JP3814969B2 - Process for producing amino acid-N-carboxylic acid anhydride - Google Patents

Process for producing amino acid-N-carboxylic acid anhydride Download PDF

Info

Publication number
JP3814969B2
JP3814969B2 JP22450397A JP22450397A JP3814969B2 JP 3814969 B2 JP3814969 B2 JP 3814969B2 JP 22450397 A JP22450397 A JP 22450397A JP 22450397 A JP22450397 A JP 22450397A JP 3814969 B2 JP3814969 B2 JP 3814969B2
Authority
JP
Japan
Prior art keywords
amino acid
reaction
carboxylic acid
group
acid anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22450397A
Other languages
Japanese (ja)
Other versions
JPH1129560A (en
Inventor
昌三 西田
浩司 志保
幸平 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP22450397A priority Critical patent/JP3814969B2/en
Publication of JPH1129560A publication Critical patent/JPH1129560A/en
Application granted granted Critical
Publication of JP3814969B2 publication Critical patent/JP3814969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アミノ酸−N−カルボン酸無水物の製造方法、詳しくはアミノ酸と二酸化炭素とからアミノ酸−N−カルボン酸無水物を製造する方法に関する。
【0002】
【従来の技術】
アミノ酸−N−カルボン酸無水物、例えばα−アミノ酸のN−カルボン酸無水物は、触媒の存在下に開環、脱炭酸して高分子量のポリアミドが生成し、アミノ酸から工業的にポリアミドを得るための中間原料として用いられている。
従来より、上記アミノ酸−N−カルボン酸無水物は、アミノ酸にホスゲンを反応させることにより製造されている。しかしながら、ホスゲンは極めて危険な化合物であるので、工業的に生産する場合万全の設備が必要であり、これがアミノ酸−N−カルボン酸無水物製造上の安全上の問題や生産コストの問題を生じさせていた。
【0003】
【発明が解決しようとする課題】
本発明の目的は、ホスゲンを使用せずに、低コストでアミノ酸からアミノ酸−N−カルボン酸無水物を製造する方法を提供することである。
【0004】
【課題を解決するための手段】
本発明によれば、アミノ酸と超臨界状態または液化状態の二酸化炭素とを反応させることを特徴とするアミノ酸−N−カルボン酸無水物の製造方法が提供されて、本発明の上記目的が達成される。
以下、本発明のアミノ酸−N−カルボン酸無水物の製造方法を詳述するが、それにより本発明の他の目的、構成、利点および効果が明らかとなるであろう。
【0005】
【発明の実施の形態】
本発明の製造方法で用いられるアミノ酸の典型的な例として、α−アミノ酸を挙げることができる。該α−アミノ酸は、炭素数2〜20のものが好ましく、具体的にグリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、リシン、ヒドロキシリシン、アルギニン、システイン、シスチン、メチオニン、フェニルアラニン、チロシン、トリプトファン、ヒスチジン、プロリン、オキシプロリン等を挙げることができる。
また、アミノ酸の別の例は、上記α−アミノ酸以外のアミノ酸であるβ−アミノ酸、γ−アミノ酸、芳香族アミノ酸 およびその他のアミノ酸である。このようなアミノ酸としては、炭素数3〜20のものが好ましく、具体的にβ−アラニン、γ−アミノ酪酸、アントラニル酸等を挙げることができる。
