JP3815601B2 - Tunnel magnetoresistive element and magnetic random access memory - Google Patents

Tunnel magnetoresistive element and magnetic random access memory Download PDF

Info

Publication number
JP3815601B2
JP3815601B2 JP2001279289A JP2001279289A JP3815601B2 JP 3815601 B2 JP3815601 B2 JP 3815601B2 JP 2001279289 A JP2001279289 A JP 2001279289A JP 2001279289 A JP2001279289 A JP 2001279289A JP 3815601 B2 JP3815601 B2 JP 3815601B2
Authority
JP
Japan
Prior art keywords
magnetoresistive element
tunnel magnetoresistive
intermediate layer
single crystal
random access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001279289A
Other languages
Japanese (ja)
Other versions
JP2003086863A (en
Inventor
新治 湯浅
太郎 長濱
義茂 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001279289A priority Critical patent/JP3815601B2/en
Priority to EP02730704A priority patent/EP1391942A4/en
Priority to KR1020037015607A priority patent/KR100886602B1/en
Priority to PCT/JP2002/005049 priority patent/WO2002099905A1/en
Priority to US10/478,203 priority patent/US7220498B2/en
Publication of JP2003086863A publication Critical patent/JP2003086863A/en
Application granted granted Critical
Publication of JP3815601B2 publication Critical patent/JP3815601B2/en
Priority to US11/673,919 priority patent/US7514160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Description

【0001】
【発明の属する技術分野】
本発明は、トンネル磁気抵抗素子に係り、特に、その磁気抵抗効果のバイアス電圧依存性を制御したトンネル磁気抵抗素子および磁気ランダムアクセスメモリに関する。
【0002】
【従来の技術】
トンネル磁気抵抗効果とは、絶縁体を強磁性金属の電極で挟んだトンネル接合において、その電気抵抗が二つの強磁性電極の磁化の相対的な向きによって変化する現象である。磁気抵抗の大きさは以下の式で表される。
【0003】
【数1】

