JP3816005B2 - Flux-cored wire for horizontal fillet welding - Google Patents

Flux-cored wire for horizontal fillet welding Download PDF

Info

Publication number
JP3816005B2
JP3816005B2 JP2002003942A JP2002003942A JP3816005B2 JP 3816005 B2 JP3816005 B2 JP 3816005B2 JP 2002003942 A JP2002003942 A JP 2002003942A JP 2002003942 A JP2002003942 A JP 2002003942A JP 3816005 B2 JP3816005 B2 JP 3816005B2
Authority
JP
Japan
Prior art keywords
mass
bead
tio
mgo
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002003942A
Other languages
Japanese (ja)
Other versions
JP2003205387A (en
Inventor
浩之 川▲崎▼
茂雄 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002003942A priority Critical patent/JP3816005B2/en
Publication of JP2003205387A publication Critical patent/JP2003205387A/en
Application granted granted Critical
Publication of JP3816005B2 publication Critical patent/JP3816005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水平すみ肉溶接用フラックス入りワイヤに関し、更に詳述すれば、炭素鋼及び低合金鋼の溶接に適し、特に大脚長の水平すみ肉溶接において、ビード形状及びビード外観を向上させることができるチタニア系ガスシールドアーク溶接用フラックス入りワイヤに関する。
【0002】
【従来の技術】
チタニア系のガスシールドアーク溶接用フラックス入りワイヤは、溶接作業性が良好であるという特徴を有しているため、従来より造船、鉄骨、橋梁等のすみ肉溶接に多用され、その使用量は増大している。
【0003】
近時、橋梁分野では、建設コスト削減の手段の一つとして従来の鉄桁橋梁より構造が単純な小主桁橋梁の採用がすすんでいる。この小主桁橋梁では、主桁部材が大型化し、フランジ及びウェブの板厚が増しているため、すみ肉溶接に要求される脚長が大きくなってきている。このような背景から10mm以上の大脚長を必要とする場合が多くなってきている。
【0004】
水平すみ肉溶接の脚長は、6mmが主体であるが、大脚長を必要とする水平すみ肉溶接においては、従来、1パス施工ではビード止端部にオーバーラップが形成され易い。図1(a)は、被溶接材1,2の水平すみ肉溶接において、ビード止端部にオーバーラップ3が形成された状態を示す。このため、疲労強度に対する配慮から2乃至3パス施工で対処する必要があった。しかしながら、2乃至3パス施工の場合、ビードの止端部の形状は改善されるものの、各パスのビード重なり部に段(凹凸)が生じ易く、また溶接の能率性が低い等の問題点を有していた。図1(b)は、2パス施工の例を示す。各パスの溶接ビード4a、4bの重なり部に段差4cが生じている。このため、スラグ成分を調整することにより、8乃至10mmの大脚長すみ肉溶接に対応する方法(特開平4−300091号公報)が提案されているが、10mm以上の大脚長を得るには、図1(c)に示すように、下脚長5の不揃いが生じやすく、未だ不十分であった。
【0005】
本発明はかかる問題点に鑑みてなされたものであって、特に、10乃至12mm程度の大脚長を1パスで水平すみ肉溶接する場合において、ビード形状及びビード外観が良好な溶接部を得ることができる水平すみ肉溶接用フラックス入りワイヤを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る水平すみ肉溶接用フラックス入りワイヤは、フラックス成分として、ワイヤ全質量当たり、TiO:5乃至8質量%、MgO:1乃至3質量%、ZrO:0.2乃至2.5質量%、SiO:0.2乃至1.6質量%、鉄酸化物:0.1乃至1.0質量%、Mn:0.5乃至5質量%、Si:0.2乃至3質量%、Al+Mg:総量で0.08乃至0.5質量%、カリウム化合物及びナトリウム化合物:夫々KO換算及びNaO換算でKO+NaOの総量0.08乃至0.4質量%を含有すると共に、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)が0.35乃至0.60を満足することを特徴とする。
【0007】
ビード形状に大きな影響を与えるには、スラグの粘性であり、粘性が高すぎるとビード止端部にオーバーラップが形成され易くなる。一方、スラグの粘性が低すぎると、凸型ビードになり易い。
【0008】
従来、脚長8乃至10mm程度の大脚長性を得るための手段としては、適切な粘度のフラックス組成を得るべく、TiO−MgO−ZrO−SiO−鉄酸化物を主要スラグ形成剤とし、またフラックス中のスラグ成分の中でも、多量に含有させるTiOと、スラグの粘度を上げるMgOとの比、並びにTiOと、スラグの粘度を下げる鉄酸化物との比を、夫々特定範囲に規制する方法が特開平4−300091号公報に開示されている。しかしながら、更に脚長10乃至12mmの大脚長を得るためには、この規定だけではビード形状及びビード外観の面から、必ずしも十分ではなかった。
【0009】
そこで、本発明者等が更に検討を加えた結果、フラックス中にAl、Mgを適量加えて、図1(c)に示すようなビードの不揃いを解消し、ビードの揃い性を向上させると共に、フラックス中にNa、Kを適正範囲で添加することによって、更にアークの広がり及び安定性を向上させ、かつ(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)の比を最適化することにより、優れたビード形状及びビード外観を得ることができることを見出した。
【0010】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。本発明においては、フラックス成分として、TiO:5乃至8質量%、MgO:1乃至3質量%、ZrO:0.2乃至2.5質量%、SiO:0.2乃至2.0質量%、鉄酸化物:0.1乃至1.0質量%、Mn:0.5乃至5質量%、Si:0.2乃至3質量%、Al+Mg:0.08乃至0.5質量%、カリウム化合物及びナトリウム化合物:夫々KO及びNaO換算で、KO及びNaOの総量0.08乃至0.4質量%を含有し、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比が0.35乃至0.60を満足する。
【0011】
次に、フラックス成分の組成限定理由について説明する。なお、各成分の含有量はワイヤ全質量に対する質量%である。
【0012】
TiO :5乃至8質量%
TiOはスラグ成形剤の基本成分である。しかし、TiOが5質量%未満ではスラグの被包性が不十分であり、ビード外観及び形状が不良となる。一方、TiOが8質量%を超えると、スラグ量が過剰になり、スラグ巻込み等の溶接欠陥が生じ易くなる。従って、TiO量は5乃至8質量%の範囲とする。なお、TiO原料としては、ルチール、チタンスラグ、及びイルミナイト等が挙げられる。
【0013】
MgO:1乃至3質量%
MgOはスラグの凝固点を高め、粘性を高めることにより、特に大脚長溶接におけるビード形状を改善する効果がある。しかし、MgOが1質量%未満では、ビード形状の改善効果がなく、一方、MgOが3質量%を超えると、スラグの粘性が過剰となり、スラグ被包性が不均一となり、ビード外観が悪化する。従って、MgO量は1乃至3質量%の範囲とする。なお、MgO原料としては、マグネシヤクリンカー、オリビンサンド、電融マグネシヤ、及びタルク等が挙げられる。