なお、アミノ酸には、D体、L体等の光学活性異性体やこれらの等量混合物であるラセミ体が存在するが、いずれも使用することができる。アミノ酸は、同じ炭素原子にアミノ基とカルボキシル基が結合したα−アミノ酸が好ましいが、β−アミノ酸、γ−アミノ酸も無水物が形成できるものであればよい。
【0006】
アミノ酸が複数個のアミノ基および/またはカルボキシル基を有する場合、反応に関与するもの以外のアミノ基および/またはカルボキシル基が二酸化炭素と反応しないように保護されたアミノ酸に予め変換しておくことが好ましい。
保護する方法として、アミノ基のときは、アミノ基の水素原子をカルボベンゾキシ基、p−クロルカルボベンゾキシ基、p−ブロムカルボベンゾキシ基、p−メトキシカルボベンゾキシ基、第三ブチルオキシカルボニル基、p−ニトロフェニルチオ基等で置換する方法を例示することができる。カルボキシル基のときは、カルボキシル基の水素原子をメチル基、ベンジル基、第三ブチル基等で置換する方法を例示することができる。
アミノ酸がアミノ基およびカルボキシル基以外の二酸化炭素と反応し得る基を有する場合も、同様に適切な方法で該基が保護されたアミノ酸に予め変換しておくことが好ましい。
【0007】
以上例示したアミノ酸の中でも、グルタミン酸およびグルタミン酸のγ位に結合しているカルボキシル基を上記方法で保護したものが、安価に入手できることから本発明の製造方法の原料として好ましく用いられる。
【0008】
本発明の製造方法では、二酸化炭素は超臨界状態あるいは液化した状態にあり、特に超臨界状態にあることが好ましい。
二酸化炭素を超臨界状態または液化した状態とするためには、温度0〜100℃および圧力30〜400気圧、特に温度30〜100℃および圧力100〜300気圧の条件下で反応させることが好ましい。
このような温度条件および圧力条件下で反応を行うことにより、十分な反応速度が得られると共に副反応が実質上抑制され、しかもコスト高の要因となる高価格な反応設備を必要としない。
【0009】
上記の反応を行うに当り、二酸化炭素は、アミノ酸1モルに対して、好ましくは5モル以上、より好ましくは10〜100モル使用される。
また、反応の促進あるいは収率向上のために、シリカゲル、モレキュラーシーブ、無水硫酸ソーダ等の吸湿剤および/または触媒を使用することができる。
【0010】
反応時間は、アミノ酸の種類、アミノ酸と二酸化炭素とのモル比、反応温度、反応圧力、所望により使用される上記吸着剤および/または触媒の種類と量等によって適宜選択される。
反応に使用される反応装置は、上記反応圧力に十分耐え得る反応器が使用される。また、反応は撹拌下に行われるので、該反応器には、例えば撹拌翼等を備えた撹拌装置が具備されていることが好ましい。勿論、該反応器には、ジャケット等の加熱装置、原料供給口、ガス排出口、生成物取出口等が必要に応じて設けられている。
【0011】
反応は、バッチ式あるいは連続式で行うことができる。反応をバッチ式で行う場合、所定量のアミノ酸と液化二酸化炭素、さらには所望により使用される吸湿剤および/または触媒を反応器内に供給した後、所定温度に保つことにより反応を進行させる。反応終了後、反応器から二酸化炭素を排出して反応器内の圧力を大気圧とし、反応器内に残存した反応生成物を該反応器内であるいは該反応器から取り出して精製することによりアミノ酸−N−カルボン酸無水物を得ることができる。
上記精製の方法は、アミノ酸−N−カルボン酸無水物の種類によって適宜選択されるが、再結晶法、再沈法等の方法により行うことができる。
【0012】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明の範囲が実施例により制限を受けるものではない。
(実施例1)
γ−ベンジル−L−グルタメイト10.0g(0.042モル)、液化二酸化炭素40.0g(0.9モル)、およびシリカゲル5.0gを100mLの耐圧反応容器に仕込み密閉した。電磁誘導撹拌装置で撹拌しながら油浴で反応容器内の温度を50℃に上昇させた後、温度を50℃に維持して、5時間反応を継続した。反応容器内の最高圧力は145気圧であった。その後、熱源を切り、減圧バルブから徐々に反応器内の二酸化炭素を放出して圧力を大気圧まで下げた。
反応器内に残った反応生成物を取り出し、下記の処理を施した。
即ち、まず、酢酸エチル50mLに溶解し、濾過により不溶物を除去し、濾液をノルマルヘキサンに注ぎ込み、生じた沈殿物を濾取し、さらにn−ヘキサンから再結晶して精製し、得られた結晶を真空下室温で乾燥した。
こうして得られた生成物は、NMR、赤外分光スペクトル分析、元素分析等により、下記式(1)で示されるアミノ酸−N−カルボン酸無水物であることが確認された。
【0013】
【化1】

Figure 0003814969
Figure 0003814969
【0014】
(実施例2)
実施例1において、反応容器内の温度を30℃に維持して、12時間反応を継続した以外は、実施例1と同様に操作した。反応容器内の最高圧力は、68気圧であった。
得られた生成物は、実施例1の場合と同じように精製し、分析を行い上記式(1)で示されるアミノ酸−N−カルボン酸無水物であることが確認された。
【0015】
【発明の効果】
本発明の製造方法によれば、ホスゲンを使用せずに、安全にアミノ酸−N−カルボン酸無水物を製造できる。従って、特殊な設備を用いる必要がないので、低コストでアミノ酸−N−カルボン酸無水物を提供することができる。
【0016】
以下、本発明の製造方法の好ましい態様を記載する。
(1)アミノ酸が炭素数2〜20のα−アミノ酸であること。
(2)アミノ酸と二酸化炭素との反応が、反応温度30〜100℃、反応圧力10〜400気圧の条件下で行われること。
(3)上記反応が吸湿剤および/または触媒の存在下で行われること。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an amino acid-N-carboxylic acid anhydride, and more particularly to a method for producing an amino acid-N-carboxylic acid anhydride from an amino acid and carbon dioxide.
[0002]
[Prior art]
An amino acid-N-carboxylic acid anhydride, for example, an α-amino acid N-carboxylic acid anhydride, undergoes ring-opening and decarboxylation in the presence of a catalyst to produce a high molecular weight polyamide, and industrially obtains a polyamide from the amino acid. Is used as an intermediate raw material.
Conventionally, the amino acid-N-carboxylic acid anhydride is produced by reacting phosgene with an amino acid. However, since phosgene is a very dangerous compound, it must be fully equipped for industrial production, which causes safety problems and production cost problems in the production of amino acid-N-carboxylic acid anhydrides. It was.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an amino acid-N-carboxylic acid anhydride from an amino acid at low cost without using phosgene.
[0004]
[Means for Solving the Problems]
According to the present invention, there is provided a method for producing an amino acid-N-carboxylic acid anhydride, which comprises reacting an amino acid with carbon dioxide in a supercritical state or a liquefied state, thereby achieving the object of the present invention. The
Hereafter, the manufacturing method of the amino acid-N-carboxylic acid anhydride of this invention is explained in full detail, By this, the other objective, structure, advantage, and effect of this invention will become clear.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
As typical examples of amino acids used in the production method of the present invention, α-amino acids can be mentioned. The α-amino acid preferably has 2 to 20 carbon atoms, specifically glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, asparagine, glutamine, lysine, hydroxylysine, arginine, cysteine. Cystine, methionine, phenylalanine, tyrosine, tryptophan, histidine, proline, oxyproline and the like.
Other examples of amino acids are β-amino acids, γ-amino acids, aromatic amino acids and other amino acids other than the α-amino acids. Such amino acids are preferably those having 3 to 20 carbon atoms, and specific examples include β-alanine, γ-aminobutyric acid, anthranilic acid and the like.
As amino acids, there are optically active isomers such as D-form and L-form, and racemic isomers which are a mixture of these equivalents, any of which can be used. The amino acid is preferably an α-amino acid in which an amino group and a carboxyl group are bonded to the same carbon atom.
[0006]
When the amino acid has a plurality of amino groups and / or carboxyl groups, the amino group and / or carboxyl group other than those involved in the reaction may be converted into amino acids protected so as not to react with carbon dioxide. preferable.
As a protecting method, in the case of an amino group, the hydrogen atom of the amino group is converted into a carbobenzoxy group, a p-chlorocarbobenzoxy group, a p-bromocarbobenzoxy group, a p-methoxycarbobenzoxy group, a tert-butyloxy group. Examples of the substitution method include a carbonyl group and a p-nitrophenylthio group. In the case of a carboxyl group, a method of substituting a hydrogen atom of the carboxyl group with a methyl group, a benzyl group, a tertiary butyl group or the like can be exemplified.
Similarly, when an amino acid has a group capable of reacting with carbon dioxide other than an amino group and a carboxyl group, it is preferably converted in advance to an amino acid in which the group is protected by an appropriate method.
[0007]
Among the amino acids exemplified above, glutamic acid and those obtained by protecting the carboxyl group bonded to the γ-position of glutamic acid by the above method are preferably used as a raw material for the production method of the present invention because they can be obtained at low cost.
[0008]
In the production method of the present invention, carbon dioxide is in a supercritical state or a liquefied state, and particularly preferably in a supercritical state.
In order to bring carbon dioxide into a supercritical state or a liquefied state, it is preferable to perform the reaction under conditions of a temperature of 0 to 100 ° C. and a pressure of 30 to 400 atm, particularly a temperature of 30 to 100 ° C. and a pressure of 100 to 300 atm.