Figure 0003815601
この現象は、1995年に発見され〔T.Miyazaki and N.Tezuka,J.Magn.Magn.Mater.,Vol.139(1995)L231.〕、現在では、固定磁気ディスクのピックアップヘッドの磁場センサーや強磁性ランダムアクセスメモリーへの応用研究が進んでいる。この効果を利用して磁気センサーや強磁性ランダムアクセスメモリーを実現するには、有限のバイアス電圧下の磁気抵抗効果の大きさを人為的に制御できることが望ましい。
【0004】
しかし、一般にトンネル磁気抵抗効果はバイアス電圧の増加にともない単調に減少してしまう。このバイアス電圧の増加に伴う磁気抵抗効果の減少は、マグノン散乱やフォノン散乱の増大に起因する本質的なものなので簡単には制御できない。そこで、例えば、トンネル障壁層を二重にしてバイアス電圧の増加に対する磁気抵抗効果の減少を抑える試みがなされている。
【0005】
一方、Moodera等は、強磁性電極とバリヤ層の間に多結晶非磁性中間層を挟んで磁気抵抗のバイアス依存性を変化させることを試みた(Moodera,Phys.Rev.Lett.,vol.83,1999,page 3029−3032.)。
【0006】
図7はかかる磁気抵抗効果素子のゼロバイアス、77KでのAu中間層の膜厚に対する接合磁気抵抗効果の依存性を示す図であり、横軸にAu中間層の厚さ(nm)、縦軸に磁気抵抗効果を示している。また、図8はそのバイアス電圧に対する磁気抵抗効果の依存性を示す図であり、横軸にバイアス電圧(V)、縦軸に磁気抵抗効果を示している。
【0007】
【発明が解決しようとする課題】
しかしながら、上記した強磁性電極とバリヤ層の間に非磁性中間層を挿入したものにおいては、その非磁性中間層として多結晶試料を用いたために極僅かの変化しか見出せなかった。特に、多結晶中間層による電子の散乱のために磁気抵抗効果がその膜厚の増加に伴い急激に減少してしまい、磁気抵抗効果のバイアス電圧依存性をある程度制御することに成功したものの、実用に足る特性は得られなかった。
【0008】
そこで、非磁性中間層の電子散乱を抑えて、大きな中間層膜厚に対しても磁気抵抗効果が大きく減少せず、非磁性層内のスピン偏極の振動を磁気抵抗効果として取り出すことの出来る素子の開発が望まれる。
【0009】
本発明は、上記状況に鑑み、非磁性中間層の電子散乱を抑える素子構造を開発し、非磁性中間層の挿入による磁気抵抗効果の減少の抑制を図るとともに、非磁性中間層の精密な膜厚制御により磁気抵抗効果のバイアス電圧依存性を人為的に制御することができるトンネル磁気抵抗素子および磁気ランダムアクセスメモリを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、
〔1〕トンネル磁気抵抗素子において、バリヤ層と強磁性電極の間にCuの(100)面からなる非磁性金属単結晶中間層を挿入した構造を有することを特徴とする。
【0011】
〕上記〔1〕記載のトンネル磁気抵抗素子において、前記中間層の厚さが2〜32Åであることを特徴とする。
【0012】
〕上記〔1〕記載のトンネル磁気抵抗素子において、前記強磁性電極の下地層または基板がMgO(100)単結晶であることを特徴とする。
【0013】
〕上記〔1〕記載のトンネル磁気抵抗素子において、前記強磁性電極の下地層または基板がGaAs(100)単結晶であることを特徴とする。
【0014】
〕磁気ランダムアクセスメモリであって、上記〔1〕〜〔〕の何れか一項記載のトンネル磁気抵抗素子をマトリックス型磁気ランダムアクセスメモリのワード線とビット線の交差点に接続配置することを特徴とする。
【0015】
すなわち、本発明は、図1に示すように、強磁性電極1上に非磁性金属単結晶中間層又は非磁性金属高配向多結晶中間層2を積層する。次いで、絶縁層3、強磁性電極4を形成する。このように、非磁性中間層を持つトンネル磁気抵抗素子の非磁性層を(100)面からなる非磁性金属単結晶または非磁性金属高配向多結晶中間層2とした。つまり、非磁性金属単結晶の単結晶方位を、立方晶系の(100)±10度以内の高配向とすることにより電子の伝導特性と平坦性を改良する。また、前記非磁性金属高配向多結晶の単結晶方位を、立方晶系の(100)±10度以内で分布する高配向とすることにより電子の伝導特性と平坦性を改良する。これらの素子をMgO(100)またはGaAs(100)単結晶下地層または基板の上に形成することにより特に平坦性と配向性を改善できる。また、Cr(100)下地層を用いることによっても平坦性と配向性を改善できる。
【0016】
また、中間層2をCu,Au,Ag,Cr又はこれらを母材とする合金膜として、その厚さを制御して、最適な厚さを選定することにより、磁気抵抗効果を高いものに設定することができる。
【0017】
さらに、中間層2に印加されるバイアス電圧を制御することにより、極性が反転される磁気抵抗効果を得ることができる。
【0018】
そして、その非磁性中間層の結晶方位を立方晶系の(100)±10度以内と高配向して、より大きな効果を得ることが出来る。
【0019】
また、他の素子とのクロストークなしにマトリックス型磁気ランダムアクセスメモリの交差点の素子の磁気状態を読み出すことができる。
【0020】
さらに、他の素子とのクロストークなしにマトリックス型磁気ランダムアクセスメモリの交差点の素子の磁気状態を二次の高調波によって選択的に読み出すことも可能である。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
【0022】
以下、その実施例を詳細に説明する。
【0023】
図2は本発明の実施例を示すトンネル磁気抵抗素子の断面図である。
【0024】
例えば、MgO(100)単結晶又は高配向多結晶基板上にPt,Co,Cuの順にバッファー層を成長し、表面を非常に平坦にした後に、Co(100)単結晶電極11及びCu(100)非磁性単結晶中間層12を成長し、その上にアルミナバリヤ(Al−O barrier)13と強磁性多結晶上部電極(Ni−Fe poly−crystal)14を成長した素子では、低バイアスにおける磁気抵抗効果がCu層の膜厚に対して図3に示すように振動的に変化する。この結果からCu層の挿入によりスピン偏極が制御されているのが明らかである。
【0025】
また、磁気抵抗効果が1/10になる膜厚は2nm程度であり、図7に示す従来のMooderaの結果の5倍程度に改善されている。
【0026】
また、磁気抵抗のバイアス依存性をいろいろな形に制御することが出来る。特に適当な膜厚を選ぶと、図4に示すようにバイアスの正負によって磁気抵抗の符号が反転する素子も作ることができる。このときの磁気抵抗の大きさも、図8に示す従来のMoodera等の多結晶の場合に比較して10倍程度大きくなる。
【0027】
この他に基板としてSi又はGaAs(100)単結晶を用いることができる。非磁性単結晶又は高配向多結晶膜として、Au,Ag,Cr(100)を用いる場合は、基板としてMgO(100)又はGaAs(100)を用いる。
【0028】
特に、Cr(100)の場合には、基板としてMgO(100)又はGaAs(100)を用いることが望ましい。
【0029】
このような特性を利用すると、例えば高安定度な磁場センサーが可能となる。磁気抵抗素子の抵抗は温度変化するので、磁気抵抗効果の測定には二つの特性のそろった磁気抵抗素子を用意して、片方の素子にのみ測定磁場を加えて、そのときの抵抗の変化をもう一方の素子と比較して検出する差動検出が通常用いられる。ところがこの方法では装置の回路が複雑になるし、素子間のばらつきにより測定を誤るという問題がある。
【0030】
さて、図4に示すような特性を持つ素子に交流電圧を加えると磁気抵抗に起因する非線形応答によって高調波が発生する。この高調波の強度・符号及び位相は磁化の向きに依存する。このような非線形応答はバリスティックな伝導成分によって決まるので電気抵抗の温度変化と無関係で外部環境の変化に対して非常に安定である。従って、差動検出なしに磁化の方向を超高安定度・超高感度に測定することが出来る。
【0031】
上記したように、本発明では、下部電極に強磁性金属と非磁性金属からなる単結晶人工格子を用い、量子サイズ効果、特にスピン偏極量子井戸準位の形成とTMR効果の関係を調べた。単結晶fcc Co(100)電極とアモルファスAl−Oトンネルバリア層の間に非磁性のCu(100)層(2〜32Å)を挿入したMTJ(マグネティック・トンネル・接合)(図2参照)を作製し、TMR効果のCu膜厚依存性を測定した結果を図3に示した。この図から明らかなように、MR比はCu膜厚に対して12.5Å周期の減衰振動を示した。特筆すべきこととして、MR比の符号が反転するほど大きな振動が観測された。この振動周期はCo(100)/Cu(100)多層膜の層間結合の周期(Period)と一致しており、Cu(100)層中に生成したスピン偏極量子井戸準位に起因していると考えられる。
【0032】
図5は本発明のトンネル磁気抵抗素子を適用した第1の回路構成例を示す図である。
【0033】
この図において、21はワード線、22はビット線、23は本発明のトンネル磁気抵抗素子、24は直流電源、25は電流計である。
【0034】
また、本発明のトンネル磁気抵抗素子を用いて非常に単純な強磁性ランダムアクセスメモリを構成することが出来る。今までの強磁性ランダムアクセスメモリでは、記録の担体であるトンネル磁気抵抗素子にアクセスするためにMOS−FETをパストランジスタとして用いる必要があった。
【0035】
ところが、本発明のトンネル磁気抵抗素子を用いると、図5に示すような単純なマトリックスから記録情報を選択的に読み出すことが出来る。一対のワード・ビット線間に直流電圧Vを加えると、その交差点にあるトンネル素子にこの電圧が加わるが周辺の素子にも例えばV/3の電圧が加わる。
【0036】
従って、通常の素子を使うと回りの素子とのクロストークが問題となる。そこで、本発明の図4に示すような特性を持つトンネル磁気抵抗素子を使うとバイアス電圧Vに対しては磁気抵抗効果を示すが、V/3に対しては磁気抵抗効果を示さないので、他の素子とのクロストークなしに交差点の素子の磁気状態を読み出すことが出来る。
【0037】
図6は本発明のトンネル磁気抵抗素子を適用した第2の回路構成例を示す図である。この図において、31はワード線、32はビット線、33は本発明のトンネル磁気抵抗素子、34は高調波検出器、35は高周波電源である。
【0038】
また、別の方法として、二次の高調波によって信号を選択的に読み出すことも可能である。線形応答によって磁気抵抗を測定すると、磁気抵抗にバイアス依存が無い場合、目的の素子とその周辺の素子との信号への寄与率は1:1/3だが非線形応答である2次の応答による高調波の発生やパルス形状の変化を使って検出すると、その信号比は1:1/9となり大幅に周辺の素子からのクロストークを減らすことが出来る。さらに、応答のバイアス依存性を最適に設計すれば、この比をもっと大きく取ることも可能である。
【0039】
さらに、上記実施例では中間層として、単結晶fcc Cu(100)を用いたが、これに代えて、Au,Ag,Cr又はこれらを母材とする合金の単結晶又は高配向多結晶を用いるようにしてもよい。
【0040】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0041】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0042】
(A)非磁性中間層の電子散乱を抑える素子構造を開発し、非磁性中間層の精密な膜厚制御により磁気抵抗効果を抑え、磁気抵抗効果のバイアス電圧依存性を人為的に制御することができる。
【0043】
(B)強磁性トンネル磁気抵抗膜において原子層のオーダーの非磁性極薄膜を強磁性電極とバリヤ層の間に挿入することにより、磁気抵抗効果がバイアス電圧に対して振幅動的に変化するトンネル磁気抵抗素子を得ることができる。
【0044】
(C)中間層をCu,Au,Ag,Cr又はこれらを母材とする合金膜として、その厚さを制御して、最適な厚さを選定することにより、磁気抵抗効果を高いものに設定することができる。
【0045】
(D)さらに、中間層に印加されるバイアス電圧を制御することにより、極性が反転される磁気抵抗効果を得ることができる。
【0046】
(E)非磁性中間層の結晶方位を立方晶系の(100)±10度以内に分布するように制御することにより、より大きな磁気抵抗効果を得ることが出来る。
【0047】
(F)他の素子とのクロストークなしにマトリックス型磁気ランダムアクセスメモリの交差点の素子の磁気状態を読み出すことができる。
【0048】
(G)さらに、他の素子とのクロストークなしにマトリックス型磁気ランダムアクセスメモリの二次の高調波によって信号を選択的に読み出すことも可能である。
【図面の簡単な説明】
【図1】 本発明にかかるトンネル磁気抵抗素子の断面図である。
【図2】 本発明の実施例を示すトンネル磁気抵抗素子の断面図である。
【図3】 本発明の実施例を示すトンネル磁気抵抗素子の低バイアスにおける室温での磁気抵抗のCu層の膜厚依存性を示す図である。
【図4】 本発明の実施例を示すトンネル磁気抵抗素子の室温での磁気抵抗のバイアス依存性を示す図である。
【図5】 本発明のトンネル磁気抵抗素子を適用した第1の回路構成例を示す図である。
【図6】 本発明のトンネル磁気抵抗素子を適用した第2の回路構成例を示す図である。
【図7】 従来の磁気抵抗効果素子のゼロバイアス、77KでのAu中間層の膜厚に対する磁気抵抗効果の依存性を示す図である。
【図8】 従来の磁気抵抗効果素子のゼロバイアス、77KでのAu中間層の膜厚に対する磁気抵抗効果の依存性を示す図である。
【符号の説明】
1 強磁性電極
2 非磁性金属単結晶又は高配向非磁性金属多結晶中間層
3 絶縁層
4 強磁性電極
11 Co(100)単結晶電極
12 Cu(100)非磁性単結晶中間層
13 アルミナバリヤ(Al−O barrire)
14 強磁性多結晶上部電極(Ni−Fe poly−crystal)
21,31 ワード線
22,32 ビット線
23,33 トンネル磁気抵抗素子
24 直流電源
25 電流計
34 高調波検出器
35 高周波電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tunnel magnetoresistive element, and more particularly to a tunnel magnetoresistive element and a magnetic random access memory in which the bias voltage dependence of the magnetoresistive effect is controlled.
[0002]
[Prior art]
The tunnel magnetoresistance effect is a phenomenon in which the electrical resistance changes depending on the relative directions of magnetization of two ferromagnetic electrodes in a tunnel junction in which an insulator is sandwiched between ferromagnetic metal electrodes. The magnitude of the magnetic resistance is expressed by the following equation.
[0003]
[Expression 1]
Figure 0003815601
This phenomenon was discovered in 1995 [T. Miyazaki and N.M. Tezuka, J. et al. Magn. Magn. Mater. , Vol. 139 (1995) L231. At present, research on application to magnetic field sensors and magnetic random access memories of fixed magnetic disk pickup heads is in progress. In order to realize a magnetic sensor or a ferromagnetic random access memory using this effect, it is desirable to be able to artificially control the magnitude of the magnetoresistive effect under a finite bias voltage.
[0004]
However, in general, the tunnel magnetoresistive effect monotonously decreases as the bias voltage increases. The decrease in magnetoresistive effect due to the increase in bias voltage is essential due to the increase in magnon scattering and phonon scattering, and cannot be easily controlled. Therefore, for example, an attempt has been made to suppress a decrease in magnetoresistance effect with respect to an increase in bias voltage by doubling the tunnel barrier layer.
[0005]
On the other hand, Moodera et al. Attempted to change the bias dependence of magnetoresistance by sandwiching a polycrystalline nonmagnetic intermediate layer between a ferromagnetic electrode and a barrier layer (Moodera, Phys. Rev. Lett., Vol. 83). 1999, page 3029-3032.).
[0006]
FIG. 7 is a graph showing the dependence of the junction magnetoresistive effect on the thickness of the Au intermediate layer at 77 K at zero bias of the magnetoresistive effect element. The horizontal axis represents the thickness (nm) of the Au intermediate layer, and the vertical axis. Shows the magnetoresistive effect. FIG. 8 is a diagram showing the dependence of the magnetoresistive effect on the bias voltage. The horizontal axis represents the bias voltage (V), and the vertical axis represents the magnetoresistive effect.
[0007]
[Problems to be solved by the invention]
However, in the case where a nonmagnetic intermediate layer is inserted between the ferromagnetic electrode and the barrier layer described above, only a slight change was found because a polycrystalline sample was used as the nonmagnetic intermediate layer. In particular, the magnetoresistive effect decreased rapidly with increasing film thickness due to the scattering of electrons by the polycrystalline interlayer, and the bias voltage dependence of the magnetoresistive effect was successfully controlled to some extent. However, sufficient characteristics were not obtained.
[0008]
Therefore, the electron scattering of the nonmagnetic intermediate layer is suppressed, and the magnetoresistive effect is not greatly reduced even for a large intermediate layer thickness, and the spin-polarized vibration in the nonmagnetic layer can be extracted as the magnetoresistive effect. Development of devices is desired.
[0009]
In view of the above situation, the present invention has developed an element structure that suppresses electron scattering of a nonmagnetic intermediate layer, and suppresses a decrease in magnetoresistive effect due to the insertion of the nonmagnetic intermediate layer, and a precise film of the nonmagnetic intermediate layer. An object of the present invention is to provide a tunnel magnetoresistive element and a magnetic random access memory capable of artificially controlling the bias voltage dependence of the magnetoresistive effect by controlling the thickness.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention
[1] The tunnel magnetoresistive element has a structure in which a nonmagnetic metal single crystal intermediate layer made of a (100) surface of Cu is inserted between a barrier layer and a ferromagnetic electrode.
[0011]
[ 2 ] The tunnel magnetoresistive element according to [1], wherein the intermediate layer has a thickness of 2 to 32 mm.
[0012]
[ 3 ] The tunnel magnetoresistive element according to [1], wherein the base layer or substrate of the ferromagnetic electrode is an MgO (100) single crystal.
[0013]
[ 4 ] The tunnel magnetoresistive element according to [1], wherein the base layer or substrate of the ferromagnetic electrode is a GaAs (100) single crystal.
[0014]
[ 5 ] A magnetic random access memory, wherein the tunnel magnetoresistive element according to any one of [1] to [ 4 ] is connected and arranged at the intersection of the word line and the bit line of the matrix type magnetic random access memory. It is characterized by.
[0015]
That is, in the present invention, as shown in FIG. 1, a nonmagnetic metal single crystal intermediate layer or a nonmagnetic metal highly oriented polycrystalline intermediate layer 2 is laminated on a ferromagnetic electrode 1. Next, the insulating layer 3 and the ferromagnetic electrode 4 are formed. Thus, the nonmagnetic layer of the tunnel magnetoresistive element having the nonmagnetic intermediate layer was the nonmagnetic metal single crystal or nonmagnetic metal highly oriented polycrystalline intermediate layer 2 having a (100) plane. That is, the single crystal orientation of the nonmagnetic metal single crystal is set to a high orientation within a cubic system (100) ± 10 degrees to improve the electron conduction characteristics and flatness. In addition, the single crystal orientation of the non-magnetic metal highly oriented polycrystal is a high orientation distributed within (100) ± 10 degrees of the cubic system, thereby improving electron conduction characteristics and flatness. By forming these elements on the MgO (100) or GaAs (100) single crystal underlayer or substrate, the flatness and orientation can be improved particularly. Also, the flatness and orientation can be improved by using a Cr (100) underlayer.
[0016]
Further, the intermediate layer 2 is made of Cu, Au, Ag, Cr or an alloy film using these as a base material, and the thickness is controlled to select an optimum thickness, thereby setting the magnetoresistive effect high. can do.
[0017]
Furthermore, by controlling the bias voltage applied to the intermediate layer 2, it is possible to obtain a magnetoresistive effect whose polarity is reversed.
[0018]
Then, the crystal orientation of the nonmagnetic intermediate layer can be highly oriented within a cubic (100) ± 10 degrees to obtain a greater effect.
[0019]
In addition, the magnetic state of the element at the intersection of the matrix magnetic random access memory can be read without crosstalk with other elements.
[0020]
Furthermore, it is possible to selectively read out the magnetic state of the element at the intersection of the matrix type magnetic random access memory by the second harmonic without crosstalk with other elements.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0022]
Hereinafter, the embodiment will be described in detail.
[0023]
FIG. 2 is a sectional view of a tunnel magnetoresistive element showing an embodiment of the present invention.
[0024]
For example, after growing a buffer layer in the order of Pt, Co, and Cu on a MgO (100) single crystal or highly oriented polycrystalline substrate and making the surface very flat, the Co (100) single crystal electrode 11 and Cu (100 ) In a device in which a nonmagnetic single crystal intermediate layer 12 is grown and an alumina barrier (Al-O barrier) 13 and a ferromagnetic polycrystalline upper electrode (Ni-Fe poly-crystal) 14 are grown thereon, a magnetic field at a low bias is obtained. The resistance effect changes in vibration as shown in FIG. 3 with respect to the film thickness of the Cu layer. From this result, it is clear that the spin polarization is controlled by the insertion of the Cu layer.
[0025]
The film thickness at which the magnetoresistive effect becomes 1/10 is about 2 nm, which is improved to about 5 times the result of the conventional Moodera shown in FIG.
[0026]
In addition, the bias dependence of the magnetic resistance can be controlled in various ways. In particular, when an appropriate film thickness is selected, an element in which the sign of the magnetoresistance is reversed by the positive / negative bias as shown in FIG. 4 can be produced. The magnitude of the magnetic resistance at this time is also about 10 times larger than that of the conventional polycrystal such as Modera shown in FIG.
[0027]
In addition, Si or GaAs (100) single crystal can be used as the substrate. When Au, Ag, Cr (100) is used as the nonmagnetic single crystal or highly oriented polycrystalline film, MgO (100) or GaAs (100) is used as the substrate.
[0028]
In particular, in the case of Cr (100), it is desirable to use MgO (100) or GaAs (100) as the substrate.
[0029]
By utilizing such characteristics, for example, a highly stable magnetic field sensor can be realized. Since the resistance of the magnetoresistive element changes with temperature, a magnetoresistive element with two characteristics is prepared for measuring the magnetoresistive effect, and a measurement magnetic field is applied to only one element, and the change in resistance at that time is measured. Differential detection, which is detected by comparison with the other element, is usually used. However, this method complicates the circuit of the apparatus and has a problem that measurement is erroneous due to variations between elements.
[0030]
Now, when an AC voltage is applied to an element having the characteristics shown in FIG. 4, harmonics are generated by a non-linear response due to the magnetic resistance. The intensity, sign, and phase of this harmonic depend on the direction of magnetization. Since such a non-linear response is determined by a ballistic conductive component, it is very stable against changes in the external environment regardless of the temperature change of the electrical resistance. Therefore, the direction of magnetization can be measured with ultra-high stability and ultra-high sensitivity without differential detection.
[0031]
As described above, in the present invention, a single crystal artificial lattice made of a ferromagnetic metal and a nonmagnetic metal is used for the lower electrode, and the relationship between the quantum size effect, particularly the formation of the spin-polarized quantum well level and the TMR effect, was investigated. . An MTJ (Magnetic Tunnel Junction) (see FIG. 2) in which a nonmagnetic Cu (100) layer (2 to 32 mm) is inserted between a single crystal fcc Co (100) electrode and an amorphous Al-O tunnel barrier layer is fabricated. The results of measuring the dependency of the TMR effect on the Cu film thickness are shown in FIG. As is clear from this figure, the MR ratio showed a damped oscillation having a period of 12.5 mm with respect to the Cu film thickness. It should be noted that a large vibration was observed as the sign of the MR ratio was reversed. This oscillation period coincides with the period (Period) of the interlayer coupling of the Co (100) / Cu (100) multilayer film, and is caused by the spin-polarized quantum well level generated in the Cu (100) layer. it is conceivable that.
[0032]
FIG. 5 is a diagram showing a first circuit configuration example to which the tunnel magnetoresistive element of the present invention is applied.
[0033]
In this figure, 21 is a word line, 22 is a bit line, 23 is a tunnel magnetoresistive element of the present invention, 24 is a DC power supply, and 25 is an ammeter.
[0034]
In addition, a very simple ferromagnetic random access memory can be constructed using the tunnel magnetoresistive element of the present invention. In conventional ferromagnetic random access memories, it is necessary to use a MOS-FET as a pass transistor in order to access a tunnel magnetoresistive element which is a recording carrier.
[0035]
However, when the tunnel magnetoresistive element of the present invention is used, recorded information can be selectively read out from a simple matrix as shown in FIG. When a DC voltage V is applied between a pair of word and bit lines, this voltage is applied to the tunnel element at the intersection, but a voltage of, for example, V / 3 is also applied to the peripheral elements.
[0036]
Therefore, when a normal element is used, crosstalk with surrounding elements becomes a problem. Therefore, when the tunnel magnetoresistive element having the characteristics shown in FIG. 4 of the present invention is used, the magnetoresistive effect is exhibited with respect to the bias voltage V, but the magnetoresistive effect is not exhibited with respect to V / 3. The magnetic state of the element at the intersection can be read without crosstalk with other elements.
[0037]
FIG. 6 is a diagram showing a second circuit configuration example to which the tunnel magnetoresistive element of the present invention is applied. In this figure, 31 is a word line, 32 is a bit line, 33 is a tunnel magnetoresistive element of the present invention, 34 is a harmonic detector, and 35 is a high frequency power source.
[0038]
As another method, it is also possible to selectively read out the signal by the second harmonic. When the magnetoresistance is measured by a linear response, if the magnetoresistance has no bias dependence, the contribution ratio to the signal of the target element and its peripheral elements is 1: 1/3, but the harmonic due to the second order response which is a non-linear response. When detection is performed using the generation of a wave or a change in pulse shape, the signal ratio is 1: 1/9, and crosstalk from surrounding elements can be greatly reduced. Furthermore, if the bias dependence of the response is designed optimally, this ratio can be made larger.
[0039]
Further, in the above embodiment, single crystal fcc Cu (100) is used as the intermediate layer, but instead of this, single crystal or highly oriented polycrystal of Au, Ag, Cr or an alloy based on these is used. You may do it.
[0040]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0041]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0042]
(A) An element structure that suppresses electron scattering of the nonmagnetic intermediate layer is developed, the magnetoresistive effect is suppressed by precise film thickness control of the nonmagnetic intermediate layer, and the bias voltage dependence of the magnetoresistive effect is artificially controlled. Can do.
[0043]
(B) A tunnel in which the magnetoresistive effect is dynamically changed with respect to the bias voltage by inserting a nonmagnetic ultrathin film in the order of atomic layers between the ferromagnetic electrode and the barrier layer in the ferromagnetic tunnel magnetoresistive film. A magnetoresistive element can be obtained.
[0044]
(C) The intermediate layer is made of Cu, Au, Ag, Cr or an alloy film using these as a base material, and the thickness is controlled, and the optimum thickness is selected to set the magnetoresistive effect high. can do.
[0045]
(D) Furthermore, by controlling the bias voltage applied to the intermediate layer, it is possible to obtain a magnetoresistive effect whose polarity is reversed.
[0046]
(E) A larger magnetoresistance effect can be obtained by controlling the crystal orientation of the nonmagnetic intermediate layer so that it is distributed within a cubic (100) ± 10 degrees.
[0047]
(F) The magnetic state of the element at the intersection of the matrix type magnetic random access memory can be read without crosstalk with other elements.
[0048]
(G) Furthermore, it is also possible to selectively read out signals by the second harmonic of the matrix magnetic random access memory without crosstalk with other elements.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tunnel magnetoresistive element according to the present invention.
FIG. 2 is a cross-sectional view of a tunnel magnetoresistive element showing an embodiment of the present invention.
FIG. 3 is a diagram showing the film thickness dependence of the magnetoresistance at room temperature at a low bias of the tunnel magnetoresistive element according to the embodiment of the present invention.
FIG. 4 is a diagram showing bias dependence of magnetoresistance at room temperature of a tunnel magnetoresistive element according to an embodiment of the present invention.
FIG. 5 is a diagram showing a first circuit configuration example to which the tunnel magnetoresistive element of the present invention is applied.
FIG. 6 is a diagram showing a second circuit configuration example to which the tunnel magnetoresistive element of the present invention is applied.
FIG. 7 is a graph showing the dependence of the magnetoresistive effect on the thickness of the Au intermediate layer at 77 K with a zero bias of a conventional magnetoresistive effect element.
FIG. 8 is a diagram showing the dependence of the magnetoresistive effect on the thickness of the Au intermediate layer at 77 K with zero bias of a conventional magnetoresistive effect element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ferromagnetic electrode 2 Nonmagnetic metal single crystal or highly oriented nonmagnetic metal polycrystal intermediate layer 3 Insulating layer 4 Ferromagnetic electrode 11 Co (100) single crystal electrode 12 Cu (100) nonmagnetic single crystal intermediate layer 13 Alumina barrier ( Al-O barire)
14 Ferromagnetic polycrystalline upper electrode (Ni-Fe poly-crystal)
21, 31 Word line 22, 32 Bit line 23, 33 Tunnel magnetoresistive element 24 DC power supply 25 Ammeter 34 Harmonic detector 35 High frequency power supply

Claims (5)

バリヤ層と強磁性電極の間にCuの(100)面からなる非磁性金属単結晶中間層を挿入した構造を有することを特徴とするトンネル磁気抵抗素子。A tunnel magnetoresistive element having a structure in which a nonmagnetic metal single crystal intermediate layer made of a (100) surface of Cu is inserted between a barrier layer and a ferromagnetic electrode. 請求項1記載のトンネル磁気抵抗素子において、前記中間層の厚さが2〜32Åであることを特徴とするトンネル磁気抵抗素子。  The tunnel magnetoresistive element according to claim 1, wherein the intermediate layer has a thickness of 2 to 32 mm. 請求項1記載のトンネル磁気抵抗素子において、前記強磁性電極の下地層または基板がMgO(100)単結晶であることを特徴とするトンネル磁気抵抗素子。  2. The tunnel magnetoresistive element according to claim 1, wherein the underlayer or substrate of the ferromagnetic electrode is MgO (100) single crystal. 請求項1記載のトンネル磁気抵抗素子において、前記強磁性電極の下地層または基板がGaAs(100)単結晶であることを特徴とするトンネル磁気抵抗素子。  2. The tunnel magnetoresistive element according to claim 1, wherein the underlayer or substrate of the ferromagnetic electrode is a GaAs (100) single crystal. 請求項1〜の何れか一項記載のトンネル磁気抵抗素子をマトリックス型磁気ランダムアクセスメモリのワード線とビット線の交差点に接続配置することを特徴とする磁気ランダムアクセスメモリ。The magnetic random access memory, characterized in that the tunneling magnetoresistive element according to any one of claims 1-4 to connect disposed at the intersection of word lines and bit lines of the matrix-type magnetic random access memory.
JP2001279289A 2001-05-31 2001-09-14 Tunnel magnetoresistive element and magnetic random access memory Expired - Lifetime JP3815601B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001279289A JP3815601B2 (en) 2001-09-14 2001-09-14 Tunnel magnetoresistive element and magnetic random access memory
EP02730704A EP1391942A4 (en) 2001-05-31 2002-05-24 Tunnel magnetoresistance element
KR1020037015607A KR100886602B1 (en) 2001-05-31 2002-05-24 Tunnel magnetoresistance element
PCT/JP2002/005049 WO2002099905A1 (en) 2001-05-31 2002-05-24 Tunnel magnetoresistance element
US10/478,203 US7220498B2 (en) 2001-05-31 2002-05-24 Tunnel magnetoresistance element
US11/673,919 US7514160B2 (en) 2001-05-31 2007-02-12 Tunnel magnetoresistance element having a double underlayer of amorphous MgO and crystalline MgO(001)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279289A JP3815601B2 (en) 2001-09-14 2001-09-14 Tunnel magnetoresistive element and magnetic random access memory

Publications (2)

Publication Number Publication Date
JP2003086863A JP2003086863A (en) 2003-03-20
JP3815601B2 true JP3815601B2 (en) 2006-08-30

Family

ID=19103513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279289A Expired - Lifetime JP3815601B2 (en) 2001-05-31 2001-09-14 Tunnel magnetoresistive element and magnetic random access memory

Country Status (1)

Country Link
JP (1) JP3815601B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133687B2 (en) 2003-08-27 2008-08-13 独立行政法人産業技術総合研究所 Tunnel junction element
JP4082711B2 (en) 2004-03-12 2008-04-30 独立行政法人科学技術振興機構 Magnetoresistive element and manufacturing method thereof
JP4292128B2 (en) 2004-09-07 2009-07-08 キヤノンアネルバ株式会社 Method for manufacturing magnetoresistive element
EP2065886A1 (en) * 2007-11-27 2009-06-03 Hitachi Ltd. Magnetoresistive device
WO2011036752A1 (en) * 2009-09-24 2011-03-31 株式会社日立製作所 Resonant tunneling magnetoresistance effect element, magnetic memory cell, and magnetic random access memory
US8564911B2 (en) * 2011-02-17 2013-10-22 Tdk Corporation Magneto-resistive effect element having spacer layer including gallium oxide layer with metal element
US8593766B2 (en) * 2011-02-22 2013-11-26 Tdk Corporation Magneto-resistive effect element having spacer layer including main spacer layer containing gallium oxide and metal intermediate layer
US8498083B2 (en) 2011-03-16 2013-07-30 Tdk Corporation Magneto-resistive effect element having spacer layer containing gallium oxide, partially oxidized copper

Also Published As

Publication number Publication date
JP2003086863A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP4568926B2 (en) Magnetic functional element and magnetic recording apparatus
US7514160B2 (en) Tunnel magnetoresistance element having a double underlayer of amorphous MgO and crystalline MgO(001)
KR100280558B1 (en) Magnetic tunnel junction device with nonferromagnetic interface layer for improved magnetic field response
Zhu et al. Magnetic tunnel junctions
JP2771128B2 (en) Magnetoresistive element, magnetoresistive head using the same, memory element, and amplifying element
JP5142923B2 (en) Magnetic oscillation element, magnetic sensor, and magnetic recording / reproducing apparatus
US5936293A (en) Hard/soft magnetic tunnel junction device with stable hard ferromagnetic layer
TW591813B (en) Magnetoresistive effect element and magnetic memory having the same
KR102006671B1 (en) Magnetic element, skyrmion memory, solid-state electronic device, data-storage device, data processing and communication device
JP5746595B2 (en) Magnetic memory and manufacturing method thereof
JPH11161919A (en) Magnetic tunnel junction element and reading sensor
JP2004179667A (en) Magnetoresistive element, magnetoresistive memory cell and method for storing digital signal
JP2008124322A (en) Ferromagnetic tunnel junction element, method for manufacturing the same, magnetic head using the same, and magnetic memory
JPH10162326A (en) Magnetic tunnel junction element, junction memory- cell and junction magnetic field sensor
JP2005539376A (en) Amorphous alloys for magnetic devices
JP2009152333A (en) Ferromagnetic tunnel junction element, magnetic head, and magnetic storage
JP5987613B2 (en) Storage element, storage device, magnetic head
WO2000041250A1 (en) Spin dependent tunneling sensor
JPH11238924A (en) Spin-dependent transmission element electronic component using the same, and magnetic part
JP3815601B2 (en) Tunnel magnetoresistive element and magnetic random access memory
JP5034317B2 (en) Memory element and memory
JP3559722B2 (en) Magnetoresistive element, solid-state memory
US11163023B2 (en) Magnetic device
JPH10308313A (en) Magnetic element and magnetic head using the same and magnetic storage device
EP1925946A2 (en) Tunnel magnetoresistance element

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060531

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 3815601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term