【0014】
ZrO :0.2乃至2.5質量%
ZrOは、MgOと同様に、スラグの凝固点を高め、粘性を高めることにより、特に大脚長溶接におけるビード形状を改善する効果がある。しかし、ZrOが0.2質量%未満では、ビード形状改善効果がなく、一方、ZrOが2.5質量%を超えると、スラグの粘性が過剰となり、スラグ巻込み等の溶接欠陥が生じ易くなる。従って、ZrO原料としては、ジルコニヤ、及びジルコン等が挙げられる。
SiO :0.2乃至1.6質量%
SiOは、スラグの凝固点を下げ、粘性を小さくすることにより、ビード形状を調整する効果がある。しかし、SiOが0.2質量%未満では、ビード形状の改善効果がなく、逆にSiO1.6質量%を超えると、スラグの流動性が過剰となり、ビード形状が悪化する。従って、SiO量は0.2乃至1.6質量%の範囲とする。なお、SiO原料としては珪砂、長石、ジルコン、オリビンサンド、珪灰石、及びガラス等が挙げられる。
鉄酸化物:0.1乃至1.0質量%
鉄酸化物は、SiOと同様に、スラグの凝固点を下げ、粘性を小さくすることにより、ビード形状を改善する効果がある。しかし、鉄酸化物が0.1質量%未満では、ビード形状の改善効果がなく、逆に鉄酸化物が1.0質量%を超えるとスラグの流動性が過剰となり、ビード形状が悪化する。従って、鉄酸化物量は0.1乃至1.0質量%の範囲とする。なお、鉄酸化物原料としてスケール、及びチタンスラグ等が挙げられる。
Mn:0.5乃至5.0質量%
Mnは、脱酸剤及び溶接金属の強度を調整する成分であるが、Mnが0.5質量%未満では脱酸不足による気孔が発生し、また、Mnが5.0質量%を超えると、溶接金属の強度が高くなり過ぎて、耐割れ性の面で好ましくない。従って、Mn量は0.5乃至5.0質量%の範囲とする。なお、Mn原料としては電解Mn、Fe−Mn、及びFe−Si−Mn等が挙げられる。
Si:0.2乃至3.0質量%
Siは、Mnと同様の機能を有するほか、溶融金属の流動性を調整する作用がある。しかし、Siが0.2質量%未満では、ビードが凸ビードになり易く、また、脱酸不足による気孔が多発してくる。逆に、Siが3.0質量%を超えると、溶接金属の強度が過大となると共に、靭性が低下する。従って、Si量は0.2乃至3.0質量%の範囲とする。なお、Si原料としては、Fe−Si、Fe−Si−Mn、Fe−Si−B、及びSi−Mg等が挙げられる。
Al+Mg:0.08乃至0.5質量%
Al+Mgは、通常脱酸剤として添加するものであり、これらの元素を添加することによって溶接金属中の酸素量を低減し、溶融金属の粘性を変化させる作用がある。特に、10乃至12mmの大脚長すみ肉溶接時には、ビード下脚の揃いが良くなる効果がある。また、溶融金属の流れを抑制するため、溶融金属が先行するのを防ぐ効果もある。しかし、Al+Mgが0.08質量%未満ではその添加効果がなく、一方、Al+Mgが0.5質量%を超えると、スパッタ発生量が多くなるため、溶接作業性が劣化すると共に、溶融金属の粘性が高くなりすぎ、上脚側の脚長が出にくくなる。このため、Al+Mg量は0.08乃至0.5質量%の範囲とする。なお、Al及びMg原料としては、金属Al及び金属Mgのほか、Fe−Al、Al−Mg、Si−Mg、Si−Ca−Mg、Ca−Mg及びNi−Mg等の合金がある。
O+Na O:0.08乃至0.40質量%
K化合物、Na化合物は安定性を向上させると共に、アーク広がりが良好となるため、より良好で安定したビード形状及びビード外観を得るために効果がある。K化合物をKO換算とし、Na化合物をNaO換算として、KO+NaOが0.08質量%未満ではその添加効果が得られず、一方、KO+NaOが0.40質量%を超えると、アークの吹きつけが強くなり、スパッタが増加すると共に、アンダーカットが生じ易くなる。従って、KO+NaO量は0.08乃至0.40質量%の範囲とする。
(Mn+Al+Mg)/(TiO +MgO+鉄酸化物):0.35乃至0.60
但し、上記フラックス成分のうち、TiO、鉄酸化物、MgO、Mn、Al、Mgについては、以下に説明するように、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比を特定の範囲に規制する必要がある。
【0015】
TiO、鉄酸化物、MgOはスラグ形成剤として添加するが、スラグ量が多すぎる場合、ビード形状が悪くなる。また、スラグ量が多すぎる場合には、耐気孔性も劣化するため、スラグ量はできるだけ少ない方が良い。Mn、Al,Mgは脱酸剤として添加し、溶接金属の酸素量を低減して、溶融金属の粘性を調整する。スラグ量、スラグ粘性、溶融金属の粘性を適正化することによって、脚長10乃至12mmの大脚長溶接時のビード形状を安定させることができる。本発明者は、ビード形状、特に脚長10乃至12mmの大脚長溶接時でのビード止端部形状及びビードの揃いを安定化させるため、各種の試験及び研究を行った結果、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)の質量比を0.35乃至0.60の範囲にすることが極めて有効であることを見出した。しかし、質量比が0.35未満では、ビード止端部がオーバーラップ気味となり、質量比が0.60を超えると、ビードが凸気味となり、ビード形状が悪化する。このため、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比を0.35乃至0.60とする。また、良好なビード形状及びビード外観を得るためには、重量比を0.40乃至0.55の範囲とすることが好ましい。
【0016】
なお、本発明において、フラックス率(ワイヤ全質量に対するフラックスの質量%)は特に限定されないが、15乃至25質量%が適当である。
【0017】
また、フラックス成分としては、必要に応じて、その他の酸化物、フッ化物、金属及び合金等を適量添加することができる。例えば、スラグ量を調整するために、スラグ形成剤として、CaO、MnO、Al等の酸化物を添加できる。また、脱水素剤として、CaF、SrF、MgF、KSiF等のフッ化物を添加できる。更に、脱酸剤としてZr等を添加でき、溶接金属の靭性改善のためにB、Ni等を適宜添加できる。更にまた、溶接金属の強度を調整するためにMo、Cr、Cu、V等を添加できる。更にまた、スラグの剥離性改善のために、酸化ビスマスを添加してもよい。この場合の添加量は、各成分共、ワイヤ全質量当たり0.002乃至0.10質量%が適当である。特に、フッ素量/酸化ビスマスの質量比が0.6乃至80の範囲となるように金属フッ化物を添加すると、アークの広がりも良好となり、より美麗なビード外観を得ることができる。
【0018】
また、フラックス入りワイヤの断面形状は適宜の形状のものにすることができ、更にフープの材質、ワイヤ径、シールドガス組成等々も、種々のものを採用できる。
【0019】
【実施例】
以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。下記表1に示す成分組成のフラックスを軟鋼製ケーシング内にフラックス率が18乃至20となるように充填して、ワイヤ直径が1.2mmのフラックス入りワイヤを製造した。そして、このフラックス入りワイヤを使用して、以下の条件で溶接試験を行った。
【0020】
(1)供試鋼板及び継手形状:厚さ12mm×幅85mm×長さ1000mmの鋼板を用いてT型すみ肉継手を形成した。
(2)溶接姿勢:水平すみ肉溶接
(3)シールドガス:100%CO、流量25リットル/分
(4)ワイヤ突出し長さ:25mm
(5)溶接電流:280A
(6)アーク電圧:31V
(7)電源極性:供試鋼板に対してワイヤを正電圧にした直流逆極性(DCワイヤ(+))
(8)溶接速度:30cm/分
(9)トーチ角度:水平より50°
(10)トーチ前進角又は後退角:なし
(11)トーチを固定した台車を走行させた自動溶接
【0021】
この溶接試験の結果を下記表1及び表2に示す。なお、表2において、式(1)とは、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比のことである。表1及び表2から明らかなように、本発明の実施例No.1乃至No.5及びNo.7乃至No.10においては、極めて良好な溶接作業性と、ビード外観及びビード形状が得られた。
【0022】
【表1】

Figure 0003816005
【0023】
【表2】
Figure 0003816005
【0024】
一方、比較例No.11乃至No.28では、本発明で規定する要件の何れかを欠くため、次のような問題がある。即ち、比較例No.11は、TiO量が下限値を外れ、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れるために、ビード形状及びビード外観が悪化している。また、比較例No.12は、TiO量が上限値を外れ、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れるため、ビード形状が悪く、スラグ巻込みが発生した。比較例No.13は、MgO量が下限値を外れるため、ビード形状が悪くなっている。比較例No.14は、MgO量が上限値を外れ、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れるため、ビード外観が悪くなっている。比較例No.15は、ZrO量が下限値を外れ、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れるため、ビード形状及びビード外観が悪くなっている。比較例No.16は、ZrO量が上限値を外れるため、スラグ巻き込みが発生し、ビード形状が悪くなっている。比較例No.17は、SiO量が下限値を外れるため、ビード外観及びビード形状が悪くなっている。比較例No.18は、SiO量が上限値を外れるため、ビード外観及びビード形状が悪くなっている。比較例No.19は、鉄酸化物量が下限値を外れ、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れ、NaO+KOの上限値を外れるため、アークの吹きつけが強く、ビード形状・外観が悪くなっている。比較例No.20は、鉄酸化物量が上限値を外れ、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れるため、ビード形状及びビード外観が悪くなっている。比較例No.21は、Al+Mgが下限値を外れ、NaO+KOが下限値を外れるため、アーク広がりが悪く、ビード形状が悪くなっている。比較例No.22は、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れ、NaO+KOが下限値を外れるため、アーク広がりが悪く、ビード形状が悪くなっている。比較例No.23は、Al+Mgの下限値を外れ、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れるため、ビード形状及びビード外観が悪くなっている。比較例No.24は、Al+Mgの上限値を外れるため、スパッタが多く、ビード形状及びビード外観が悪くなっている。比較例No.25は、NaO+KOの上限値を外れ、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れるため、アークの吹きつけが強く、アンダーカットが発生し、ビード形状が悪くなっている。比較例No.26は、NaO+KOの下限値を外れるため、アークの広がりが悪く、ビード形状が悪くなっている。比較例No.27は、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の下限値を外れるため、ビード形状及びビード外観が悪くなっている。比較例No.28は、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)比の上限値を外れるため、ビード形状及びビード外観が悪くなっている。
【0025】
【発明の効果】
以上説明したように、本発明よれば、水平すみ肉溶接、特に10乃至12mmの大脚長を1パスで溶接する水平すみ肉溶接において、ビード形状及びビード外観が優れた溶接部を得ることができる。
【図面の簡単な説明】
【図1】(a)乃至(c)はビード止端部のオーバーラップの例を示す模式図である。
【符号の説明】
1,2:被溶接材
4a、4b:溶接ビード
4c:段差
5:下脚長[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flux-cored wire for horizontal fillet welding. More specifically, the present invention is suitable for welding carbon steel and low alloy steel, and in particular, improves the bead shape and bead appearance in horizontal fillet welding with a large leg length. The present invention relates to a flux-cored wire for titania-based gas shielded arc welding.
[0002]
[Prior art]
Titania-based flux-cored wire for gas shielded arc welding is characterized by good welding workability, so it has been widely used for fillet welding of shipbuilding, steel frames, bridges, etc., and its usage is increased. is doing.
[0003]
Recently, in the field of bridges, the adoption of small main girder bridges with a simpler structure than conventional steel girder bridges has been promoted as a means of reducing construction costs. In this small main girder bridge, since the main girder member is enlarged and the thickness of the flange and the web is increased, the leg length required for fillet welding is increasing. From such a background, a case where a large leg length of 10 mm or more is required is increasing.
[0004]
The leg length of horizontal fillet welding is mainly 6 mm. However, in horizontal fillet welding that requires a large leg length, conventionally, it is easy to form an overlap at the bead toe in one-pass construction. FIG. 1A shows a state in which an overlap 3 is formed at the toe end of the bead in horizontal fillet welding of the workpieces 1 and 2. For this reason, it has been necessary to deal with two to three passes in consideration of fatigue strength. However, in the case of 2 to 3 pass construction, although the shape of the toe portion of the bead is improved, there is a problem that a step (unevenness) is likely to occur in the bead overlap portion of each pass and the welding efficiency is low. Had. FIG.1 (b) shows the example of 2-pass construction. A step 4c is formed at the overlapping portion of the weld beads 4a and 4b in each pass. Therefore, by adjusting the slag component, a method (Japanese Patent Laid-Open No. 4-300091) corresponding to 8 to 10 mm large leg length fillet welding has been proposed. To obtain a large leg length of 10 mm or more, As shown in FIG. 1 (c), unevenness of the lower leg lengths 5 was likely to occur and was still insufficient.
[0005]
The present invention has been made in view of such problems, and in particular, when a large fillet length of about 10 to 12 mm is horizontally fillet welded in one pass, a welded portion having a good bead shape and bead appearance is obtained. An object of the present invention is to provide a flux-cored wire for horizontal fillet welding that can be used.
[0006]
[Means for Solving the Problems]
The flux-cored wire for horizontal fillet welding according to the present invention has, as a flux component, TiO 2 : 5 to 8% by mass, MgO: 1 to 3% by mass, ZrO 2 : 0.2 to 2.5% per total mass of the wire. % By mass, SiO 2 : 0.2 to 1.6 % by mass, iron oxide: 0.1 to 1.0% by mass, Mn: 0.5 to 5% by mass, Si: 0.2 to 3% by mass, al + Mg: 0.08 to 0.5 mass% in total, potassium compounds and sodium compounds: containing 0.08 to 0.4 wt% total amount of K 2 O + Na 2 O in each K 2 O in terms and terms of Na 2 O In addition, (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) satisfies 0.35 to 0.60.
[0007]
The viscosity of the slag has a great influence on the bead shape. If the viscosity is too high, an overlap is likely to be formed at the bead toe. On the other hand, when the viscosity of the slag is too low, a convex bead tends to be formed.
[0008]
Conventionally, as a means for obtaining a leg length having a leg length of about 8 to 10 mm, in order to obtain a flux composition with an appropriate viscosity, TiO 2 —MgO—ZrO 2 —SiO 2 —iron oxide is used as a main slag forming agent, In addition, among the slag components in the flux, the ratio of TiO 2 to be contained in a large amount to MgO that increases the viscosity of the slag, and the ratio of TiO 2 to iron oxide that decreases the viscosity of the slag are restricted to specific ranges, respectively. This method is disclosed in Japanese Patent Laid-Open No. 4-300091. However, in order to obtain a leg length of 10 to 12 mm, this rule alone is not always sufficient from the viewpoint of the bead shape and the bead appearance.
[0009]
Therefore, as a result of further studies by the present inventors, by adding an appropriate amount of Al and Mg in the flux, the unevenness of the beads as shown in FIG. 1 (c) is eliminated, and the uniformity of the beads is improved. By adding Na and K in an appropriate range to the flux, the arc spread and stability are further improved, and the ratio of (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) is optimized to achieve excellent It has been found that a bead shape and a bead appearance can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. In the present invention, as the flux component, TiO 2 : 5 to 8 mass%, MgO: 1 to 3 mass%, ZrO 2 : 0.2 to 2.5 mass%, SiO 2 : 0.2 to 2.0 mass% %, Iron oxide: 0.1 to 1.0 mass%, Mn: 0.5 to 5 mass%, Si: 0.2 to 3 mass%, Al + Mg: 0.08 to 0.5 mass%, potassium compound And sodium compounds: each containing 0.08 to 0.4 mass% of K 2 O and Na 2 O in terms of K 2 O and Na 2 O, respectively, (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio Satisfies 0.35 to 0.60.
[0011]
Next, the reason for limiting the composition of the flux component will be described. In addition, content of each component is the mass% with respect to the wire total mass.
[0012]
TiO 2 : 5 to 8% by mass
TiO 2 is a basic component of the slag forming agent. However, if TiO 2 is less than 5% by mass, the encapsulation of slag is insufficient, and the bead appearance and shape are poor. On the other hand, when TiO 2 exceeds 8% by mass, the amount of slag becomes excessive, and welding defects such as slag entrainment tend to occur. Accordingly, the amount of TiO 2 is in the range of 5 to 8% by mass. Examples of the TiO 2 raw material include rutile, titanium slag, and illuminite.
[0013]
MgO: 1 to 3% by mass
MgO has the effect of improving the bead shape especially in large leg length welding by increasing the freezing point of slag and increasing the viscosity. However, if the MgO content is less than 1% by mass, there is no effect of improving the bead shape. On the other hand, if the MgO content exceeds 3% by mass, the slag viscosity becomes excessive, the slag encapsulation becomes non-uniform, and the bead appearance deteriorates. . Accordingly, the MgO amount is in the range of 1 to 3% by mass. Examples of the MgO raw material include magnesia clinker, olivine sand, electrofused magnesia, and talc.
[0014]
ZrO 2 : 0.2 to 2.5% by mass
ZrO 2 has an effect of improving the bead shape particularly in large leg length welding by increasing the solidification point of slag and increasing the viscosity, similarly to MgO. However, if ZrO 2 is less than 0.2% by mass, there is no bead shape improvement effect, while if ZrO 2 exceeds 2.5% by mass, the viscosity of slag becomes excessive, resulting in welding defects such as slag entrainment. It becomes easy. Therefore, examples of the ZrO 2 raw material include zirconia and zircon.
SiO 2 : 0.2 to 1.6% by mass
SiO 2 has the effect of adjusting the bead shape by lowering the freezing point of the slag and reducing the viscosity. However, when SiO 2 is less than 0.2% by mass, there is no effect of improving the bead shape. Conversely, when SiO 2 exceeds 1.6 % by mass, the fluidity of the slag becomes excessive and the bead shape is deteriorated. Therefore, the amount of SiO 2 is in the range of 0.2 to 1.6 mass%. Examples of the SiO 2 raw material include quartz sand, feldspar, zircon, olivine sand, wollastonite, and glass.
Iron oxide: 0.1 to 1.0% by mass
Similar to SiO 2 , iron oxide has the effect of improving the bead shape by lowering the freezing point of slag and reducing the viscosity. However, when the iron oxide is less than 0.1% by mass, there is no effect of improving the bead shape. Conversely, when the iron oxide exceeds 1.0% by mass, the fluidity of the slag becomes excessive and the bead shape is deteriorated. Accordingly, the iron oxide content is in the range of 0.1 to 1.0 mass%. In addition, a scale, titanium slag, etc. are mentioned as an iron oxide raw material.
Mn: 0.5 to 5.0% by mass
Mn is a component that adjusts the strength of the deoxidizer and the weld metal, but when Mn is less than 0.5% by mass, pores due to insufficient deoxidation occur, and when Mn exceeds 5.0% by mass, The strength of the weld metal becomes too high, which is not preferable in terms of crack resistance. Therefore, the amount of Mn is in the range of 0.5 to 5.0 mass%. Note that examples of the Mn raw material include electrolytic Mn, Fe—Mn, and Fe—Si—Mn.
Si: 0.2 to 3.0% by mass
Si has a function similar to that of Mn, and also has an effect of adjusting the fluidity of the molten metal. However, if Si is less than 0.2% by mass, the beads are likely to be convex beads, and pores due to insufficient deoxidation occur frequently. On the contrary, when Si exceeds 3.0 mass%, the strength of the weld metal becomes excessive and the toughness decreases. Accordingly, the Si content is in the range of 0.2 to 3.0 mass%. Note that examples of the Si raw material include Fe—Si, Fe—Si—Mn, Fe—Si—B, and Si—Mg.
Al + Mg: 0.08 to 0.5% by mass
Al + Mg is usually added as a deoxidizer, and by adding these elements, the amount of oxygen in the weld metal is reduced and the viscosity of the molten metal is changed. In particular, at the time of large leg long fillet welding of 10 to 12 mm, there is an effect that the alignment of the lower legs of the beads is improved. In addition, since the flow of the molten metal is suppressed, there is an effect of preventing the molten metal from leading. However, if Al + Mg is less than 0.08% by mass, there is no effect of addition. On the other hand, if Al + Mg exceeds 0.5% by mass, the amount of spatter is increased, so that welding workability is deteriorated and the viscosity of the molten metal is increased. Becomes too high and the leg length on the upper leg side is difficult to come out. For this reason, the amount of Al + Mg is set to a range of 0.08 to 0.5% by mass. As the Al and Mg raw materials, there are alloys such as Fe—Al, Al—Mg, Si—Mg, Si—Ca—Mg, Ca—Mg, and Ni—Mg in addition to metal Al and metal Mg.
K 2 O + Na 2 O: 0.08 to 0.40 mass%
The K compound and the Na compound improve the stability and improve the arc spread, and are therefore effective in obtaining a better and more stable bead shape and bead appearance. When the K compound is converted to K 2 O and the Na compound is converted to Na 2 O, if K 2 O + Na 2 O is less than 0.08% by mass, the addition effect cannot be obtained, while K 2 O + Na 2 O is 0.40. When the mass% is exceeded, the spraying of the arc becomes strong, the spatter increases, and the undercut tends to occur. Therefore, the amount of K 2 O + Na 2 O is in the range of 0.08 to 0.40 mass%.
(Mn + Al + Mg) / (TiO 2 + MgO + iron oxide): 0.35 to 0.60
However, among the above flux components, TiO 2 , iron oxide, MgO, Mn, Al, and Mg have a (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio within a specific range as described below. It is necessary to regulate.
[0015]
TiO 2 , iron oxide, and MgO are added as a slag forming agent, but when the amount of slag is too large, the bead shape is deteriorated. In addition, when the amount of slag is too large, the porosity resistance is also deteriorated, so the amount of slag is preferably as small as possible. Mn, Al, and Mg are added as deoxidizers to reduce the oxygen content of the weld metal and adjust the viscosity of the molten metal. By optimizing the slag amount, slag viscosity, and molten metal viscosity, the bead shape at the time of large leg length welding with a leg length of 10 to 12 mm can be stabilized. The present inventor conducted various tests and studies in order to stabilize the bead shape, particularly the shape of the bead toe at the time of large leg length welding with a leg length of 10 to 12 mm and the alignment of the beads. As a result, (Mn + Al + Mg) / ( It has been found that it is extremely effective to make the mass ratio of (TiO 2 + MgO + iron oxide) in the range of 0.35 to 0.60. However, if the mass ratio is less than 0.35, the bead toes are overlapped, and if the mass ratio exceeds 0.60, the beads become convex and the bead shape is deteriorated. Therefore, the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio is set to 0.35 to 0.60. In order to obtain a good bead shape and bead appearance, the weight ratio is preferably in the range of 0.40 to 0.55.
[0016]
In the present invention, the flux rate (mass% of the flux with respect to the total mass of the wire) is not particularly limited, but 15 to 25% by mass is appropriate.
[0017]
As the flux component, other oxides, fluorides, metals, alloys, and the like can be added in appropriate amounts as necessary. For example, in order to adjust the amount of slag, oxides such as CaO, MnO, Al 2 O 3 can be added as a slag forming agent. Further, as a dehydrogenating agent can be added to CaF 2, SrF 2, fluorides such as MgF 2, K 2 SiF 6. Furthermore, Zr or the like can be added as a deoxidizer, and B, Ni, or the like can be appropriately added to improve the toughness of the weld metal. Furthermore, Mo, Cr, Cu, V, etc. can be added to adjust the strength of the weld metal. Furthermore, bismuth oxide may be added to improve the slag peelability. The addition amount in this case is suitably 0.002 to 0.10% by mass with respect to the total mass of each component. In particular, when the metal fluoride is added so that the fluorine / bismuth oxide mass ratio is in the range of 0.6 to 80, the arc spread is also improved, and a more beautiful bead appearance can be obtained.
[0018]
Further, the cross-sectional shape of the flux-cored wire can be made into an appropriate shape, and various materials such as a hoop material, a wire diameter, a shielding gas composition, etc. can be adopted.
[0019]
【Example】
Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. A flux-cored wire having a wire diameter of 1.2 mm was manufactured by filling a mild steel casing with a flux having the component composition shown in Table 1 below so that the flux rate was 18 to 20. And the welding test was done on the following conditions using this flux cored wire.
[0020]
(1) Test steel plate and joint shape: A T-shaped fillet joint was formed using a steel plate having a thickness of 12 mm, a width of 85 mm, and a length of 1000 mm.
(2) Welding posture: horizontal fillet welding (3) Shielding gas: 100% CO 2 , flow rate 25 liters / minute (4) Wire protrusion length: 25 mm
(5) Welding current: 280A
(6) Arc voltage: 31V
(7) Power polarity: DC reverse polarity (DC wire (+)) with the wire set to a positive voltage relative to the test steel plate
(8) Welding speed: 30 cm / min (9) Torch angle: 50 ° from horizontal
(10) Torch advance angle or receding angle: None (11) Automatic welding in which a carriage with a fixed torch is run
The results of this welding test are shown in Tables 1 and 2 below. In Table 2, the expression (1) is a ratio of (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide). As is apparent from Tables 1 and 2, Example No. 1 to No. 5 and no. 7 to No. In No. 10, very good welding workability, bead appearance and bead shape were obtained.
[0022]
[Table 1]
Figure 0003816005
[0023]
[Table 2]
Figure 0003816005
[0024]
On the other hand, Comparative Example No. 11-No. No. 28 has the following problems because it lacks any of the requirements defined in the present invention. That is, Comparative Example No. No. 11, the amount of TiO 2 deviates from the lower limit value, and deviates from the lower limit value of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio. Comparative Example No. No. 12, since the amount of TiO 2 deviated from the upper limit value and deviated from the lower limit value of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, the bead shape was poor and slag entrainment occurred. Comparative Example No. In No. 13, the bead shape is poor because the amount of MgO deviates from the lower limit. Comparative Example No. No. 14, the amount of MgO deviates from the upper limit value and deviates from the lower limit value of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, so that the bead appearance is poor. Comparative Example No. No. 15, since the amount of ZrO 2 deviates from the lower limit and deviates from the lower limit of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, the bead shape and bead appearance are poor. Comparative Example No. No. 16, since the amount of ZrO 2 deviates from the upper limit value, slag entrainment occurs and the bead shape is poor. Comparative Example No. No. 17, since the amount of SiO 2 deviates from the lower limit, the bead appearance and the bead shape are poor. Comparative Example No. No. 18, since the amount of SiO 2 deviates from the upper limit, the bead appearance and the bead shape are poor. Comparative Example No. 19, the amount of iron oxide is out of the lower limit, out of the lower limit of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, and out of the upper limit of Na 2 O + K 2 O, so the arc blowing is strong, The bead shape / appearance is poor. Comparative Example No. No. 20, the amount of iron oxide deviates from the upper limit value, and deviates from the lower limit value of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, so that the bead shape and bead appearance are poor. Comparative Example No. In No. 21, since Al + Mg is out of the lower limit value and Na 2 O + K 2 O is out of the lower limit value, the arc spread is bad and the bead shape is bad. Comparative Example No. No. 22 deviates from the lower limit of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, and Na 2 O + K 2 O deviates from the lower limit, so that the arc spread is poor and the bead shape is poor. Comparative Example No. 23 deviates from the lower limit of Al + Mg and deviates from the lower limit of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, so that the bead shape and bead appearance are poor. Comparative Example No. No. 24 deviates from the upper limit of Al + Mg, so that there are many spatters and the bead shape and bead appearance are poor. Comparative Example No. 25 deviates from the upper limit of Na 2 O + K 2 O and deviates from the lower limit of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, resulting in strong arc blowing, undercuts, and bead shape It is getting worse. Comparative Example No. No. 26 deviates from the lower limit of Na 2 O + K 2 O, so that the arc spread is poor and the bead shape is poor. Comparative Example No. 27 deviates from the lower limit of the (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) ratio, so that the bead shape and the bead appearance are poor. Comparative Example No. No. 28 deviates from the upper limit of the ratio of (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide), so that the bead shape and the bead appearance are poor.
[0025]
【The invention's effect】
As described above, according to the present invention, in horizontal fillet welding, particularly horizontal fillet welding in which a large leg length of 10 to 12 mm is welded in one pass, a welded portion having an excellent bead shape and bead appearance can be obtained. .
[Brief description of the drawings]
FIGS. 1A to 1C are schematic views showing an example of overlap of bead toes. FIG.
[Explanation of symbols]
1, 2: Material to be welded 4a, 4b: Weld bead 4c: Step 5: Lower leg length

Claims (1)

フラックス成分として、ワイヤ全質量当たり、TiO:5乃至8質量%、MgO:1乃至3質量%、ZrO:0.2乃至2.5質量%、SiO:0.2乃至1.6質量%、鉄酸化物:0.1乃至1.0質量%、Mn:0.5乃至5質量%、Si:0.2乃至3質量%、Al+Mg:総量で0.08乃至0.5質量%、カリウム化合物及びナトリウム化合物:夫々KO換算及びNaO換算でKO+NaOの総量0.08乃至0.4質量%を含有すると共に、(Mn+Al+Mg)/(TiO+MgO+鉄酸化物)が0.35乃至0.60を満足することを特徴とする水平すみ肉溶接用フラックス入りワイヤ。As flux components, TiO 2 : 5 to 8% by mass, MgO: 1 to 3% by mass, ZrO 2 : 0.2 to 2.5% by mass, SiO 2 : 0.2 to 1.6 % by mass with respect to the total mass of the wire. %, Iron oxide: 0.1 to 1.0 mass%, Mn: 0.5 to 5 mass%, Si: 0.2 to 3 mass%, Al + Mg: 0.08 to 0.5 mass% in total amount, potassium compounds and sodium compounds: in each K 2 O in terms and terms of Na 2 O together containing 0.08 to 0.4 wt% total amount of K 2 O + Na 2 O, (Mn + Al + Mg) / (TiO 2 + MgO + iron oxide) Satisfying 0.35 to 0.60, a flux cored wire for horizontal fillet welding.
JP2002003942A 2002-01-10 2002-01-10 Flux-cored wire for horizontal fillet welding Expired - Lifetime JP3816005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003942A JP3816005B2 (en) 2002-01-10 2002-01-10 Flux-cored wire for horizontal fillet welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003942A JP3816005B2 (en) 2002-01-10 2002-01-10 Flux-cored wire for horizontal fillet welding

Publications (2)

Publication Number Publication Date
JP2003205387A JP2003205387A (en) 2003-07-22
JP3816005B2 true JP3816005B2 (en) 2006-08-30

Family

ID=27643401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003942A Expired - Lifetime JP3816005B2 (en) 2002-01-10 2002-01-10 Flux-cored wire for horizontal fillet welding

Country Status (1)

Country Link
JP (1) JP3816005B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4949449B2 (en) 2009-09-18 2012-06-06 株式会社神戸製鋼所 Flux-cored wire for welding
JP5361797B2 (en) * 2010-05-18 2013-12-04 日鐵住金溶接工業株式会社 Flux-cored wire for horizontal fillet gas shielded arc welding
JP5845168B2 (en) * 2012-12-28 2016-01-20 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding and gas shielded arc welding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106471B2 (en) * 1991-03-27 1995-11-15 株式会社神戸製鋼所 Flux-cored wire for horizontal fillet welding
JP3288535B2 (en) * 1994-06-07 2002-06-04 日鐵溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP3442187B2 (en) * 1995-04-10 2003-09-02 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding

Also Published As

Publication number Publication date
JP2003205387A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
EP2868425B1 (en) Ni based alloy flux cored wire
JP4986562B2 (en) Flux-cored wire for titania-based gas shielded arc welding
JP4741445B2 (en) Flux-cored wire for gas shielded arc welding
KR100427546B1 (en) Basic flux cored wire
JP5242665B2 (en) Flux-cored wire for gas shielded arc welding
JPS6356037B2 (en)
JP2013158777A (en) Flux-cored wire for gas shield arc welding
JP2009190042A (en) Two-electrode fillet gas-shielded metal arc welding method
JP4425756B2 (en) Flux-cored wire for horizontal fillet welding
JP3816005B2 (en) Flux-cored wire for horizontal fillet welding
JPH0453638B2 (en)
CN113613829A (en) Ni-based alloy flux-cored wire
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2614968B2 (en) High speed gas shielded arc welding
JPH07106471B2 (en) Flux-cored wire for horizontal fillet welding
JP2021109243A (en) Flux-cored wire and method for manufacturing weld joint
JPH03294092A (en) Flux cored wire electrode for gas shielded arc welding
KR100513633B1 (en) Metal cored wire for high speed welding
JPH03264194A (en) Flux cored wire for welding high corrosion resistance stainless steel
KR100350048B1 (en) Titania based flux cored wire and a welding method using it
JPH0381094A (en) Flux cored wire for welding stainless steel
KR100494008B1 (en) Metal cored wire for CO2 gas shielded arc welding
JP2014176878A (en) Horizontal fillet gas shield arc welding method
JPS6313695A (en) Flux cored wire for welding stainless steel
KR20010061851A (en) Metal cored wire for high speed gas shield arc pillet welding with Twin-tandem welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3816005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

EXPY Cancellation because of completion of term