By carrying out the reaction under such temperature conditions and pressure conditions, a sufficient reaction rate can be obtained, side reactions are substantially suppressed, and expensive reaction equipment that causes high costs is not required.
[0009]
In carrying out the above reaction, carbon dioxide is preferably used in an amount of 5 mol or more, more preferably 10 to 100 mol, per mol of amino acid.
Moreover, in order to accelerate | stimulate reaction or to improve a yield, hygroscopic agents and / or catalysts, such as a silica gel, a molecular sieve, and anhydrous sodium sulfate, can be used.
[0010]
The reaction time is appropriately selected depending on the type of amino acid, the molar ratio of amino acid to carbon dioxide, the reaction temperature, the reaction pressure, the type and amount of the adsorbent and / or catalyst used as desired.
The reactor used for the reaction is a reactor that can sufficiently withstand the reaction pressure. Further, since the reaction is carried out with stirring, it is preferable that the reactor is equipped with a stirring device equipped with, for example, a stirring blade. Of course, the reactor is provided with a heating device such as a jacket, a raw material supply port, a gas discharge port, a product outlet, and the like as necessary.
[0011]
The reaction can be carried out batchwise or continuously. When the reaction is carried out batchwise, a predetermined amount of amino acid and liquefied carbon dioxide, as well as a hygroscopic agent and / or catalyst used as desired are supplied into the reactor, and then the reaction is allowed to proceed by maintaining the predetermined temperature. After completion of the reaction, carbon dioxide is discharged from the reactor, the pressure in the reactor is set to atmospheric pressure, and the reaction product remaining in the reactor is purified in the reactor or by removing it from the reactor for purification. -N-carboxylic acid anhydride can be obtained.
The purification method is appropriately selected depending on the type of amino acid-N-carboxylic acid anhydride, and can be performed by a method such as a recrystallization method or a reprecipitation method.
[0012]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples. However, the scope of the present invention is not limited by the examples.
Example 1
γ-Benzyl-L-glutamate 10.0 g (0.042 mol), liquefied carbon dioxide 40.0 g (0.9 mol), and silica gel 5.0 g were charged into a 100 mL pressure-resistant reaction vessel and sealed. The temperature in the reaction vessel was raised to 50 ° C. with an oil bath while stirring with an electromagnetic induction stirrer, and the reaction was continued for 5 hours while maintaining the temperature at 50 ° C. The maximum pressure in the reaction vessel was 145 atmospheres. Thereafter, the heat source was turned off, and the carbon dioxide in the reactor was gradually released from the pressure reducing valve to lower the pressure to atmospheric pressure.
The reaction product remaining in the reactor was taken out and subjected to the following treatment.
That is, first, it was dissolved in 50 mL of ethyl acetate, the insoluble matter was removed by filtration, the filtrate was poured into normal hexane, the resulting precipitate was collected by filtration, and further purified by recrystallization from n-hexane. The crystals were dried at room temperature under vacuum.
The product thus obtained was confirmed to be an amino acid-N-carboxylic acid anhydride represented by the following formula (1) by NMR, infrared spectroscopy analysis, elemental analysis and the like.
[0013]
[Chemical 1]
Figure 0003814969
Figure 0003814969
[0014]
(Example 2)
In Example 1, the same operation as in Example 1 was carried out except that the temperature in the reaction vessel was maintained at 30 ° C. and the reaction was continued for 12 hours. The maximum pressure in the reaction vessel was 68 atm.
The obtained product was purified and analyzed in the same manner as in Example 1, and it was confirmed that it was an amino acid-N-carboxylic acid anhydride represented by the above formula (1).
[0015]
【The invention's effect】
According to the production method of the present invention, an amino acid-N-carboxylic acid anhydride can be produced safely without using phosgene. Therefore, since it is not necessary to use special equipment, an amino acid-N-carboxylic acid anhydride can be provided at low cost.
[0016]
Hereinafter, the preferable aspect of the manufacturing method of this invention is described.
(1) The amino acid is an α-amino acid having 2 to 20 carbon atoms.
(2) The reaction between an amino acid and carbon dioxide is performed under conditions of a reaction temperature of 30 to 100 ° C. and a reaction pressure of 10 to 400 atmospheres.
(3) The above reaction is performed in the presence of a hygroscopic agent and / or a catalyst.

Claims (1)

アミノ酸と超臨界状態または液化状態の二酸化炭素を反応させることを特徴とするアミノ酸−N−カルボン酸無水物の製造方法。A method for producing an amino acid-N-carboxylic acid anhydride, comprising reacting an amino acid with carbon dioxide in a supercritical state or a liquefied state.
JP22450397A 1997-07-08 1997-07-08 Process for producing amino acid-N-carboxylic acid anhydride Expired - Fee Related JP3814969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22450397A JP3814969B2 (en) 1997-07-08 1997-07-08 Process for producing amino acid-N-carboxylic acid anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22450397A JP3814969B2 (en) 1997-07-08 1997-07-08 Process for producing amino acid-N-carboxylic acid anhydride

Publications (2)

Publication Number Publication Date
JPH1129560A JPH1129560A (en) 1999-02-02
JP3814969B2 true JP3814969B2 (en) 2006-08-30

Family

ID=16814827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22450397A Expired - Fee Related JP3814969B2 (en) 1997-07-08 1997-07-08 Process for producing amino acid-N-carboxylic acid anhydride

Country Status (1)

Country Link
JP (1) JP3814969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803352B2 (en) 2005-07-13 2011-10-26 Jsr株式会社 Process for producing amino acid-N-carboxyanhydride

Also Published As

Publication number Publication date
JPH1129560A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
Abele et al. (S)‐β3‐Homolysine‐and (S)‐β3‐Homoserine‐Containing β‐Peptides: CD Spectra in Aqueous Solution
JP4803352B2 (en) Process for producing amino acid-N-carboxyanhydride
JP2011530523A (en) Synthesis of glatiramer acetate
JP5060301B2 (en) Synthesis of amino acid N-carboxyanhydride
CN114634460A (en) Process for preparing carboxyanhydrides
CA2489743A1 (en) Process for preparing amino acid esters and their acid addition salts
JP3814969B2 (en) Process for producing amino acid-N-carboxylic acid anhydride
JP5140423B2 (en) Method for producing amino acid using amide carbonylation reaction
JP2986888B2 (en) Method for producing aliphatic isocyanate
Manesis et al. Synthesis of a novel class of peptides: dilactam-bridged tetrapeptides
JP3762980B2 (en) Amino group introduction method and amino acid synthesis method
Kricheldorf Polypeptides
EP1756047B1 (en) Process for preparing amino acids using the amidocarbonylation reaction (1)
JP4189108B2 (en) Method for producing amino acid ester hydrochloride
Lelais et al. Enantioselective preparation of β2‐amino acids with aspartate, glutamate, asparagine, and glutamine side chains
JP3577756B2 (en) Method for selectively producing N-protected glutamic acid γ-derivative
Bhat et al. Propargyloxycarbonyl (Poc) amino acid chlorides as efficient coupling reagents for the synthesis of 100% diastereopure peptides and resin bound tetrathiomolybdate as an effective deblocking agent for the Poc group
JP2003137850A (en) Method for producing amino acid ester hydrochloride
JP2004149529A (en) Method for purifying n-carboxylic acid anhydride
JP2000219683A (en) Decarbamoylation of compound having n-carbamoyl protecting group, new carboxylic acid anhydride and use thereof
JPH03112953A (en) Novel process for producing glutamine
EP0044363B1 (en) Method for preparing aminoalkyl esters of aminoacids
JPH0655699B2 (en) Method for producing amino acid hydrochloride
JP2728909B2 (en) Method for producing amino acid alkyl ester mineral salts
WO1998046629A1 (en) Hexahydroaspartame amides and method for the preparation thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees