JP3815519B2 - Intake air duct - Google Patents

Intake air duct Download PDF

Info

Publication number
JP3815519B2
JP3815519B2 JP07990497A JP7990497A JP3815519B2 JP 3815519 B2 JP3815519 B2 JP 3815519B2 JP 07990497 A JP07990497 A JP 07990497A JP 7990497 A JP7990497 A JP 7990497A JP 3815519 B2 JP3815519 B2 JP 3815519B2
Authority
JP
Japan
Prior art keywords
intake air
air duct
layer
resin
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07990497A
Other languages
Japanese (ja)
Other versions
JPH10274113A (en
Inventor
等 木野
条治 春日井
俊吉 須崎
尽生 石戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyoda Gosei Co Ltd
Original Assignee
Toyota Motor Corp
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyoda Gosei Co Ltd filed Critical Toyota Motor Corp
Priority to JP07990497A priority Critical patent/JP3815519B2/en
Publication of JPH10274113A publication Critical patent/JPH10274113A/en
Application granted granted Critical
Publication of JP3815519B2 publication Critical patent/JP3815519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの構成体の一部であるエンジン室内に外気を取り込むインテークエアダクトに関する。
【0002】
【従来の技術】
特開昭58−219019号公報にみられるように、軽量化の要請等により樹脂で形成されたインテークエアダクトが提案され、使用されている。樹脂製のインテークエアダクトは軽量であり、かつ金属製のものに比べ断熱性が高く、高温となるエンジン室からの熱を遮断し、冷涼な外気を導入するのに優れている。
【0003】
しかし、従来の樹脂製インテークエアダクトに対してもより一層の断熱性、遮音性、吸音性が要求されている。また、樹脂部品のリサイクルも社会的な要請となっている。
【0004】
【発明が解決しようとする課題】
本発明は、より一層の高断熱性及び遮音性に優れたインテークエアダクトさらにはこれら特性に加えリサイクル性に優れたインテークエアダクトを提供することを課題とする。
【0005】
【課題を解決するための手段】
発明者はより優れた断熱性、遮音性を満足するために発泡層を持つ樹脂製インテークエアダクトに思い至った。そして樹脂成形体中に発泡層を存在させるため空圧成形の採用を思いつくに至った。また樹脂成形体を表側層、該発泡層、裏側層からなる3層積層構造とし、溶着面となる裏側層を表層側よりも低い低剛性樹脂を用いることにより優れた耐熱性及び溶着性を得るに至った。さらにリサイクル性を考慮し、オレフィン系樹脂で成形することに思い至り、本発明を完成した。
すなわち、本発明のインテークエアダクトは、筒状体を複数に分割した形状の一組の被接合体を溶接して一体化したインテークエアダクトであって、該一組の被接合体は、合成樹脂シート基材を空圧成形することにより成形されており、該合成樹脂シート基材は、オレフィン系樹脂を主成分とする高剛性である表側層と、オレフィン系樹脂を主成分とする発泡体で構成されている発泡中間層と、オレフィン系樹脂を主成分とする該表側層よりも低い剛性である裏側層と、から構成されており、接合される周縁部はフランジ状となり、互いに対向する一組の該フランジ状周縁部の前記裏側層で溶着して一体化されたものであることを特徴とする。
【0006】
本発明のインテークエアダクトは、発泡層を備えているため断熱性及び吸音性が高い。また、表側層あるいは裏側層となる基材層は中実層であるため遮音性を備える。そしてこのインテークエアダクトは空圧成形で成形したものであるため発泡層に大きな押圧力が作用せず、発泡層が維持されて成形できる。また、裏側層には表側層より低い剛性のオレフィン系樹脂を用いることにより、耐熱性及び溶着性が向上する。
本発明のインテークエアダクトを発泡層を含めオレフィン系樹脂で成形することにより容易にリサイクルが可能となる。
【0007】
【発明の実施の形態】
本発明のインテークエアダクトは筒状体を複数に分割した形状の一組の被接合体を溶接して一体化したインテークエアダクトである。このインテークエアダクトとしてはエンジンの吸気系に外気を取り入れるエアフクリーナ用のダクト、車室内に外気を取り入れるダクト等、従来の外気を取り入れるダクトとして使用できる。
【0008】
このインテークエアダクトは発泡層を有する合成樹脂シート基材を空圧成形により成形した一組の被接合体からなる。この一組の被接合体は目的とするダクトを複数に分割した形状のものである。圧空成形とは、真空成形とか空圧成形として知られている成形方法で、加熱されて軟化した樹脂シート基材の両側に作用する空気圧の差、すなわち、空圧により型面に樹脂シート基材を押しつけ、あるいは減圧により型面に基材を引きつけることにより型面に沿った形状に成形する方法である。
【0009】
本発明のインテークエアダクトはオレフィン系樹脂で形成するのが好ましい。オレフィン系樹脂は、結晶性で剛性及び耐熱性の高いポリプロピレン樹脂、結晶性の高密度ポリエチレン、低密度ポリエチレン、エラストマーとして知られているエチレンープロピレン樹脂、これら結晶性オレフィンと各種ゴムとの混合物であるTPO(サーモプラスチックオレフィン)等が知られ、高い剛性を持つものから低い剛性を持つものまで任意に選択できる。
【0010】
オレフィン系樹脂は容易にオレフィン系樹脂同士でブレンド可能で、所定の特性を付与するために広い範囲でブレンドされている。このためオレフィン系樹脂で作られたインテークエアダクトを構成する中実層及び発泡層にそれぞれ異なったオレフィン系樹脂を用い、リサイクル時に2者が混合されても、オレフィン系樹脂として利用できる。このためリサイクルが極めて容易である。
【0011】
なお、本発明のインテークエアダクトは、表側層及び裏側層を中実層とし中間に発泡層を持つ3層積層構造を持つ成形体とするのが好ましい。この3層積層構造の成形体は中間に発泡層を持つ3層積層構造のシート基材を圧空成形することにより得られる。
インテークエアダクトはその表側層を凹型面に押圧あるいは裏側層を凸型面に押圧して型成形される。表側層の表面にしぼ加工等の装飾を施すことも型面に装飾を形成することにより可能となる。この表側層を形成する樹脂としてはその表側層に必要な特性を持つ樹脂を選択する必用がある。剛性とか硬さを必用とする場合にはポリプロピレンあるいはポリプロピレンを多量に含む樹脂を選択するのが好ましい。
【0012】
中間層を構成する発泡層は架橋したオレフィン樹脂発泡体としている。架橋により耐熱性が向上し、空圧成形性が向上する。裏側層を形成する樹脂もその期待される特性により選択される。例えば、裏側面が溶着される場合には溶着性の優れたエラストマーを含む、表側層の樹脂に対してより低い剛性を持つオレフィン樹脂とするのが好ましい。インテークエアダクトが軽量でしかも高い曲げ剛性を求められる場合には、表側層及び裏側層の少なくとも一方、好ましくは両層を比較的薄いものとするのが好ましい。具体的には成形体の状態で表側層及び裏側層は0.1〜2.0mm程度とすることができる。
【0013】
自動車のエンジンルーム内で使用されるインテークエアダクトは、剛性及び耐熱性の高いポリプロピレンを表側層の樹脂に使用するのが好ましい。エアダクト等をその軸線に沿って二分した形状の一組の被接合成形体とし、各接合体の裏側面で溶着して一体化するには裏側層を形成する樹脂として溶着の容易な低剛性のオレフィン樹脂を用いる。具体的には、表側層を形成する樹脂は引張弾性率が1,000〜3,000MPaであり、裏側層を形成する樹脂は引張強度が3〜20MPaとするのが好ましい。表側層が1,000MPa以下では製品の剛性が不足するようになり、3,000MPa以上では真空成形に賦形性が悪く加工性に劣る。また、裏側層の強度が3MPa以下では真空成形の延伸時に破断しやすく、20MPa以上では賦形性が悪く加工性に劣る。
【0014】
また、一組の被接合成形体を溶着させるため、溶着部分はフランジ状とし、この部分を接合部分とするのが好ましい。一組の接合成形体に被固定部が必用なときには、その被固定部を溶着部分に設けるようにするのが好ましい。溶着部分は一対の被接合成形体の各成形体が積層して接合されているため、厚さも2倍となりその部分の強度もそれだけ高く、被固定部に作用する大きな力に耐えることが可能となる。
【0015】
【作用】
本発明のインテークエアダクトは、発泡層を持つ積層構造を持つ。発泡層が優れた断熱性をもたらす。また、発泡層は吸音特性に優れ、表側層、裏側層等の中実層が遮音性を担保する。このため本発明のインテークエアダクトは断熱性、防音特性に優れている。また、表側層よりも低い低剛性樹脂製の裏側層を用いることで、接合面における溶着性が向上する。このインテークエアダクトをオレフィン系樹脂で作ることによりリサイクル性に優れたものとなる。
【0016】
さらに、中間層として発泡層を持つためより一層軽量となる。
【0017】
【実施例】
本発明のインテークエアダクトの平面図を図1に、側面図を図2に、図1のA−A線で切断した断面拡大図を図3に示す。
このインテークエアダクトは図3の断面図から明らかなように、3層積層樹脂シート基材を用いて真空成形で成形したものである。この3層積層シート基材は表側層101と発泡層102及び裏側層103とからなる。表側層101は厚さ1.0mmのポリプロピレン樹脂(以下、PPと称する、引張弾性率:1760MPa)で構成され、発泡層102は厚3.0mmのPPを主成分とした樹脂(見かけ比重0.066、引張強度1.4MPa、発泡倍率15倍)で構成され、裏側層103は厚さ0.35mmのゴム変成PP(引張強度0.8MPa、硬さ:JIS A硬度86(JIS K6301の70〜95の範囲にある))で構成されている。なお、発泡層102として用いた発泡樹脂は架橋した架橋発泡樹脂である。
【0018】
この3層積層樹脂は、あらかじめ所定厚さにスライスもしくはTダイにて形成した発泡層102の上面及び下面にカレンダー成形した溶融状態の表側層101および裏側層103を重ね合わせて一体的に接合して製造した。
次にこの3層積層樹脂シート基材の両面より熱板ヒータまたは加熱炉でその表面温度が150〜180℃になるまで加熱し、通常の真空成形で成形型面に真空圧で引き付け、その状態で冷却硬化して成形した。その後周縁部分をトリミングして所定形状の被接合体とした。
【0019】
本実施例ではインテークエアダクトの軸線に沿って二分した第1被接合体2と第2被接合体3との2種類の被接合体を作った。第1被接合体2及び第2被接合体はいずれもそれらの側部周縁部分がフランジ状に突出した溶着部分21、31を持つ。これらの溶着部分21、31はそれぞれ対向して当接するようになっている。
【0020】
この溶着部分21、31の一部がさらに外側に突出した幅広のフランジ状とされた部分に被固定部22、32が形成され、それらの中央部に固定用の貫通孔23、33が形成されている。これらの被固定部22、32もそれぞれ対向して当接するように形成されている。
次にこれら第1被接合体2及び第2被接合体3をそれぞれ180〜200℃に加熱された熱板状に置き、溶着部分21、31のそれぞれの当接面を熱板に30秒間押し付けて、加熱した。そして直ちに溶着部分21、31どうしを当接し、2.0kg/cm2の加圧力で20秒間押し付けて両者を融着させ、その状態で冷却固化して溶着を完了した。なお、被固定部22、32溶着部分21、31と同様に溶着して一体化した。これにより本実施例のインテークエアダクトを製作した。
【0021】
次にこのインテークエアダクトの遮音性及び吸音性を調べた。このインテークエアダクトは金属板で作られたものより吸音性に優れ遮音性に欠けるものであった。また、本実施例のインテークエアダクトは射出成形で作られた一層構造のポリプロピレン製のものより吸音性で優れ、ポリプロピレン発泡シート基材を真空成形したものより遮音性で優れていた。
【0022】
さらに本実施例のインテークエアダクトを110℃、3時間の加熱室に入れ、その形状保持性を調べた。本実施例のインテークエアダクトはこの加熱試験に耐え変形等の問題は発生しなかった。さらに室温でこのインテークエアダクトを開口部より引張速度100mm/minで第1被接合体2と第2被接合体3とを引き離す引き裂き試験を行った。これによりこのインテークエアダクトは発泡層の部分で破断したが溶着部分21、31での剥離は生ぜず、溶着が確実になされていることが明らかになった。
【0023】
なお、参考までに本実施例で使用したのと同じ3層積層樹脂シート基材を用い、裏側層103を型面に押し付ける方法で実施例と同じインテークエアダクトを製作した。これにより表側層が曲げ弾性率の低い樹脂で形成され、溶着される裏側層に曲げ弾性率が高い樹脂となるインテークエアダクトを得た。この比較例のインテークエアダクトは前記した引き裂き試験で溶着部分の剥離が生じ、溶着に問題があるのがわかった。
【0024】
さらに本実施例の表側層を構成する高い曲げ弾性率を持つ樹脂で、表側層及び裏側層をともに形成した3層積層樹脂シート基材を作り、このシート基材を用いて本実施例と同様にしてインテークエアダクトを製作した。このインテークエアダクトは引き裂き試験で溶着部分の剥離が生じ溶着に問題があった。さらに本実施例の裏側層を構成する低い曲げ弾性率を持つ樹脂で表側層及び裏側層をともに形成した3層積層樹脂シート基材を作り、このシート基材を用いて本実施例と同様にしてインテークエアダクトを製作した。このインテークエアダクトは110℃、3時間の加熱に耐えることができず変形した。
【0025】
これらの比較例より表側層に曲げ弾性率の高いオレフィン樹脂を用い、裏側層に曲げ弾性率の低いオレフィン樹脂を用いることにより、耐熱性が高区かつ溶着性の優れたインテークエアダクトが得られることが明らかとなった。
【0026】
【発明の効果】
本発明の空圧成形されたインテークエアダクトは中間に発泡層を持つため断熱性および吸音性に優れかつ表側層及び裏側層の中実層のために遮音性にも優れている。しかも積層された3層がいずれもオレフィン系樹脂で構成されているため、一体として溶融することにより成形用樹脂として再使用でき、リサイクル性に優れている。また、表側層に曲げ弾性率の高い樹脂、裏側層に曲げ弾性率の低い樹脂を用いることにより、優れた耐熱性と優れた溶着性を持つインテークエアダクトとすることができる。
【図面の簡単な説明】
【図1】本発明の実施例のインテークエアダクトの平面図である。
【図2】本発明の実施例のインテークエアダクトの側面図である。
【図3】図1のA−A線で切断した断面拡大図である。
【符号の説明】
2…第1被接合体 3…第2被接合体 21、31…溶着部分
22、32…被固定部 23、33…貫通孔 101…表側層
102…発泡層 103…裏側層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake air duct that takes outside air into an engine room that is a part of an engine structure.
[0002]
[Prior art]
As seen in Japanese Patent Application Laid-Open No. 58-219019, an intake air duct made of resin has been proposed and used in response to a request for weight reduction. Intake air ducts made of resin are lightweight and have higher heat insulating properties than those made of metal, and are excellent in shutting off heat from the engine compartment that is at a high temperature and introducing cool outside air.
[0003]
However, further heat insulation, sound insulation, and sound absorption are required for conventional resin intake air ducts. In addition, recycling of resin parts has become a social request.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an intake air duct that is further excellent in heat insulation and sound insulation, and further an intake air duct that is excellent in recyclability in addition to these characteristics.
[0005]
[Means for Solving the Problems]
The inventor has come up with a resin intake air duct having a foam layer in order to satisfy better heat insulation and sound insulation. And since the foamed layer was present in the resin molded body, it came to come up with the adoption of pneumatic molding. In addition, the resin molded body has a three-layer laminated structure consisting of a front side layer, the foam layer, and a back side layer, and the heat resistance and weldability are obtained by using a low-rigidity resin having a lower back side layer than the front side. It came to. Furthermore, in consideration of recyclability, the present inventors completed the present invention by thinking of molding with an olefin resin.
In other words, the intake air duct of the present invention is an intake air duct obtained by welding a set of joined bodies in a shape obtained by dividing a cylindrical body into a plurality of pieces, and the set of joined bodies is a synthetic resin sheet. The base material is molded by pneumatic molding, and the synthetic resin sheet base material is composed of a highly rigid front side layer mainly composed of an olefin resin and a foam composed mainly of the olefin resin. A foamed intermediate layer and a back side layer having rigidity lower than that of the front side layer mainly composed of an olefin-based resin. The flange-shaped peripheral edge portion of the flange is integrated by welding on the back side layer.
[0006]
The intake air duct of the present invention has a heat insulating property and a sound absorbing property because it has a foam layer. Moreover, since the base material layer used as a front side layer or a back side layer is a solid layer, it has sound insulation. Since this intake air duct is formed by pneumatic molding, a large pressing force does not act on the foam layer, and the foam layer can be maintained and molded. Moreover, heat resistance and weldability are improved by using an olefin resin having rigidity lower than that of the front layer for the back layer.
The intake air duct of the present invention can be easily recycled by molding it with an olefin resin including a foam layer.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The intake air duct of the present invention is an intake air duct obtained by welding and integrating a set of joined bodies in a shape obtained by dividing a cylindrical body into a plurality of parts. The intake air duct can be used as a conventional duct for taking in outside air, such as a duct for an air cleaner that takes outside air into the intake system of the engine, a duct that takes outside air into the passenger compartment, and the like.
[0008]
This intake air duct is composed of a set of joined bodies formed by pneumatic molding of a synthetic resin sheet base material having a foam layer. This set of objects to be joined has a shape in which a target duct is divided into a plurality of parts. Pneumatic molding is a molding method known as vacuum molding or pneumatic molding. The difference in air pressure acting on both sides of a heated and softened resin sheet substrate, that is, the resin sheet substrate on the mold surface due to air pressure. This is a method of forming a shape along the mold surface by pressing the substrate or attracting the substrate to the mold surface by decompression.
[0009]
The intake air duct of the present invention is preferably formed of an olefin resin. Olefin resins are crystalline, highly rigid and heat-resistant polypropylene resins, crystalline high-density polyethylene, low-density polyethylene, ethylene-propylene resins known as elastomers, and mixtures of these crystalline olefins and various rubbers. A certain TPO (thermoplastic olefin) is known and can be arbitrarily selected from one having high rigidity to one having low rigidity.
[0010]
Olefin resins can be easily blended with each other, and are blended in a wide range in order to impart predetermined characteristics. Therefore, even if different olefinic resins are used for the solid layer and the foamed layer constituting the intake air duct made of the olefinic resin and the two are mixed at the time of recycling, they can be used as the olefinic resin. For this reason, recycling is extremely easy.
[0011]
The intake air duct of the present invention is preferably a molded body having a three-layer laminated structure in which the front side layer and the back side layer are solid layers and the foam layer is in the middle. This molded body having a three-layer laminated structure can be obtained by pressure forming a sheet base material having a three-layer laminated structure having a foam layer in the middle.
The intake air duct is molded by pressing the front side layer against the concave surface or pressing the back side layer against the convex surface. The surface of the front layer can be decorated such as by embossing by forming the decoration on the mold surface. As the resin for forming the front side layer, it is necessary to select a resin having characteristics required for the front side layer. When rigidity or hardness is required, it is preferable to select polypropylene or a resin containing a large amount of polypropylene.
[0012]
The foam layer constituting the intermediate layer is a crosslinked olefin resin foam. Cross-linking improves heat resistance and air formability. The resin that forms the backside layer is also selected according to its expected properties. For example, when the back side surface is welded, it is preferable to use an olefin resin having lower rigidity than the resin of the front side layer, including an elastomer having excellent weldability. When the intake air duct is lightweight and requires high bending rigidity, it is preferable that at least one of the front side layer and the back side layer, and preferably both layers be relatively thin. Specifically, in the state of the molded body, the front side layer and the back side layer can be about 0.1 to 2.0 mm.
[0013]
The intake air duct used in the engine room of an automobile preferably uses polypropylene having high rigidity and heat resistance as the resin for the front layer. To form a set of objects to be joined that are divided into two along the axis of the air duct, etc., and to be integrated by welding on the back side of each joined body Olefin resin is used. Specifically, the resin forming the front side layer preferably has a tensile modulus of 1,000 to 3,000 MPa, and the resin forming the back side layer preferably has a tensile strength of 3 to 20 MPa. When the front side layer is 1,000 MPa or less, the rigidity of the product becomes insufficient, and when it is 3,000 MPa or more, the formability is poor in vacuum forming and the workability is poor. Further, when the strength of the back side layer is 3 MPa or less, it is easy to break during stretching in vacuum forming, and when it is 20 MPa or more, the formability is poor and the workability is poor.
[0014]
Further, in order to weld a set of molded articles to be joined, it is preferable that the welded portion is a flange shape, and this portion is a joined portion. When a fixed part is necessary for a set of bonded molded bodies, it is preferable to provide the fixed part at the welded part. Since the welded parts are formed by laminating and joining the molded bodies of a pair of bonded molded bodies, the thickness is doubled and the strength of the parts is increased accordingly, and it is possible to withstand a large force acting on the fixed part. Become.
[0015]
[Action]
The intake air duct of the present invention has a laminated structure having a foam layer. The foam layer provides excellent thermal insulation. In addition, the foam layer has excellent sound absorption characteristics, and solid layers such as the front side layer and the back side layer ensure sound insulation. For this reason, the intake air duct of this invention is excellent in heat insulation and a soundproofing characteristic. Moreover, the weldability in a joint surface improves by using the back side layer made from low-rigidity resin lower than a front side layer. By making this intake air duct with an olefin resin, it becomes excellent in recyclability.
[0016]
Furthermore, since it has a foam layer as an intermediate | middle layer, it becomes still lighter.
[0017]
【Example】
FIG. 1 is a plan view of the intake air duct of the present invention, FIG. 2 is a side view thereof, and FIG. 3 is an enlarged sectional view taken along line AA of FIG.
As is apparent from the cross-sectional view of FIG. 3, this intake air duct is formed by vacuum forming using a three-layer laminated resin sheet substrate. This three-layer laminated sheet base material comprises a front side layer 101, a foam layer 102 and a back side layer 103. The front layer 101 is made of a polypropylene resin having a thickness of 1.0 mm (hereinafter referred to as PP, tensile elastic modulus: 1760 MPa), and the foam layer 102 is a resin having a thickness of PP of 3.0 mm as a main component (apparent specific gravity of 0. 0). 066, tensile strength 1.4 MPa, foaming magnification 15 times), the back side layer 103 is a rubber-modified PP having a thickness of 0.35 mm (tensile strength 0.8 MPa, hardness: JIS A hardness 86 (70 to 70 of JIS K6301) 95))). The foamed resin used as the foam layer 102 is a crosslinked crosslinked foamed resin.
[0018]
This three-layer laminated resin is integrally bonded by superimposing the melted front side layer 101 and back side layer 103 on the upper and lower surfaces of the foamed layer 102 formed in advance by slicing or T-die to a predetermined thickness. Manufactured.
Next, it is heated from both surfaces of this three-layer laminated resin sheet base material with a hot plate heater or a heating furnace until the surface temperature becomes 150 to 180 ° C., and is drawn by vacuum pressure to the mold surface by normal vacuum molding, And then cured by cooling. Thereafter, the peripheral edge portion was trimmed to obtain an object to be joined having a predetermined shape.
[0019]
In the present embodiment, two types of joined bodies, that is, a first joined body 2 and a second joined body 3, which were divided into two along the axis of the intake air duct, were made. Both the 1st to-be-joined body 2 and the 2nd to-be-joined body have the welding parts 21 and 31 in which those side part peripheral parts protruded in the flange shape. These welded portions 21 and 31 are in contact with each other.
[0020]
Fixed portions 22 and 32 are formed in a wide flange-like portion in which a part of the welded portions 21 and 31 further protrudes outward, and fixing through holes 23 and 33 are formed in the central portions thereof. ing. These fixed portions 22 and 32 are also formed so as to face and abut each other.
Next, these 1st to-be-joined bodies 2 and the 2nd to-be-joined body 3 are set | placed on the hot plate shape heated at 180-200 degreeC, respectively, and each contact surface of the welding parts 21 and 31 is pressed on a hot plate for 30 second. And heated. Immediately thereafter, the welded portions 21 and 31 were brought into contact with each other and pressed for 20 seconds with a pressure of 2.0 kg / cm 2 to fuse both, and in this state, the solution was cooled and solidified to complete the welding. The fixed parts 22 and 32 were welded and integrated in the same manner as the welded parts 21 and 31. Thus, the intake air duct of this example was manufactured.
[0021]
Next, the sound insulation and sound absorption of this intake air duct were examined. This intake air duct was superior in sound absorption than that made of a metal plate and lacked sound insulation. Further, the intake air duct of this example was superior in sound absorption than that of a single-layer polypropylene made by injection molding, and was superior in sound insulation than that obtained by vacuum forming a polypropylene foam sheet substrate.
[0022]
Further, the intake air duct of this example was placed in a heating chamber at 110 ° C. for 3 hours, and the shape retention property was examined. The intake air duct of this example withstood this heating test and no problems such as deformation occurred. Further, a tear test was performed in which the intake air duct was pulled from the opening at a pulling speed of 100 mm / min at room temperature to separate the first bonded body 2 and the second bonded body 3 from each other. As a result, this intake air duct was broken at the foamed layer portion, but peeling at the welded portions 21 and 31 did not occur, and it became clear that the welding was performed reliably.
[0023]
For reference, the same intake air duct as in the example was manufactured by pressing the back layer 103 against the mold surface using the same three-layer laminated resin sheet base material used in the present example. Thus, an intake air duct was obtained in which the front side layer was formed of a resin having a low bending elastic modulus, and the back side layer to be welded was a resin having a high bending elastic modulus. It was found that the intake air duct of this comparative example had a problem in welding because peeling of the welded part occurred in the above-described tear test.
[0024]
Furthermore, a three-layer laminated resin sheet base material in which both the front side layer and the back side layer are formed with a resin having a high flexural modulus constituting the front side layer of this example is used, and this sheet base material is used as in this example. An intake air duct was manufactured. This intake air duct had a problem in welding because peeling of the welded part occurred in the tear test. Further, a three-layer laminated resin sheet base material in which both the front side layer and the back side layer are formed of a resin having a low flexural modulus constituting the back side layer of this example is prepared, and this sheet base material is used in the same manner as in this example. To produce an intake air duct. This intake air duct was unable to withstand heating at 110 ° C. for 3 hours and was deformed.
[0025]
By using an olefin resin with a high flexural modulus for the front layer and an olefin resin with a low flexural modulus for the back side layer from these comparative examples, an intake air duct with high heat resistance and excellent weldability can be obtained. Became clear.
[0026]
【The invention's effect】
The air-molded intake air duct according to the present invention has a foam layer in the middle, so that it has excellent heat insulation and sound absorption, and because of the solid layers of the front and back layers, it also has excellent sound insulation. In addition, since the three laminated layers are all composed of an olefin-based resin, it can be reused as a molding resin by melting as a single body and is excellent in recyclability. Further, by using a resin having a high flexural modulus for the front side layer and a resin having a low flexural modulus for the back side layer, an intake air duct having excellent heat resistance and excellent weldability can be obtained.
[Brief description of the drawings]
FIG. 1 is a plan view of an intake air duct according to an embodiment of the present invention.
FIG. 2 is a side view of an intake air duct according to an embodiment of the present invention.
FIG. 3 is an enlarged cross-sectional view taken along line AA in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 2 ... 1st to-be-joined body 3 ... 2nd to-be-joined body 21, 31 ... Welded part 22, 32 ... Fixed part 23, 33 ... Through-hole 101 ... Front side layer 102 ... Foam layer 103 ... Back side layer

Claims (4)

筒状体を複数に分割した形状の一組の被接合体を溶接して一体化したインテークエアダクトであって、該一組の被接合体は合成樹脂シート基材を空圧成形することにより成形されており、
該合成樹脂シート基材はオレフィン系樹脂を主成分とする高剛性樹脂製の表側層とオレフィン系樹脂を主成分とする発泡体で構成されている発泡中間層とオレフィン系樹脂を主成分とする該表側層よりも低い低剛性樹脂製の裏側層とから構成されており、
前記被接合体の接合される周縁部はフランジ状となり、互いに対向する一組の該フランジ状周縁部の前記裏側層で溶着して一体化されたものであることを特徴とするインテークエアダクト。
An intake air duct formed by welding a set of joined bodies in a shape obtained by dividing a cylindrical body into a plurality of joined bodies, and the set of joined bodies is formed by pneumatic molding of a synthetic resin sheet base material Has been
The synthetic resin sheet base material is mainly composed of a high-rigidity resin front side layer mainly composed of an olefin resin, a foamed intermediate layer composed of a foam body mainly composed of the olefin resin, and the olefin resin. It is composed of a back side layer made of a low rigidity resin lower than the front side layer,
The intake air duct is characterized in that a peripheral edge portion to be joined of the members to be joined has a flange shape and is welded and integrated with the back side layer of the pair of flange-shaped peripheral edge portions facing each other.
前記発泡体は架橋された架橋発泡体である請求項1記載のインテークエアダクト。The intake air duct according to claim 1, wherein the foam is a cross-linked cross-linked foam. 前記表側層を形成する樹脂は引張弾性率が1,000〜3,000MPaであり前記裏側層を形成する樹脂は引張強度が3〜20MPaである請求項1記載のインテークエアダクト。The intake air duct according to claim 1, wherein the resin forming the front layer has a tensile modulus of 1,000 to 3,000 MPa, and the resin forming the back layer has a tensile strength of 3 to 20 MPa. 互いに対向して接合された前記周縁部の一部に互いに対向して接合された一組のフランジ状被固定部をもつ請求項1記載のインテークエアダクト。The intake air duct according to claim 1, further comprising a set of flange-shaped fixed portions that are joined to face each other at a part of the peripheral edge portions that are joined to face each other.
JP07990497A 1997-03-31 1997-03-31 Intake air duct Expired - Fee Related JP3815519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07990497A JP3815519B2 (en) 1997-03-31 1997-03-31 Intake air duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07990497A JP3815519B2 (en) 1997-03-31 1997-03-31 Intake air duct

Publications (2)

Publication Number Publication Date
JPH10274113A JPH10274113A (en) 1998-10-13
JP3815519B2 true JP3815519B2 (en) 2006-08-30

Family

ID=13703281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07990497A Expired - Fee Related JP3815519B2 (en) 1997-03-31 1997-03-31 Intake air duct

Country Status (1)

Country Link
JP (1) JP3815519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018109710A1 (en) 2018-04-23 2019-10-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Multi-part air duct in a motor vehicle and method for producing such an air duct

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467731B2 (en) * 2000-08-09 2010-05-26 富士重工業株式会社 Sound insulation structure of resin chamber
JP5993949B2 (en) 2012-07-11 2016-09-21 川崎重工業株式会社 Intake duct for saddle type vehicles
JP6952330B2 (en) * 2017-07-03 2021-10-20 内山工業株式会社 Tubular body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018109710A1 (en) 2018-04-23 2019-10-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Multi-part air duct in a motor vehicle and method for producing such an air duct
DE102018109710B4 (en) 2018-04-23 2022-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Multi-part air duct in a motor vehicle and method for producing such an air duct

Also Published As

Publication number Publication date
JPH10274113A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
US7157034B2 (en) Twin-sheet thermoforming process
JP2000033839A (en) Vehicle interior trim panel with soft touch foam layer, producing method thereof, and producing device therefor
WO1998036943A1 (en) Structural headliner
JP3815519B2 (en) Intake air duct
JP3872597B2 (en) Automotive interior parts
US20080264544A1 (en) Foamed thermoplastic resin molding with a functional component
KR20120009578A (en) Lightweight multi-layer and method for making the same
JP3815520B2 (en) Intake manifold cover
WO2019039350A1 (en) Vehicle seat core material and seat pad
JPH10272683A (en) Laminated resin molding body molded by pneumatic pressure
JP5325445B2 (en) Dash insulator
JP2003334880A (en) Laminate and molded product
JPH11129274A (en) Production of polypropylene composite molded article polypropylene composite molded article for vehicle
JP3739563B2 (en) Multilayer hot melt film
KR200166707Y1 (en) Vehicle ceiling material
JPH0520608Y2 (en)
JP2544248B2 (en) Synthetic resin cardboard laminate for thermoforming
JP5483282B2 (en) Vehicle parts mounting structure
US8129003B2 (en) Vehicle panel with metalized film
US20070207289A1 (en) Addition of microspheres to create soft two shot products
JP2002225165A (en) Thermoplastic resin foamed molded object
JPH03110142A (en) Thermoformable layered body
JPH05147109A (en) Ultrasonic welding method between foam molded board and injection molded article
JP3487188B2 (en) Resin products
JPH0712190Y2 (en) Ceiling material for automobile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees