with respect to the sample S is arbitrarily changed depending on the amplitude attenuation rate of the cantilever 11 and the probe 12 as shown in FIGS. Are set to measure the phase image of the polymer alloy. The probe 12 has a conical shape whose tip 12a is pushed into the sample S.
[0021]
Hereinafter, the method for measuring the interface thickness of the polymer alloy of the present invention will be described in detail.
First, by using the scanning probe microscope 10, the push amount of the probe 12 into the sample S is set by the amplitude attenuation rate of the cantilever 11 and the probe 12 that are resonantly oscillated by the piezoelectric element. The input / output phase difference is detected by the needle 12, thereby obtaining a phase image. The phase image of the polymer alloy is measured by changing the push-in amount of the probe 12 at least at one place on the sample S.
[0022]
Next, the temporary interface thickness of the polymer alloy is obtained from the phase image measured by the scanning probe microscope by the phase image analysis means. Specifically, a tangent line is drawn with respect to an arbitrary domain in the obtained phase image, a cross-sectional profile on a perpendicular line to the tangent line is derived, and the provisional interface thickness is determined by two inflection points in the curve obtained from the cross-sectional profile. Ask for.
[0023]
The method for obtaining the provisional interface thickness will be specifically described with reference to schematic diagrams.
FIG. 2 shows an image diagram of a phase image obtained with a scanning probe microscope. The image resolution is arbitrarily changed by changing the push-in amount of the probe, the input / output phase difference is detected by the cantilever and the probe, and the hard phase 21 (black dot pattern portion in the figure) with little phase shift is detected. The soft phase 22 (white portion in the figure) having a large phase shift is shown.
In the sea-island structure of the polymer alloy from the obtained phase image, a tangent L is drawn to an arbitrary interface between the domain (island) D that is the soft phase 22 and the matrix (sea) M that is the hard phase 21, and the tangent L Draw a perpendicular line H. A cross-sectional profile on the perpendicular H (vertical axis: phase difference, horizontal axis: distance d (position on the perpendicular H)) is taken out.
[0024]
FIG. 3 shows the cross-sectional profile obtained above. The distance Y on the horizontal axis between the two inflection points X1 and X2 in the curve C obtained from this cross-sectional profile is defined as a temporary interface thickness at each indentation amount. The provisional interface thickness is preferably measured at one or more points for one phase image, and the average value is representative.
[0025]
Further, the calculation means derives a correlation between the temporary interface thickness and the amplitude attenuation rate at the time of phase image measurement. In the correlation, the value of the temporary interface thickness when the amplitude attenuation rate is zero is set to the true value. Interfacial thickness.
Specifically, as shown in FIG. 4, each amplitude attenuation rate (indentation amount) when the phase image is measured with the tentative interface thickness obtained by the above method shown in FIG. 3 as the vertical axis. Is plotted on the horizontal axis, and a linear approximation curve is drawn to derive a correlation equation. In FIG. 4, five temporary interface thicknesses are obtained for each value of the five amplitude attenuation rates, and plotted at five points to obtain a first-order approximation curve t. In the primary approximate curve t, the value of the temporary interface thickness when the amplitude attenuation rate is zero, that is, the value of the y-intercept is taken as the true interface thickness. In this embodiment, the true interface thickness is 19.1 nm.
[0026]
In this way, the amount of pushing of the probe 12 into the sample S is changed according to the amplitude attenuation rate of the cantilever 11 and the probe 12, and the phase image of the polymer alloy is measured at at least one location of the sample S. The temporary interface thickness of the polymer alloy is obtained from the phase image, and the true interface thickness is obtained from the correlation derived from the temporary interface thickness and the amplitude attenuation rate at the time of phase image measurement. For this reason, the actual interface thickness between the hard phase 21 and the flexible phase 22 can be accurately measured for any polymer alloy without being affected by the shape of the probe 12 and the unevenness of the sample S.
[0027]
Examples of the present invention will be described in detail below.
As shown in Table 1 below, natural rubber (NR) is fixed at 60 phr, four types of styrene-butadiene copolymer rubber (SBR) 40 phr having different glass transition points (Tg), and various vulcanizing agents are blended. Then, rubber sufficiently dispersed by a roll and vulcanized was used as samples (1) to (4). In addition, FIG. 5 shows phase images of the samples (1) to (4).
[0028]
[Table 1]
Figure 0003816409
[0029]
The temporary interface thickness was obtained from the obtained phase image by the same method as in the above embodiment, and the relationship between the temporary interface thickness and the amplitude attenuation rate was plotted in FIG. 6 for each sample (1) to (4). A primary approximate curve was drawn for each sample (1) to (4) from the plotted points, and the value of the interface thickness when the amplitude attenuation rate was zero in each primary curve was defined as the true interface thickness. The values of the true interface thickness obtained from FIG. 6 are shown in Table 2 below. In addition, the average value of 40 points | pieces was used for the value of temporary interface thickness in each amplitude attenuation factor.
[0030]
[Table 2]
Figure 0003816409
[0031]
FIG. 7 shows the relationship between the 100% modulus of each sample (1) to (4) and the true interface thickness obtained by the method using the SPM. Further, for each of the samples (1) to (4), the interface thickness measured by hydrogen nuclear spin diffusion in which the relaxation time of hydrogen nuclei was measured from high-resolution solid state 13C-NMR measurement, and the true value obtained by the method using the above SPM. The relationship of the interface thickness is shown in FIG.
[0032]
Judging from the phase images in FIG. 5, since the domains (islands) are finely dispersed in the order of (1)>(2)> (3) ≧ (4), the compatibility of NR and SBR is (1) It was confirmed that the compatibility was improved in the order of <<2><<3><<4>. Further, from FIG. 6 and Table 2, it was confirmed that the lower the Tg of SBR, the higher the compatibility with NR and the thicker the interface thickness.
[0033]
Further, FIG. 7 shows that the thicker the interface, the higher the modulus, and the relationship between the physical properties and the interface became clear. Further, from FIG. 8, it was confirmed that there was a correlation between the interface thickness measured by hydrogen nucleus spin diffusion and the true interface thickness obtained by the method using the SPM, and the interface thickness could be measured accurately. In terms of correlation with physical properties, SPM is considered to be more accurate.
[0034]
【The invention's effect】
As is clear from the above description, according to the present invention, the amount of pushing of the probe into the sample is changed according to the amplitude attenuation rate of the cantilever and the probe, and at least one of the samples is made of the polymer alloy. The phase image is measured, the temporary interface thickness of the polymer alloy is obtained from the phase image, and the true interface thickness is obtained from the correlation derived from the temporary interface thickness and the amplitude attenuation rate at the time of measuring the phase image. For this reason, the actual interface thickness between the hard phase and the soft phase can be accurately measured for any polymer alloy without being affected by the probe shape or the sample irregularity.
[0035]
Therefore, the interface thickness can be measured very easily and accurately as compared with the conventional method, and this can be used for elucidating the physical property expression mechanism of the blend polymer or copolymer polymer that has not been clarified until now. Furthermore, it gives powerful information on the physical properties of the morphology of carbon black and other inorganic fillers, and can be used effectively as one method for functional materials, composite material development, and dynamic degradation analysis.
[Brief description of the drawings]
FIGS. 1A and 1B show a scanning microscope of a polymer alloy interface thickness measuring apparatus according to the present invention, and FIGS. 1B and 1C show a state in which a probe is pushed into a sample.
FIG. 2 is a schematic diagram of a measurement result of a phase image.
FIG. 3 is a diagram showing a cross-sectional profile of the phase image in FIG. 2;
FIG. 4 is a diagram showing a relationship between a temporary interface thickness and an amplitude attenuation rate.
FIG. 5 is a diagram showing a phase image of each sample of the example.
FIG. 6 is a diagram showing a relationship between a provisional interface thickness and an amplitude attenuation rate of each sample of an example.
FIG. 7 is a diagram showing the relationship between interface thickness and modulus.
FIG. 8 is a diagram showing the relationship between 13C-NMR hydrogen nuclear spin diffusion and SPM interface thickness.
[Explanation of symbols]
10 Scanning Probe Microscope 11 Cantilever 11
12 Probe 13 Probe S Sample

Claims (4)

カンチレバー及び探針を有するプローブと試料台とを備え、探針を試料台上のポリマーアロイからなる試料に対して相対的に移動させることにより試料の表面観察を行う走査型プローブ型顕微鏡を用いてポリマーアロイの界面厚みを測定する、ポリマーアロイの界面厚み測定方法であって、
上記カンチレバー及び探針の振幅減衰率により探針の試料への押し込み量を設定して、上記試料の少なくとも1ヶ所以上で、上記探針の押し込み量を変化させてポリマーアロイの位相像を測定し、
上記位相像からポリマーアロイの仮の界面厚みを求め、
上記仮の界面厚みと、上記位相像測定時の振幅減衰率との相関関係を導出し、
上記相関関係において、振幅減衰率をゼロとした時の仮の界面厚みの値を真の界面厚みとすることを特徴とするポリマーアロイの界面厚み測定方法。
Using a scanning probe microscope that has a probe having a cantilever and a probe and a sample stage, and moves the probe relative to the sample made of polymer alloy on the sample stage to observe the surface of the sample A method for measuring the interfacial thickness of a polymer alloy, measuring the interfacial thickness of the polymer alloy,
The amount of pushing of the probe into the sample is set by the amplitude attenuation rate of the cantilever and the probe, and the phase image of the polymer alloy is measured by changing the amount of pushing of the probe at at least one of the samples. ,
Obtain the temporary interface thickness of the polymer alloy from the above phase image,
Deriving the correlation between the temporary interface thickness and the amplitude attenuation rate during the phase image measurement,
In the above correlation, a method for measuring the interface thickness of a polymer alloy, wherein the value of the provisional interface thickness when the amplitude attenuation rate is zero is defined as the true interface thickness.
上記位相像において任意のドメインに対して接線を引き、該接線に対する垂線上の断面プロファイルを導出し、該断面プロファイルから得られる曲線における2つの変曲点により、上記仮の界面厚みを求めている請求項1に記載のポリマーアロイの界面厚み測定方法。A tangent line is drawn with respect to an arbitrary domain in the phase image, a cross-sectional profile on a perpendicular to the tangent line is derived, and the provisional interface thickness is obtained from two inflection points in a curve obtained from the cross-sectional profile. The method for measuring the interface thickness of a polymer alloy according to claim 1. 上記探針は錐形状としている請求項1または請求項2に記載のポリマーアロイの界面厚み測定方法。The method for measuring an interface thickness of a polymer alloy according to claim 1, wherein the probe has a conical shape. ポリマーアロイからなる試料に対して相対的に移動可能なカンチレバー及び探針を有するプローブと、試料を載置する試料台とを有すると共に、上記探針の試料に対する押し込み量をカンチレバー及び探針の振幅減衰率により設定して上記ポリマーアロイの位相像を測定する構成としている走査型プローブ顕微鏡と、
上記位相像からポリマーアロイの仮の界面厚みを求める位相像解析手段と、
上記仮の界面厚みと、上記位相像測定時の振幅減衰率との相関関係を導出し、該相関関係より真の界面厚みを算出する演算手段とを備えることを特徴とするポリマーアロイの界面厚み測定装置。
A probe having a cantilever and a probe that can move relative to a sample made of a polymer alloy, and a sample table on which the sample is placed, and the amplitude of the cantilever and the probe by the amount of the probe pushed into the sample. A scanning probe microscope configured to measure the phase image of the polymer alloy by setting the attenuation rate;
A phase image analysis means for obtaining a temporary interface thickness of the polymer alloy from the phase image;
An interface thickness of a polymer alloy, comprising a calculation means for deriving a correlation between the temporary interface thickness and the amplitude attenuation rate during the phase image measurement, and calculating a true interface thickness from the correlation measuring device.
JP2002038945A 2002-02-15 2002-02-15 Method for measuring interface thickness of polymer alloy and apparatus for measuring interface thickness of polymer alloy Expired - Fee Related JP3816409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038945A JP3816409B2 (en) 2002-02-15 2002-02-15 Method for measuring interface thickness of polymer alloy and apparatus for measuring interface thickness of polymer alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038945A JP3816409B2 (en) 2002-02-15 2002-02-15 Method for measuring interface thickness of polymer alloy and apparatus for measuring interface thickness of polymer alloy

Publications (2)

Publication Number Publication Date
JP2003240699A JP2003240699A (en) 2003-08-27
JP3816409B2 true JP3816409B2 (en) 2006-08-30

Family

ID=27780127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038945A Expired - Fee Related JP3816409B2 (en) 2002-02-15 2002-02-15 Method for measuring interface thickness of polymer alloy and apparatus for measuring interface thickness of polymer alloy

Country Status (1)

Country Link
JP (1) JP3816409B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104138A1 (en) * 2004-04-14 2005-11-03 Veeco Instruments Inc. Method and apparatus for obtaining quantitative measurements using a probe based instrument
JP5156251B2 (en) * 2007-03-30 2013-03-06 Hoya株式会社 Deposition film evaluation method and spectacle lens manufacturing method using the same
JP5127744B2 (en) * 2009-02-20 2013-01-23 三井化学株式会社 Analysis method, evaluation method and production method of olefin copolymer

Also Published As

Publication number Publication date
JP2003240699A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
Miyake et al. Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy
Bec et al. Improvements in the indentation method with a surface force apparatus
Magonov et al. Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film
Pittenger et al. Mechanical property mapping at the nanoscale using PeakForce QNM scanning probe technique
Jiang et al. Measurement of the strength and range of adhesion using atomic force microscopy
US6546788B2 (en) Nanotomography
Baker Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime
Yamanaka et al. Nanoscale elasticity measurement with in situ tip shape estimation in atomic force microscopy
Nukaga et al. Nanorheological analysis of polymer surfaces by atomic force microscopy
Braunsmann et al. Creep compliance mapping by atomic force microscopy
Bahrami et al. Spatial resolution and property contrast in local mechanical mapping of polymer blends using AFM dynamic force spectroscopy
Grandy et al. Microthermal Characterization of Segmented Polyurethane Elastomers and a Polystyrene− Poly (methyl methacrylate) Polymer Blend Using Variable-Temperature Pulsed Force Mode Atomic Force Microscopy
Rahe et al. Repulsive interaction and contrast inversion in noncontact atomic force microscopy imaging of adsorbates
JP3816409B2 (en) Method for measuring interface thickness of polymer alloy and apparatus for measuring interface thickness of polymer alloy
Bhushan et al. A surface topography-independent friction measurement technique using torsional resonance mode in an AFM
Drechsler et al. Nanoindentation on polycarbonate/polymethyl methacrylate Blends.
Paige A comparison of atomic force microscope friction and phase imaging for the characterization of an immiscible polystyrene/poly (methyl methacrylate) blend film
Wai et al. Surface roughness: Its implications and inference with regards to ultra microindentation measurements of polymer mechanical properties
Tranchida et al. Relating morphology to nanoscale mechanical properties: from crystalline to mesomorphic iPP
Kassa et al. Nano-mechanical properties of interphases in dynamically vulcanized thermoplastic alloy
Penedo et al. Off-resonance intermittent contact mode multi-harmonic scanning force microscopy
Ott et al. Comparative study of a block copolymer morphology by transmission electron microscopy and scanning force microscopy
Gigler et al. Towards quantitative materials characterization with digital pulsed force mode imaging
Czerkas et al. Comparison of different methods of SFM tip shape determination for various characterisation structures and types of tip
Jarvis et al. Alternative method for the activation and measurement of lateral forces using magnetically controlled atomic force microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees