JP3815531B2 - Regenerative water purifier - Google Patents

Regenerative water purifier Download PDF

Info

Publication number
JP3815531B2
JP3815531B2 JP00647699A JP647699A JP3815531B2 JP 3815531 B2 JP3815531 B2 JP 3815531B2 JP 00647699 A JP00647699 A JP 00647699A JP 647699 A JP647699 A JP 647699A JP 3815531 B2 JP3815531 B2 JP 3815531B2
Authority
JP
Japan
Prior art keywords
water
flow rate
suction
regenerative
septic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00647699A
Other languages
Japanese (ja)
Other versions
JP2000202433A (en
Inventor
功 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP00647699A priority Critical patent/JP3815531B2/en
Publication of JP2000202433A publication Critical patent/JP2000202433A/en
Application granted granted Critical
Publication of JP3815531B2 publication Critical patent/JP3815531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水道水や地下水等の原水を浄化殺菌して浄水を給送する再生式浄水装置に関するものである。
【0002】
【従来の技術】
従来、この種の再生式浄水装置として、出願人は特開平9−1130号公報に記載されたものを既に提案している。
【0003】
この再生式浄水装置は、浄化槽内に導電性活性炭等で形成された吸着部を配置しており、この吸着部に水道水を通過させ、水道水のカビ臭、カルキ臭、トリハロメタン、微生物等を捕捉し、蛇口等に浄水を給送している。
【0004】
このような吸着部の吸着作用が長期間に亘るときは、有機物等が付着して吸着部で目詰まりを起こしたり、細菌類等が増殖するため、吸着部を再生する必要がある。
【0005】
この再生操作を実施するときは、まず、浄化槽に接続したアスピレータ(吸引器)に水道水を引き込み、浄化槽側を負圧として浄化槽内の水を抜く(排水工程)。次いで、各電極に交流電流を通電して吸着部を電気加熱し、吸着部に付着した有機物を脱離させたり、細菌類等を殺菌する(脱離工程)。この脱離工程中に一定間隔でアスピレータに水道水を引き込み、浄化槽側を負圧として、外気を浄化槽内に導入する。これにより、吸着部から脱離した有機物等がアスピレータに吸引され、排気される(排気工程)。このような脱離工程中の排気工程を複数回繰り返して、吸着部から有機物等を除去して吸着部を乾燥再生させ、次回の浄水生成処理に備える。
【0006】
【発明が解決しようとする課題】
前記従来の再生式浄水装置は、その排気工程において、アスピレータに引き込まれた水道水の水流を利用して浄化槽内の吸着部を乾燥再生させるためため、その排気効率が水道水の水流(流量)に大きな影響を受けることとなる。
【0007】
ところで、水道水圧は水道施設が設置された地域(地方自治体)によって異なるし、また、同じ地域の水道施設を利用するときでも、その使用場所が高所であるか否かにより異なるものである。更に、高層マンションの如く、水道水を屋上の貯水槽に一旦汲み上げ、これを各部屋に配水する場合にあっても、その設置箇所が主配管から離れた場所等では、これまた、管抵抗により給水圧力が低くなる。
【0008】
このように、前記従来の再生式浄水装置では、水道水圧が低くなる高所等で使用するときアスピレータに流れる流量が少なくなり、アスピレータの吸引力が小さくなるため、排気が不十分となり、吸着部の再生効率が低下するという問題点を有していた。
【0009】
本発明の目的は前記従来の課題に鑑み、吸引排出手段への原水流量が少ないときでも、浄化槽内の吸着部を確実に乾燥再生できる再生式浄水装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明は前記課題を解決するため、請求項1の発明は、導電性活性炭等の吸着部が収容された浄化槽に水道水等の原水を通水させ浄水を生成する浄水生成手段と、吸着部を電気加熱し吸着部に付着した有機物の脱離や細菌類等を殺菌する脱離手段と、原水を引き込み通水に伴う吸引力により浄化槽内の水や空気を吸引し排出する吸引排出手段とを備え、脱離手段と吸引排出手段とを稼働して吸着部から脱離した有機物等を排出し、吸着部を再生する再生式浄水装置において、吸引排出手段に引き込まれる原水流量を検知する流量検知手段を設けるとともに、流量検知手段の検知流量に基づき吸引排出手段の稼働時間を制御する制御手段を有する構造となっている。
【0011】
請求項1の発明によれば、流量検知手段の検知流量、例えば検知流量が少ないときは吸引排出手段の稼働時間を長く設定する。これにより、稼働時間が長くなった分、吸引排出手段による吸引時間が長くなり、浄化槽内の有機物等を確実に排出できる。
【0012】
この稼働時間の長時間設定として、請求項2の発明の如く一回当たりの稼働時間を長くしたり、或いは、請求項3の発明の如く稼働回数を増加すればよい。
【0013】
一方、請求項4の発明では、吸引排出手段に引き込まれる原水流量を検知する流量検知手段を設けるとともに、流量検知手段の検知流量に基づき脱離手段の電気加熱温度を制御する制御手段を有する構造となっている。
【0014】
請求項4及び請求項5の発明によれば、流量検知手段の検知流量が例えば少ないときは脱離手段の電気加熱温度を高く設定する。これにより、電気加熱温度が高くなった分、吸着部からの有機物等の脱離が促進される。
【0015】
請求項6の発明は、請求項1に係る吸引排出手段の稼働時間制御と請求項4の脱離手段の電気加熱温度制御の両者を用いて制御する構造となっている。これにより、吸着部の再生能力を更に向上させている。
【0016】
【発明の実施の形態】
図1乃至図7は本発明に係る再生式浄水装置の第1実施形態を示すもので、図1は再生式浄水装置の水回路図、図2はアスピレータの構造を示す断面図、図3はアスピレータ通水量と排気量との関係を示すグラフ、図4は再生式浄水装置の制御回路を示すブロック図、図5は再生処理工程のタイムチャートの1、図6は再生処理工程のタイムチャートの2、図7は再生処理工程の制御フローチャートである。
【0017】
図1を参照して再生式浄水装置の水回路を説明する。この再生式浄水装置は、浄化槽Aと蛇口Bとを配管接続したものである。この浄化槽Aはその入口側に給水弁(電磁弁構成)SVを有し、この給水弁SVを通じて原水(水道水)が流入するようになっている。一方、浄化槽A内に流入した原水はその内部で浄化され、蛇口Bに給送されるようになっている。
【0018】
ここで、浄化槽Aは内部に導電性活性炭等で形成された吸着部1を有し、この吸着部1で原水のカビ臭、カルキ臭、トリハロメタン、微生物等が捕捉され、浄水が生成される(浄水処理)。また、吸着部1の上下には一対の電極2a,2bが配置され、この電極2a,2bに交流電圧を印加することにより吸着部1でジュール熱を発生し、吸着部1に付着した有機物等を剥離する一方、微生物等を殺菌するようになっている(再生処理)。また、浄化槽Aには温度センサTSが設置されており、この温度センサTSで吸着部1の温度を検知している。更に浄化槽Aは逆止弁CV1を通じて大気に連通している。
【0019】
この吸着部1の再生処理の際は浄化槽A内の水を排水するが、この排水機器として吸引器(アスピレータ)3を用いている。このアスピレータ3は既に公知のものであるが、図2に示すように、その第1の入口31が逆止弁CV2を介して浄化槽Aに接続し、浄化槽A内の水が第1の入口31から流入する。また、アスピレータ3はその第2の入口32が水道管に接続しており、水道水の流入に伴う吸引力により浄化槽A内の水をアスピレータ3側に吸引する。更に、アスピレータ3の出口33の下流側には排水弁(電動弁構成)MVを有し、この排水弁MVにより浄化槽A内の水等の排出を制御する。更にまた、アスピレータ3の上流側には水道水の通水量を検知する流量センサ(FS)が設置されている。このアスピレータ3による浄化槽Aの排気量を図3に示したが、この図3から明らかなようにアスピレータ3の通水量に比例して排気量が増減している。
【0020】
次に、本実施形態に係る再生式浄水装置の駆動制御回路を図2のブロック図を参照して説明する。
【0021】
本実施形態に係る再生式浄水装置はマイクロコンピュータ等による制御装置4を備えて自動化されている。制御装置4は中央演算装置(CPU)41、制御プログラムを記憶しているメモリ42を有している。また、この制御装置4は、I/Oポート43,44を有し、このI/Oポート43は制御装置4とタイマTM、流量センサFS及び温度センサTSとの間で信号を入出力する。一方、このI/Oポート44は制御装置4と給水弁SV、排水弁MV及び電極用交流電源ACの間で信号を入出力する。この制御装置4に基づき再生処理制御を行っている。
【0022】
この再生処理制御を図5及び図6のタイムチャートと図7のフローチャートを参照して説明する。
【0023】
浄水処理の継続により吸着部1に細菌類等が増殖したときは、再生処理の工程に移行する。この再生処理工程に移行する際は、浄水処理がされているか否か(蛇口Bを開いて浄水が使用されているか否か)を給水弁SVの開閉で検知し、この給水弁SVが閉となっているときに再生処理工程に移行する(S1)。
【0024】
この再生処理工程ではまず排水工程に入る(S2)。この排水工程は浄化槽A内の水を排水し得る時間T1に亘って行われるもので、その時間T1に亘って排水弁MVを開く。この排水弁MVの開放に伴い水道水がアスピレータ3に流れ込み、これに伴い吸引力が作用して浄化槽A内の水を同じくアスピレータ3に引き込む。これにより、浄化槽A内の水が排水される。また、アスピレータ3に流れ込む水道水の流量は流量センサFSで検知されている。
【0025】
この排水工程が終了したときは、脱離工程に移行する(S4)。この脱離工程に入る際に、検知流量が図3に示す下限流量CLよりも少ないか否かを判定する(S3)。この判定で下限流量CLよりも流量が多いとき、即ち浄化槽A内の水が十分に排水できる流量となっているときは、まず、排水弁MVを閉じ、各電極2a,2bに交流電圧を印加する。この電圧印加により吸着部1でジュール熱が発生し、吸着部1を設定温度t1(95℃)で加熱乾燥する。この加熱乾燥を時間T2に亘って行い、吸着部1に付着した有機物を脱離させるとともに、細菌類等を殺菌する。
【0026】
この脱離工程中に排気工程が一定間隔T2で稼働する。この排気工程では時間T3に亘って排水弁MVを開ける。これにより、水道水が前記排水工程のときと同様にアスピレータ3内に流れ、外気が吸着部に導入されるとともに吸着部1から脱離した有機物等がアスピレータ3内に吸引され、水道水と一緒に排出される。このような排気工程を図5にも示すようにn回に亘って繰り返し、吸着部1の有機物等の排出を完全に行う(S5)。
【0027】
一方、前記検知流量の判定において、下限流量CLよりも少ない流量となっているとき(アスピレータ3の吸引力が小さくなっているとき)は、ステップ6,7の制御を行う。即ち、脱離工程では前記ステップ4と同様に吸着部1を加熱乾燥するとともに、排気工程では排水弁MVを開き、時間T4に亘って水道水をアスピレータ3に流す(S6)。ここで、図6に示すように、時間T4はステップ5の時間T3よりも長く設定されており、この長く設定された分、アスピレータ3に流れる水道水の流量が多くなる。このため、吸着部1からの有機物の脱離等が低下することがない。このような排気工程をn回繰り返し、吸着部1の有機物等の排出を行う(S7)。
【0028】
この脱離工程が終了したときは、洗浄工程に移行する(S8)。この洗浄工程では、給水弁SV及び排水弁MVを時間T5に亘って開き、浄化槽A内に水道水を流入する。この流入した水道水は吸着部1に未だ付着している有機物等を洗浄し、この洗浄水がアスピレータ3に流れて排出される。この洗浄工程の終了により、再生処理が終了する。
【0029】
以上のように本実施形態によれば、水道水圧が低くアスピレータ3が下限流量CLを確保できないときは、排気工程時間を通常よりも長くとり、有機物の脱離効率や殺菌効果の低下を防止している。
【0030】
図8及び図9は再生式浄水装置の第2実施形態を示すものである。この第2実施形態では、給水弁の開閉(S1)、排水工程(S2)、流量判定(S3)、流量Cが下限流量CLより多いときの脱離工程(排気工程を含む)(S4)、排気工程の繰り返し回数(S5)、流量Cが下限流量CLより少ないときの脱離工程(排気工程を含む)(S6)、更には洗浄工程(S8)の何れのステップも前記第1実施形態と同様となっている。
【0031】
本実施形態と前記第1実施形態との異なる点は、流量Cが下限流量CLより少ないときは排気工程の繰り返し回数を「n+1<回」とする点にある(S7)。このように排気工程の繰り返し回数を増加することにより、有機物の脱離効率の低下を防止している。なお、その他の構成、作用は前記第1実施形態と同様である。
【0032】
図10及び図11は再生式浄水装置の第3実施形態を示すものである。この第3実施形態では、給水弁の開閉(S1)、排水工程(S2)、流量判定(S3)、流量Cが下限流量CLより多いときの脱離工程(排気工程を含む)(S4)、排気工程の繰り返し回数(S5)、流量Cが下限流量CLより少ないときの脱離工程(排気工程を含む)及び排気工程の繰り返し回数(S6、S7)、更には洗浄工程(S8)の何れのステップも前記第1実施形態と同様となっている。
【0033】
本実施形態と前記第1実施形態との異なる点は、流量Cが下限流量CLより少ないときは、図11に示すように、脱離工程で吸着部1の設定温度を上げ、設定温度t2(110℃)で加熱乾燥する。このように加熱温度を高くすることにより、有機物の脱離効率の低下を防止している。その他の構成、作用は前記第1実施形態と同様である。
【0034】
なお、前記各実施形態ではアスピレータ3への流量が少ないときは、排気工程の稼働時間を長くしたり、或いは、脱離工程の加熱温度を高くして脱離効率の低下を防止しているが、この稼働時間を長くしかつ加熱温度を高くするときは、脱離効率が向上し、再生能力が向上する。
【0035】
【発明の効果】
以上説明したように、本発明によれば、吸引排出手段への水道水等の通水量が低下するとき、吸引排出手段の稼働時間や吸着部の加熱温度を制御することにより、吸着部の脱離効率の低下を防止している。
【図面の簡単な説明】
【図1】第1実施形態に係る再生式浄水装置の水回路図
【図2】第1実施形態に係る再生式浄水装置のアスピレータの構造を示す断面図
【図3】第1実施形態に係る再生式浄水装置のアスピレータ通水量と排気量との関係を示すグラフ
【図4】第1実施形態に係る再生式浄水装置の駆動制御回路を示すブロック図
【図5】第1実施形態に係る再生式浄水装置の再生処理工程のタイムチャートの1
【図6】第1実施形態に係る再生式浄水装置の再生処理工程のタイムチャートの2
【図7】第1実施形態に係る再生式浄水装置の再生処理工程の制御フローチャート
【図8】第2実施形態に係る再生式浄水装置の再生処理工程のタイムチャート
【図9】第2実施形態に係る再生式浄水装置の再生処理工程の制御フローチャート
【図10】第3実施形態に係る再生式浄水装置の再生処理工程の制御フローチャート
【図11】第3実施形態に係る吸着部の温度変化を示すグラフ
【符号の説明】
A…浄化槽、FS…流量センサ、TS…温度センサ、1…吸着部、2a,2b…電極、3…アスピレータ、4…制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a regenerative water purification apparatus that purifies and sterilizes raw water such as tap water and groundwater and supplies purified water.
[0002]
[Prior art]
Conventionally, as this type of regenerative water purifier, the applicant has already proposed the one described in JP-A-9-1130.
[0003]
This regenerative water purifier has an adsorption part formed of conductive activated carbon in a septic tank. Tap water is passed through this adsorption part to remove the mold odor, salty odor, trihalomethane, microorganisms, etc. of tap water. It captures and feeds clean water to faucets.
[0004]
When the adsorbing action of such an adsorbing part is for a long time, it is necessary to regenerate the adsorbing part because organic substances or the like adhere and cause clogging in the adsorbing part or bacteria grow.
[0005]
When carrying out this regeneration operation, first, tap water is drawn into an aspirator (aspirator) connected to the septic tank, and the water in the septic tank is drained by using the septic tank side as a negative pressure (drainage process). Next, an alternating current is applied to each electrode to electrically heat the adsorption part, and organic substances adhering to the adsorption part are desorbed or bacteria are sterilized (desorption process). During this desorption process, tap water is drawn into the aspirator at regular intervals, and the outside air is introduced into the septic tank with the septic tank side set to a negative pressure. Thereby, the organic substance etc. which have desorbed from the adsorption part are sucked into the aspirator and exhausted (exhaust process). Such an exhausting process in the desorption process is repeated a plurality of times to remove organic substances and the like from the adsorbing part and dry and regenerate the adsorbing part to prepare for the next purified water generation process.
[0006]
[Problems to be solved by the invention]
The conventional regenerative water purifier uses the tap water flow drawn into the aspirator to dry and regenerate the adsorbing portion in the septic tank in the exhaust process, so that the exhaust efficiency is the tap water flow (flow rate). Will be greatly affected.
[0007]
By the way, the tap water pressure differs depending on the area (local government) where the water supply facility is installed, and even when using the water supply facility in the same area, it depends on whether the place of use is high. Furthermore, even when water is once pumped into a water storage tank on the roof and distributed to each room, as in a high-rise apartment, in places where the installation location is far from the main pipe, this is also caused by pipe resistance. The water supply pressure becomes low.
[0008]
Thus, in the conventional regenerative water purifier, when used at a high place where the tap water pressure is low, the flow rate flowing to the aspirator is reduced, and the suction force of the aspirator is reduced, so that the exhaust becomes insufficient and the adsorbing part There is a problem that the reproduction efficiency of the recording medium decreases.
[0009]
An object of the present invention is to provide a regenerative water purifier capable of reliably drying and regenerating an adsorbing section in a septic tank even when the flow rate of raw water to the suction / discharge means is small in view of the conventional problems.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a purified water generation means for generating purified water by passing raw water such as tap water through a septic tank in which an adsorption unit such as conductive activated carbon is accommodated, and an adsorption unit. Desorption means for sterilizing organic substances adhering to the adsorbing part and sterilizing bacteria, etc. by electrically heating, and suction discharge means for drawing in raw water and sucking and discharging water and air in the septic tank by suction force associated with passing water In a regenerative water purifier that operates the desorption means and the suction / discharge means to discharge the organic matter desorbed from the adsorption section and regenerates the adsorption section, the flow rate for detecting the flow rate of raw water drawn into the suction / discharge means While having a detection means, it has the structure which has a control means which controls the working time of a suction discharge means based on the detection flow volume of a flow volume detection means.
[0011]
According to the first aspect of the invention, when the detected flow rate of the flow rate detecting means, for example, the detected flow rate is small, the operation time of the suction / discharge means is set longer. As a result, the suction time by the suction and discharge means is increased by the length of the operation time, and the organic matter in the septic tank can be reliably discharged.
[0012]
As the long time setting of the operation time, the operation time per operation may be lengthened as in the invention of claim 2 or the operation frequency may be increased as in the invention of claim 3.
[0013]
On the other hand, in the invention according to claim 4, there is provided a flow rate detection means for detecting the flow rate of the raw water drawn into the suction / discharge means and a control means for controlling the electric heating temperature of the desorption means based on the detected flow rate of the flow rate detection means. It has become.
[0014]
According to the invention of claim 4 and claim 5, when the detected flow rate of the flow rate detecting means is small, for example, the electric heating temperature of the desorbing means is set high. As a result, the desorption of organic substances and the like from the adsorbing portion is promoted as the electric heating temperature increases.
[0015]
The invention of claim 6 has a structure in which control is performed using both the operation time control of the suction / discharge means according to claim 1 and the electric heating temperature control of the desorption means of claim 4. Thereby, the reproduction | regeneration capability of an adsorption | suction part is further improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1 to 7 show a first embodiment of a regenerative water purifier according to the present invention, FIG. 1 is a water circuit diagram of the regenerative water purifier, FIG. 2 is a cross-sectional view showing the structure of an aspirator, and FIG. FIG. 4 is a block diagram showing the control circuit of the regenerative water purifier, FIG. 5 is a time chart of the regeneration process step, and FIG. 6 is a time chart of the regeneration process step. 2 and 7 are control flowcharts of the reproduction processing step.
[0017]
The water circuit of the regenerative water purifier will be described with reference to FIG. This regenerative water purifier has a septic tank A and a faucet B connected by piping. This septic tank A has a water supply valve (electromagnetic valve configuration) SV on its inlet side, and raw water (tap water) flows through this water supply valve SV. On the other hand, the raw water that has flowed into the septic tank A is purified inside and supplied to the faucet B.
[0018]
Here, the septic tank A has an adsorbing part 1 formed of conductive activated carbon or the like inside, and the adsorbing part 1 captures the musty odor, salty odor, trihalomethane, microorganisms, and the like of the raw water to produce purified water ( Water purification treatment). In addition, a pair of electrodes 2a and 2b are disposed above and below the adsorption unit 1, and an organic voltage adhered to the adsorption unit 1 is generated by generating Joule heat in the adsorption unit 1 by applying an alternating voltage to the electrodes 2a and 2b. Is removed while microorganisms and the like are sterilized (regeneration treatment). Moreover, the temperature sensor TS is installed in the septic tank A, and the temperature of the adsorption part 1 is detected by this temperature sensor TS. Further, the septic tank A communicates with the atmosphere through a check valve CV1.
[0019]
During the regeneration process of the adsorption unit 1, water in the septic tank A is drained, and a suction device (aspirator) 3 is used as the drainage device. Although this aspirator 3 is already known, as shown in FIG. 2, the first inlet 31 thereof is connected to the septic tank A via the check valve CV2, and the water in the septic tank A is supplied to the first inlet 31. Inflow from. Moreover, the 2nd inlet 32 of the aspirator 3 is connected to the water pipe, and the water in the septic tank A is sucked to the aspirator 3 side by the suction force accompanying the inflow of tap water. Further, a drain valve (electric valve configuration) MV is provided on the downstream side of the outlet 33 of the aspirator 3, and discharge of water and the like in the septic tank A is controlled by the drain valve MV. Furthermore, a flow rate sensor (FS) for detecting the amount of tap water passing is installed upstream of the aspirator 3. The exhaust amount of the septic tank A by the aspirator 3 is shown in FIG. 3, and as is clear from FIG. 3, the exhaust amount increases and decreases in proportion to the water flow rate of the aspirator 3.
[0020]
Next, the drive control circuit of the regenerative water purifier according to this embodiment will be described with reference to the block diagram of FIG.
[0021]
The regenerative water purifier according to this embodiment is automated by including a control device 4 such as a microcomputer. The control device 4 includes a central processing unit (CPU) 41 and a memory 42 that stores a control program. The control device 4 has I / O ports 43 and 44. The I / O port 43 inputs and outputs signals between the control device 4 and the timer TM, the flow rate sensor FS, and the temperature sensor TS. On the other hand, the I / O port 44 inputs and outputs signals between the control device 4 and the water supply valve SV, drain valve MV, and electrode AC power supply AC. Reproduction processing control is performed based on this control device 4.
[0022]
This reproduction processing control will be described with reference to the time charts of FIGS. 5 and 6 and the flowchart of FIG.
[0023]
When bacteria and the like grow on the adsorbing unit 1 due to the continuation of the water purification treatment, the process proceeds to a regeneration treatment step. When shifting to this regeneration treatment step, whether or not water purification is being performed (whether or not faucet B is opened and whether or not water purification is used) is detected by opening / closing the water supply valve SV, and the water supply valve SV is closed. If it is, the process proceeds to the regeneration processing step (S1).
[0024]
In this regeneration treatment step, the drainage step is first started (S2). This draining step is performed over a time T1 during which the water in the septic tank A can be drained, and the drain valve MV is opened over the time T1. Tap water flows into the aspirator 3 along with the opening of the drain valve MV, and a suction force acts on the tap water to draw water in the septic tank A into the aspirator 3. Thereby, the water in the septic tank A is drained. The flow rate of tap water flowing into the aspirator 3 is detected by a flow rate sensor FS.
[0025]
When this drainage process is completed, the process proceeds to the desorption process (S4). When entering this desorption process, it is determined whether or not the detected flow rate is smaller than the lower limit flow rate CL shown in FIG. 3 (S3). When the flow rate is higher than the lower limit flow rate CL in this determination, that is, when the flow rate is sufficient to drain the water in the septic tank A, first, the drain valve MV is closed and an AC voltage is applied to each electrode 2a, 2b. To do. Due to this voltage application, Joule heat is generated in the adsorption unit 1, and the adsorption unit 1 is heated and dried at a set temperature t1 (95 ° C.). This heat drying is performed for a time T2, and organic substances adhering to the adsorption unit 1 are desorbed and bacteria and the like are sterilized.
[0026]
During this desorption process, the exhaust process operates at a constant interval T2. In this exhaust process, the drain valve MV is opened over time T3. As a result, the tap water flows into the aspirator 3 in the same manner as in the drainage process, and outside air is introduced into the adsorption unit, and organic substances and the like desorbed from the adsorption unit 1 are sucked into the aspirator 3 and together with the tap water. To be discharged. Such an exhausting process is repeated n times as shown in FIG. 5 to completely discharge organic substances and the like in the adsorption unit 1 (S5).
[0027]
On the other hand, in the determination of the detected flow rate, when the flow rate is smaller than the lower limit flow rate CL (when the suction force of the aspirator 3 is small), the control in steps 6 and 7 is performed. That is, in the desorption process, the adsorption unit 1 is heated and dried in the same manner as in Step 4, and in the exhaust process, the drain valve MV is opened, and tap water is allowed to flow through the aspirator 3 over time T4 (S6). Here, as shown in FIG. 6, the time T4 is set longer than the time T3 of step 5, and the flow rate of the tap water flowing through the aspirator 3 is increased by this longer setting. For this reason, the detachment | desorption etc. of the organic substance from the adsorption | suction part 1 do not fall. Such an exhausting process is repeated n times to discharge organic substances and the like from the adsorption unit 1 (S7).
[0028]
When this desorption process is completed, the process proceeds to the cleaning process (S8). In this cleaning process, the water supply valve SV and the drain valve MV are opened over time T5, and the tap water flows into the septic tank A. The inflowing tap water cleans organic matter and the like still adhering to the adsorbing unit 1, and the cleaning water flows to the aspirator 3 and is discharged. Upon completion of this cleaning process, the regeneration process ends.
[0029]
As described above, according to the present embodiment, when the tap water pressure is low and the aspirator 3 cannot secure the lower limit flow rate CL, the evacuation process time is set longer than usual to prevent the organic substance desorption efficiency and the sterilization effect from being lowered. ing.
[0030]
8 and 9 show a second embodiment of the regenerative water purifier. In this second embodiment, the opening and closing of the water supply valve (S1), the drainage step (S2), the flow rate determination (S3), the desorption step when the flow rate C is higher than the lower limit flow rate CL (including the exhaust step) (S4), The number of repetitions of the evacuation process (S5), the desorption process (including the evacuation process) when the flow rate C is lower than the lower limit flow rate CL (S6), and the cleaning process (S8) are all the same as the first embodiment. It is the same.
[0031]
The difference between the present embodiment and the first embodiment is that when the flow rate C is less than the lower limit flow rate CL, the number of repetitions of the exhaust process is “n + 1 <times” (S7). By increasing the number of repetitions of the evacuation process in this way, a decrease in the organic substance desorption efficiency is prevented. Other configurations and operations are the same as those in the first embodiment.
[0032]
10 and 11 show a third embodiment of the regenerative water purifier. In the third embodiment, the opening and closing of the water supply valve (S1), the drainage step (S2), the flow rate determination (S3), the desorption step when the flow rate C is higher than the lower limit flow rate CL (including the exhaust step) (S4), Any of the number of repetitions of the evacuation process (S5), the desorption process (including the evacuation process) when the flow rate C is lower than the lower limit flow rate CL, the number of repetitions of the evacuation process (S6, S7), and the cleaning process (S8) The steps are also the same as in the first embodiment.
[0033]
The difference between the present embodiment and the first embodiment is that when the flow rate C is less than the lower limit flow rate CL, as shown in FIG. 11, the set temperature of the adsorption unit 1 is raised in the desorption step, and the set temperature t2 ( 110 ° C.). By increasing the heating temperature in this manner, the organic substance desorption efficiency is prevented from decreasing. Other configurations and operations are the same as those in the first embodiment.
[0034]
In each of the above embodiments, when the flow rate to the aspirator 3 is small, the operating time of the exhaust process is lengthened, or the heating temperature of the desorption process is increased to prevent the desorption efficiency from decreasing. When the operating time is lengthened and the heating temperature is increased, the desorption efficiency is improved and the regeneration ability is improved.
[0035]
【The invention's effect】
As described above, according to the present invention, when the amount of tap water or the like flowing into the suction / discharge unit decreases, the suction unit is removed by controlling the operation time of the suction / discharge unit and the heating temperature of the suction unit. This prevents a decrease in separation efficiency.
[Brief description of the drawings]
FIG. 1 is a water circuit diagram of a regenerative water purifier according to the first embodiment. FIG. 2 is a cross-sectional view showing a structure of an aspirator of the regenerative water purifier according to the first embodiment. FIG. 4 is a block diagram showing a drive control circuit of a regenerative water purifier according to the first embodiment. FIG. 5 is a regeneration diagram according to the first embodiment. Of the time chart of the regeneration treatment process of the water purification system
FIG. 6 is a time chart 2 of the regeneration treatment process of the regenerative water purifier according to the first embodiment.
FIG. 7 is a control flowchart of a regeneration treatment process of the regenerative water purification apparatus according to the first embodiment. FIG. 8 is a time chart of a regeneration treatment process of the regenerative water purification apparatus according to the second embodiment. FIG. 10 is a control flowchart of the regeneration process of the regenerative water purification apparatus according to the third embodiment. FIG. 11 is a control flowchart of the regeneration process of the regenerative water purification apparatus according to the third embodiment. Graph to show 【Explanation of symbols】
A ... septic tank, FS ... flow rate sensor, TS ... temperature sensor, 1 ... adsorption part, 2a, 2b ... electrode, 3 ... aspirator, 4 ... control device.

Claims (6)

導電性活性炭等の吸着部が収容された浄化槽に水道水等の原水を通水させ浄水を生成する浄水生成手段と、該吸着部を電気加熱し該吸着部に付着した有機物の脱離や細菌類等を殺菌する脱離手段と、原水を引き込み通水に伴う吸引力により該浄化槽内の水や空気を吸引し排出する吸引排出手段とを備え、該脱離手段と該吸引排出手段とを稼働して該吸着部から脱離した有機物等を排出し、該吸着部を再生する再生式浄水装置において、
前記吸引排出手段に引き込まれる原水流量を検知する流量検知手段を設けるとともに、該流量検知手段の検知流量に基づき該吸引排出手段の稼働時間を制御する制御手段を有する
ことを特徴とする再生式浄水装置。
Purified water generating means for generating purified water by passing raw water such as tap water through a septic tank in which an adsorbing part such as conductive activated carbon is housed, and desorption of organic substances adhering to the adsorbing part and bacteria A detaching means for sterilizing water and the like, and a suction / discharge means for sucking and discharging the water and air in the septic tank by suction of raw water by suction. In the regenerative water purifier that operates and discharges organic matter and the like desorbed from the adsorption unit and regenerates the adsorption unit,
A regenerative water purifier having a flow rate detection means for detecting the flow rate of raw water drawn into the suction / discharge means, and a control means for controlling the operation time of the suction / discharge means based on the detected flow rate of the flow rate detection means. apparatus.
前記制御手段は、原水流量が所定水量より少ないとき前記吸引排出手段の一回当たりの稼働時間を長く設定した
ことを特徴とする請求項1記載の再生式浄水装置。
2. The regenerative water purifier according to claim 1, wherein when the raw water flow rate is less than a predetermined amount of water, the control unit sets a long operation time per one time of the suction / discharge unit.
前記制御手段は、前記原水流量が所定水量より少ないとき前記吸引排出手段の稼働回数を増加した
ことを特徴とする請求項1記載の再生式浄水装置。
The regenerative water purifier according to claim 1, wherein the control means increases the number of times of operation of the suction / discharge means when the raw water flow rate is less than a predetermined amount of water.
導電性活性炭等の吸着部が収容された浄化槽に水道水等の原水を通水させ浄水を生成する浄水生成手段と、該吸着部を電気加熱し該吸着部に付着した有機物の脱離や細菌類等を殺菌する脱離手段と、原水を引き込み通水に伴う吸引力により該浄化槽内の水や空気を吸引し排出する吸引排出手段とを備え、該脱離手段と該吸引排出手段とを稼働して該吸着部から脱離した有機物等を排出し、該吸着部を再生する再生式浄水装置において、
前記吸引排出手段に引き込まれる原水流量を検知する流量検知手段を設けるとともに、該流量検知手段の検知流量に基づき前記脱離手段の電気加熱温度を制御する制御手段を有する
ことを特徴とする再生式浄水装置。
Purified water generating means for generating purified water by passing raw water such as tap water through a septic tank in which an adsorbing part such as conductive activated carbon is housed, and desorption of organic substances adhering to the adsorbing part and bacteria A detaching means for sterilizing water and the like, and a suction / discharge means for sucking and discharging the water and air in the septic tank by suction of raw water by suction. In the regenerative water purifier that operates and discharges organic matter and the like desorbed from the adsorption unit and regenerates the adsorption unit,
A regenerative type comprising flow rate detection means for detecting the flow rate of raw water drawn into the suction / discharge means, and control means for controlling the electric heating temperature of the desorption means based on the flow rate detected by the flow rate detection means. Water purification device.
前記制御手段は、前記原水流量が所定水量より少ないとき前記電気加熱温度を高く設定した
ことを特徴とする請求項4記載の再生式浄水装置。
The regenerative water purifier according to claim 4, wherein the control means sets the electric heating temperature high when the raw water flow rate is smaller than a predetermined water amount.
導電性活性炭等の吸着部が収容された浄化槽に水道水等の原水を通水させ浄水を生成する浄水生成手段と、該吸着部を電気加熱し該吸着部に付着した有機物の脱離や細菌類等を殺菌する脱離手段と、原水を引き込み通水に伴う吸引力により該浄化槽内の水や空気を吸引し排出する吸引排出手段とを備え、該脱離手段と該吸引排出手段とを稼働して該吸着部から脱離した有機物等を排出し、該吸着部を再生する再生式浄水装置において、
前記吸引排出手段に引き込まれる原水流量を検知する流量検知手段を設けるとともに、該流量検知手段の検知流量に基づき該吸引排出手段の稼働時間及び前記脱離手段の電気加熱温度を制御する制御手段を有する
ことを特徴とする再生式浄水装置。
Purified water generating means for generating purified water by passing raw water such as tap water through a septic tank in which an adsorbing part such as conductive activated carbon is housed, and desorption of organic substances adhering to the adsorbing part and bacteria A detaching means for sterilizing water and the like, and a suction / discharge means for sucking and discharging the water and air in the septic tank by suction of raw water by suction. In the regenerative water purifier that operates and discharges organic matter and the like desorbed from the adsorption unit and regenerates the adsorption unit,
A flow rate detection means for detecting the flow rate of the raw water drawn into the suction / discharge means, and a control means for controlling the operating time of the suction / discharge means and the electric heating temperature of the desorption means based on the detected flow rate of the flow rate detection means. A regenerative water purifier characterized by comprising:
JP00647699A 1999-01-13 1999-01-13 Regenerative water purifier Expired - Fee Related JP3815531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00647699A JP3815531B2 (en) 1999-01-13 1999-01-13 Regenerative water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00647699A JP3815531B2 (en) 1999-01-13 1999-01-13 Regenerative water purifier

Publications (2)

Publication Number Publication Date
JP2000202433A JP2000202433A (en) 2000-07-25
JP3815531B2 true JP3815531B2 (en) 2006-08-30

Family

ID=11639535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00647699A Expired - Fee Related JP3815531B2 (en) 1999-01-13 1999-01-13 Regenerative water purifier

Country Status (1)

Country Link
JP (1) JP3815531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891700A (en) * 2015-06-17 2015-09-09 齐齐哈尔医学院 Temperature difference type circulating water purifier

Also Published As

Publication number Publication date
JP2000202433A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
KR101948006B1 (en) Water purifier
KR102024871B1 (en) Device for removing residual ozone gas
JP3815531B2 (en) Regenerative water purifier
JP3815532B2 (en) Regenerative water purifier
KR20100033109A (en) A purifier for water treatment
CN207391122U (en) A kind of water purifier
JPH10128311A (en) Water purifying and sterilizing apparatus
JPH09248552A (en) Purified water supplier
KR102220165B1 (en) Electro deionization-type water treatment apparatus
JPH0639372A (en) Water purifying system
CN207385206U (en) A kind of water purifier
JPH0639373A (en) Water purifying system
JP3742454B2 (en) Clean water supply device
JPH0731970A (en) Method for regenerating adsorbent of water purifying and sterilizing device
JP3239304B2 (en) Water purification equipment
JPH11197651A (en) Water purifying and sterilizing apparatus
JP2604964B2 (en) Water purification equipment
JP2691664B2 (en) Water purification equipment
JPH11347538A (en) Water purifying and sterilizing apparatus
JP2655020B2 (en) Drinking water purification method and apparatus
JPH10128310A (en) Water purifying and sterilizing apparatus
JPH0639371A (en) Water purifying system
JP2002001343A (en) Waste water treating equipment
JP3841926B2 (en) Water purification device
JPH10328650A (en) Apparatus for purifying and disinfecting water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees