JP3814684B2 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
JP3814684B2
JP3814684B2 JP2003156474A JP2003156474A JP3814684B2 JP 3814684 B2 JP3814684 B2 JP 3814684B2 JP 2003156474 A JP2003156474 A JP 2003156474A JP 2003156474 A JP2003156474 A JP 2003156474A JP 3814684 B2 JP3814684 B2 JP 3814684B2
Authority
JP
Japan
Prior art keywords
teardrop
shaped element
antenna device
ground plane
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003156474A
Other languages
Japanese (ja)
Other versions
JP2004129209A (en
Inventor
岳彦 小林
琢也 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Priority to JP2003156474A priority Critical patent/JP3814684B2/en
Publication of JP2004129209A publication Critical patent/JP2004129209A/en
Application granted granted Critical
Publication of JP3814684B2 publication Critical patent/JP3814684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアンテナ装置に係り、特に水平面内無指向性を有して広帯域にわたって入力インピーダンスの変化を少なくできるアンテナ装置に関する。
【0002】
【従来の技術】
近年、通信やセンサの分野では、超広帯域(ウルトラワイドバンド)と呼ばれて例えば比帯域が25%以上の広帯域で使用される技術が注目を集めている。そして、このような技術に使用されるアンテナ装置としては、水平面内無指向性を有し且つ広帯域で使用が可能であることが、必要となる場合があった。
【0003】
これに対して、水平面内無指向性で広帯域のアンテナ装置としては、無限長の円錐からなる自己相似形状を持つことで、周波数により入力インピーダンスが変化しない仮想上の無限長バイコニカルアンテナ及び、この無限長バイコニカルアンテナを基本とした有限長バイコニカルアンテナが、従来より知られているだけでなく、無限長モノコーンアンテナや有限長モノコーンアンテナなどが知られている。但し、これらの内の実使用可能なものとしては、有限長の円錐形に形成されている有限長バイコニカルアンテナや図8に示す有限長モノコーンアンテナ110のみであった。
【0004】
しかし、円錐の長さが波長を無視できるくらい波長よりも長く、アンテナ本体に給電するための給電部が、波長を無視できるくらい波長よりも小さい場合のみ、近似的に定インピーダンスとなることが知られているのに対して、このような各アンテナ装置では、アンテナ本体112が有限長の円錐形になっている上、給電部114も有限の大きさを持っていた。
【0005】
【発明が解決しようとする課題】
以上のことから、従来の有限長の円錐を用いた有限長バイコニカルアンテナや図8に示す有限長モノコーンアンテナ110では、円錐形に形成されたアンテナ本体112の底面112Aから発生していた反射電流を十分に抑えることができず、このような各アンテナ装置では、入力インピーダンスの変化を広帯域にわたって小さく抑えることが難しかった。
【0006】
この為、従来の水平面内無指向性で広帯域のアンテナ装置では、電圧定在波比(VSWR)が広帯域にわたって低くならず、効率的な放射又は受信ができない問題を有していた。
他方、上記の各アンテナ装置とは別にボルケーノスモーク(Volcano smoke )アンテナと呼ばれるものも知られているが、このアンテナ装置は形状が明瞭に定義されておらず、実使用できるものではなかった。
【0007】
本発明は上記事実を考慮し、反射電流を抑えることにより電圧定在波比を低く保つことのできる水平面内無指向性で広帯域のアンテナ装置を提供することが目的である。
【0008】
【課題を解決するための手段】
請求項1に記載のアンテナ装置は、円錐形の底面側からこの円錐形に球面が接する形にこれらが幾何学的に組み合わされた形状で、円錐形部分の回転対称軸が垂直に配置された涙滴形素子と、
涙滴形素子を構成する円錐形部分の頂点と対向して配置された地板と、
内側導体が涙滴形素子を構成する円錐形部分の頂点に接続されると共に、外側導体が地板に接続される同軸線路と、
を有することを特徴とする。
【0009】
請求項1に係るアンテナ装置の作用を以下に説明する。
本請求項に係るアンテナ装置によれば、円錐形の底面側からこの円錐形に球面が接する形にこれらが幾何学的に組み合わされた形状で、円錐形部分の回転対称軸が垂直に配置された形に涙滴形素子が形成されており、この涙滴形素子の円錐形部分の頂点と対向して地板が配置されている。また、同軸線路の内側導体が、この涙滴形素子を構成する円錐形部分の頂点に接続されており、この同軸線路の外側導体が、地板に接続されている。
【0010】
つまり、本請求項によるアンテナ装置では、実質的にモノコーンアンテナを形成する円錐の底面側から導電性の球を内接する形で、この円錐の底面の替わりにこの球をはめ込んだような構造の涙滴形素子を採用し、この涙滴形素子における円錐形部分の回転対称軸を垂直に配置した。従って、本請求項のアンテナ装置によれば、円錐形となっている従来のモノコーンアンテナの底面で反射していた反射電流が抑圧され、導電性を有した球形部分の表面を電流が通り、この球形部分で徐々に減衰していくことになる。この結果として、本請求項によれば、入力インピーダンスの変化を広帯域にわたって小さく抑えられるのに伴って、電圧定在波比を確実に抑えることができ、水平面内無指向性で広帯域のアンテナ装置が実現可能となる。
【0011】
請求項2に係るアンテナ装置の作用を以下に説明する。
本請求項に係るアンテナ装置は請求項1と同一の作用を奏する。但し、本請求項では、地板の中央部に穴部が形成され、この地板に対して涙滴形素子の円錐形部分の回転対称軸が垂直にされた状態で、この円錐形部分の頂点が穴部を有する地板の中央部に対向して位置するという構成を有している。
【0012】
つまり、地板に対して涙滴形素子の円錐形部分の回転対称軸が垂直となる配置で地板が設置されたことで、より確実に請求項1の作用効果が得られるだけでなく、円錐形部分の頂点が穴部を有する地板の中央部に対向して位置したことで、この穴部を介して確実に、同軸線路の内側導体を、涙滴形素子に接続できるようになる。
【0013】
請求項3に係るアンテナ装置の作用を以下に説明する。
本請求項に係るアンテナ装置は請求項1と同一の作用を奏する。但し、本請求項では、涙滴形素子と同軸線路の内側導体との間及び、地板と同軸線路の外側導体との間をそれぞれ接続し得る接合部材が、地板を挟んで涙滴形素子と対向して配置されるという構成を有している。
【0014】
つまり、接合部材が地板を挟んで涙滴形素子と対向して配置されることで、涙滴形素子及び地板が同軸線路側にそれぞれ容易に接続可能となるだけでなく、この接合部材によって強固に接合されることで、涙滴形素子と地板との間の位置関係が変化し難くなり、特性が安定化するようになる。
【0016】
請求項に係るアンテナ装置の作用を以下に説明する。
本請求項に係るアンテナ装置は請求項1と同一の作用を奏する。但し、本請求項では、比誘電率を1.1以下とした材料により作製される支持部材が、涙滴形素子を支える形で地板上に配置されるという構成を有している。
つまり、涙滴形素子を円錐の頂点だけで支えると涙滴形素子が不安定になることがあるので、支持部材により涙滴形素子を安定的に支持する構造にした。そしてこの際、アンテナ装置の特性に影響を与えないように、比誘電率1.1以下の材料で支持部材を作製した。
【0017】
請求項に係るアンテナ装置の作用を以下に説明する。
本請求項に係るアンテナ装置は請求項1と同一の作用を奏する。但し、本請求項では、地板からの涙滴形素子の高さが、利用可能な周波数帯域の下限周波数における波長の0.23倍以上の寸法とされるという構成を有している。
つまり、このアンテナ装置の利用可能範囲をVSWRが1.5以下となる周波数帯域とした場合、地板からの涙滴形素子の高さを、利用可能な周波数帯域の下限周波数における波長の0.23倍以上の寸法とすることが、適切と考えられるからである。
【0018】
【発明の実施の形態】
以下、本発明に係るアンテナ装置の一実施の形態について、図面を参照して詳細に説明する。図1は本実施の形態に係るアンテナ装置10を示す概略斜視図であり、図2は本実施の形態に係るアンテナ装置10を示す概略縦断面図である。また、図3は本実施の形態に係るアンテナ装置10の要部拡大縦断面図である。
【0019】
これらの図に示すように、本実施の形態に係るアンテナ装置10の本体部分を、円錐形の底面側からこの円錐形に球面が接する形にこれらが幾何学的に組み合わされた形状の涙滴形素子12が、構成されている。そして、この涙滴形素子12を構成する円錐形部分である円錐形部12Aの半頂角Ψが、45°以上で50°以下の角度とされている。ここでこの半頂角Ψは、円錐の軸に対応する回転対称軸Lと円錐形部12Aの外周面との間の角度を意味する。
【0020】
この涙滴形素子12の円錐形部12Aの頂点と対向した部分には、円形の板材により形成された地板14が、この円錐形部12Aと直交する配置で位置しており、この円錐形部12Aの頂点と対向する地板14の中央部には、円形の穴部14Aが貫通して設けられている。この為、地板14に対して円錐形部12Aの回転対称軸Lが垂直にされた状態で、この円錐形部12Aの頂点が、この地板14の穴部14Aに対向した形とされている。尚、これら涙滴形素子12及び地板14は、それぞれ導電性を有するように例えばアルミニウム材等の金属材料により、それぞれ形成されている。
【0021】
さらに、本実施の形態に係るアンテナ装置10の具体的な大きさとして、図2に示す涙滴形素子12の直径D1を例えば63.5mmとし、地板14の上面から涙滴形素子12の上端までの回転対称軸Lに沿った高さHを例えば75mmとし、円錐形部12Aの半頂角Ψを例えば48°とすることが考えられ、また同じく円形の地板14の直径D2を例えば300mmとすることが考えられる。尚、本実施の形態のアンテナ装置10では、地板14の上面と涙滴形素子12の円錐形部12Aの頂点とが同一平面上に位置する関係に、涙滴形素子12が配置されている。
【0022】
図2及び図3において、この涙滴形素子12の円錐形部12Aの頂点となる先端には、外周に雄ねじを有した接合部材30を介して、同軸コネクタ24の内部導体26の上端部が繋がれており、この内部導体26の下端部には、同軸ケーブル18の内側導体20が接合されている。
【0023】
また、この同軸コネクタ24の外周側部分を外部導体28が形成していて、この外部導体28の上側部分を構成する上側外部導体28Aの外周に突出したフランジ部分の上面が、地板14の穴部14A周辺の下面に接合しており、この上側外部導体28Aと外部導体28の下側部分を構成する下側外部導体28Bとがねじ止めされて相互に連結されている。そして、この下側外部導体28Bには、同軸ケーブル18の外側導体22が接続されている。
【0024】
つまり、同軸線路である同軸ケーブル18の内側導体20が、涙滴形素子12を構成する円錐形部12Aの頂点に接合部材30及び同軸コネクタ24の内部導体26を介して接続されており、また、この同軸ケーブル18の外側導体22が、円形の地板14に同軸コネクタ24の外部導体28を介して接続されるようになっている。
【0025】
一方、図3に示す涙滴形素子12と同軸コネクタ24の内部導体26との間の接続する際には、先ず同軸コネクタ24の内部導体26の先端側に、雌ネジ加工された形のネジ穴を設けると共に、涙滴形素子12の円錐形部12Aの先端側にも、同様に回転対称軸Lに沿って雌ネジ加工された形のネジ穴を設ける。この後、外周に雄ネジ加工されている接合部材30をこれらネジ穴にそれぞれねじ込むことにより、涙滴形素子12と同軸コネクタ24とが相互に接続されることになる。
【0026】
さらに、涙滴形素子12を円錐形部12Aの頂点だけで支えた場合には、この涙滴形素子12が不安定になることがあるので、本実施の形態では、比誘電率1.1以下の材料で作製したリング状の支持部材16を地板14上に配置した。そして、図2に示すこの支持部材16の二段に形成された内周面16Aの上部側で涙滴形素子12の球形部12Bを支えると共に、この内周面16Aの下部側で円錐形部12Aを支えることにより、涙滴形素子12を安定的に支持する構造とした。
【0027】
このような支持部材16の材質として、比誘電率が1.1以下であるだけでなく加工性も良いので、例えば発泡樹脂のようなものが適しているが、他の合成樹脂材料や樹脂材料以外の他の材料を採用することもできる。
【0028】
次に、本実施の形態に係るアンテナ装置10の作用を詳細に説明する。
本実施の形態に係るアンテナ装置10によれば、円錐形の底面側からこの円錐形に球面が接する形でこれらが幾何学的に組み合わされた形状に、涙滴形素子12が形成されており、この涙滴形素子12の円錐形部12Aの頂点と対向して、中央部に穴部14Aを有した地板14が、配置されている。
【0029】
具体的には、この地板14に対して、涙滴形素子12の円錐形部12Aの回転対称軸Lが垂直にされた状態で、この円錐形部12Aの頂点が穴部14Aを有する地板14の中央部に対向して位置しており、比誘電率を1.1以下とした材料により作製される支持部材16が、涙滴形素子12を支える形で、この地板14上に配置されている。さらに、同軸ケーブル18の内側導体20が、この涙滴形素子12を構成する円錐形部12Aの頂点に接続されており、この同軸ケーブル18の外側導体22が、地板14に接続されている。
【0030】
従って、例えば同軸ケーブル18の外側導体22より同軸コネクタ24の外部導体28に給電された電流は、この外部導体28内を介して地板14に伝わるようになる。この一方、同軸ケーブル18の内側導体20より同軸コネクタ24の内部導体26に給電された電流は、この内部導体26及び接合部材30内を介して涙滴形素子12の円錐形部12Aに伝わるようになる。
【0031】
この際、本実施の形態によるアンテナ装置10では、モノコーンアンテナを形成する円錐の底面に導電性の球を内接する形で、この円錐の底面の替わりに球をはめ込むような構造の涙滴形素子12を採用している為、涙滴形素子12の円錐形部12Aに伝わった電流は以下のようになる。つまり、円錐形となっている従来のモノコーンアンテナの底面で反射していた反射電流が、本実施の形態のアンテナ装置10の涙滴形素子12では底面が無いので発生せず、ほとんどの電流は導電性を有した球形部12Bの表面を伝わって、この球形部12Bで徐々に減衰していくことになる。
【0032】
この結果として、本実施の形態によれば、円錐の底面での反射電流が抑圧されるので、入力インピーダンスの変化を広帯域にわたって小さく抑えられるのに伴って、給電に用いられる同軸線路である同軸ケーブル18上の電圧定在波比を確実に抑えることができるので、水平面内無指向性で広帯域のアンテナ装置10が実現可能となる。
【0033】
また、地板14の中央部に穴部14Aが形成され、この地板14に対して涙滴形素子12の円錐形部12Aの回転対称軸Lが垂直となる配置で地板14が設置されたことで、より確実に上記の作用効果が得られるだけでなく、円錐形部12Aの頂点が穴部14Aを有する地板14の中央部に対向して位置したことで、この穴部14Aを介して確実に、同軸ケーブル18の内側導体20を、涙滴形素子12に接続できるようになる。
【0034】
さらに、上記の涙滴形素子12を円錐の頂点だけで支えた場合には、涙滴形素子12が不安定になることがあるので、本実施の形態では、支持部材16により涙滴形素子12を安定的に支持する構造にした。そしてこの際、アンテナ装置10の特性に影響を与えないように、比誘電率1.1以下の材料で支持部材16を作製するようにした。
【0035】
他方、本実施の形態では、涙滴形素子12と同軸ケーブル18の内側導体20との間及び、地板14と同軸ケーブル18の外側導体22との間をそれぞれ接続し得る同軸コネクタ24及び接合部材30が、地板14を挟んで涙滴形素子12と対向して配置されている。
【0036】
つまり、同軸コネクタ24及び接合部材30が地板14を挟んで涙滴形素子12と対向して配置されることで、涙滴形素子12及び地板14が同軸ケーブル18側にそれぞれ容易に接続可能となるだけでなく、これら同軸コネクタ24及び接合部材30によって強固に接合されることで、涙滴形素子12と地板14との間の位置関係が変化し難くなり、特性が安定化するようになる。
【0037】
次に、本発明に係るアンテナ装置の変形例について、図4に基づき説明する。尚、上記実施の形態と同一の部材には同一の符号を付して、重複した説明を省略する。
この図4は、本変形例に係るアンテナ装置を示す概略斜視図である。この図4に示すように、本変形例に係るアンテナ装置10は上記実施の形態とほぼ同一の構造となっているが、本変形例では支持部材16が無い。つまり、涙滴形素子12を円錐の頂点だけで支えても不安定にならなければ、支持部材16を用いる必要がないので、図4に示す構造にできる。そして、本変形例では支持部材16が無いのに伴い、製造コストの低減が可能ともなる。
【0038】
次に、上記構成からなる本実施の形態のアンテナ装置10の半頂角Ψと特性インピーダンスが50Ωの同軸線路である同軸ケーブル18で給電する場合の最大VSWRとの関係を、図5のグラフに示す計算結果に基づき、説明する。
つまり、この最大VSWRである最大の電圧定在波比の最適な値は1.2以下と考えられる。これに対して、図5のグラフより涙滴形素子12の円錐形部12Aの半頂角Ψが、45°以上で50°以下の角度範囲内の大きさであれば、最大VSWRが1.2以下となるので、電圧定在波比が必要十分な値に低下されることになる。以上より、円錐形部12Aの半頂角Ψを上記の45°以上で50°以下の角度としたことが理解できる。尚ここで、最大VSWRを計算した周波数の範囲は2ギガヘルツから10ギガヘルツである。
【0040】
さらに、上記実施の形態に係るアンテナ装置10の従来例となる有限長モノコーンアンテナは、円錐の長さにより利用可能な周波数帯域の下限周波数が変化することが、知られている。
【0041】
そこで、図2に示す涙滴形素子12の円錐形部12Aの回転対称軸Lに沿った地板14の上面からの高さHを変化させた場合における、本実施の形態のアンテナ装置10の利用可能な周波数帯域の下限周波数の変化を、数値計算によって調査した。この数値計算に際して、前述のようにアンテナ装置10の地板14は、直径D2が300mmの円形であり、涙滴形素子12の半頂角Ψを48°の角度とした形で、これらの条件を一定とした。
【0042】
つまり、上記実施の形態に係るアンテナ装置10では、涙滴形素子12の高さHを75mmとしたが、この4分の1の高さである18.75mmから4倍の高さである300mmまで、この高さHを変化させて、18.75mm、37.5mm、75mm、150mm、300mmの5点それぞれについて、有限積分法(Finite-Integration法(T.Barts,et al.,“Maxwell's grid equations, ”Frequenz,vol.44,no.1,pp.9-16,1990)) により入力インピーダンスの数値計算を行い、VSWRをそれぞれ求めた。
【0043】
この際、このアンテナ装置10の利用可能範囲をVSWRが1.5以下となる周波数帯域とし、この場合に於ける利用可能な周波数帯域の下限周波数をこの数値計算の結果に基づいて求めた。そして、図6のグラフにこの数値計算の結果による各点を示すと共に、グラフ上の各点を実線で繋いだ。
【0044】
この図6に示すグラフより、涙滴形素子12の高さHと利用可能な周波数帯域の下限周波数との関係は、反比例の関係にあることが理解できるが、これは有限長モノコーンアンテナと同様に、涙滴形素子12の高さHがこの下限周波数の波長λL と比例関係にある為と、考えられる。また、この計算結果の各点の表示と合わせて、涙滴形素子12の高さHと利用可能な周波数帯域の下限周波数の波長λL との関係が、H=0.23λL である場合の特性曲線も、図6のグラフに破線で同時に示す。
【0045】
尚、この図6のグラフにおいて、この高さHを300mmとした時の下限周波数が、この高さHを150mmとした時の下限周波数よりも高くなっているが、これは涙滴形素子12の大きさが地板14に比べて相対的に大きくなったことが、原因と考えられる。そして計算によって、地板14を大きくすることでこの現象を回避できることが、確認されている。
【0046】
以上の結果から、地板14の半径となる150mmよりも高さHが低くなり、地板14の大きさによる影響が生じないと思われる18.75mm、37.5mm、75mmの3点を含む高さHの範囲において、この下限周波数の波長λL と涙滴形素子12の高さHとの関係が、図6に破線で示したH=0.23λL の曲線に沿うことがわかった。つまり、地板14からの涙滴形素子12の高さHを、利用可能な周波数帯域の下限周波数における波長λL の0.23倍以上の寸法とすることが、適切であることが確認された。
【0047】
次に、より小型化されたアンテナ装置10の例を以下に説明する。
本例では、図2に示す地板14からの涙滴形素子12の高さHを25mm、涙滴形素子12の直径D1を21.32mm、涙滴形素子12の半頂角Ψを48°とし、円形の地板14の直径D2を100mmとした。そして、この例における、アンテナ装置10のVSWRの実測値及び計算値を図7のグラフに示す。
【0048】
この図7のグラフにおいて、横軸は周波数であり、縦軸は電圧定在波比を意味するVSWRである。また、各特性曲線の内のAで表したものが本例のアンテナ装置10の実測値であり、Bで表したものが本例のアンテナ装置10の計算値である。
【0049】
つまり、3GHzからこの測定系の上限の20GHzまでの周波数範囲において実測値及び計算値のVSWRが共に1.5よりもさらに低く、VSWR<1.3をそれぞれ実現したことが、この図7のグラフから理解できる。そして、この例のアンテナ装置10であっても、地板14からの涙滴形素子12の高さHを、波長λL の0.23倍以上の寸法とすることが、適切と考えられる。
【0050】
尚、本実施の形態では、同軸コネクタ24を用いて涙滴形素子12及び地板14と同軸ケーブル18との間を接続しているが、このアンテナ装置は自己相似形状に近似していて、給電部となるコネクタは短い波長に対しても無視できるぐらい小さいほうが望ましい。これに伴い、本実施の形態で用いられる同軸コネクタの種類としては、例えばNコネクタ、SMAコネクタ、Kコネクタ及びVコネクタ等が考えられる。
【0051】
さらに、上記実施の形態に係る涙滴形素子は、導電性を有するようにアルミニウム材等の金属材料により形成されているが、涙滴形素子は中空の構造としても良く、また樹脂材料の表面に導電性を有する材料を蒸着等によって付着して導電性を有するようにした構造とされていても良い。
【0052】
【発明の効果】
以上説明したように本発明の上記構成によれば、従来の水平面内無指向性で広帯域のアンテナ装置よりも反射電流を抑えることにより、電圧定在波比を低く保つことで、広帯域にわたり電圧定在波比を確実に抑えられるアンテナ装置を提供できるという優れた効果を有する。
【図面の簡単な説明】
【図1】 本発明の一実施の形態に係るアンテナ装置の概略斜視図である。
【図2】 本発明の一実施の形態に係るアンテナ装置の概略縦断面図である。
【図3】 本発明の一実施の形態に係るアンテナ装置の要部拡大縦断面図である。
【図4】 本発明の一実施の形態の変形例に係るアンテナ装置の概略斜視図である。
【図5】 本発明の一実施の形態に係るアンテナ装置の半頂角と最大VSWRとの関係の計算結果を表したグラフを示す図である。
【図6】 涙滴形素子の高さと利用可能な周波数帯域の下限周波数との関係を表したグラフを示す図である。
【図7】 本実施の形態に係るアンテナ装置の別例におけるVSWRの実測値及び計算値を表したグラフを示す図である。
【図8】 従来の有限長モノコーンアンテナの概略斜視図である。
【符号の説明】
10 アンテナ装置
12 涙滴形素子
12A 円錐形部
14 地板
14A 穴部
16 支持部材
18 同軸ケーブル(同軸線路)
20 内側導体
22 外側導体
24 同軸コネクタ
30 接合部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antenna device, and more particularly to an antenna device that has omnidirectionality in a horizontal plane and can reduce a change in input impedance over a wide band.
[0002]
[Prior art]
In recent years, in the field of communication and sensors, a technique called an ultra-wide band (ultra-wide band), which is used in a wide band with a specific band of 25% or more, has attracted attention. As an antenna device used in such a technique, it may be necessary to have omnidirectionality in a horizontal plane and to be usable in a wide band.
[0003]
On the other hand, as an omnidirectional and wideband antenna device in a horizontal plane, it has a self-similar shape consisting of an infinitely long cone, so that a virtual infinitely long biconical antenna whose input impedance does not change with frequency, and this A finite-length biconical antenna based on an infinite-length biconical antenna is not only known, but also an infinite-length monocone antenna and a finite-length monocone antenna are known. Of these, however, only the finite-length biconical antenna formed in a conical shape with a finite length and the finite-length monocone antenna 110 shown in FIG .
[0004]
However, it is known that the impedance is approximately constant impedance only when the length of the cone is longer than the wavelength so that the wavelength can be ignored and the power feeding part for feeding the antenna body is smaller than the wavelength so that the wavelength can be ignored. On the other hand, in each of such antenna devices, the antenna main body 112 has a finite length of a conical shape, and the power feeding unit 114 also has a finite size.
[0005]
[Problems to be solved by the invention]
From the above, in the conventional finite-length biconical antenna using a finite-length cone and the finite-length monocone antenna 110 shown in FIG. 8 , the reflection generated from the bottom surface 112A of the antenna body 112 formed in a conical shape. The current cannot be sufficiently suppressed, and it has been difficult to suppress the change in input impedance over a wide band in each of the antenna devices.
[0006]
For this reason, the conventional omnidirectional and wide-band antenna device in the horizontal plane has a problem that the voltage standing wave ratio (VSWR) does not decrease over a wide band and cannot be efficiently radiated or received.
On the other hand, a so-called Volcano smoke antenna is also known separately from the above antenna devices, but this antenna device is not clearly defined in shape and cannot be actually used.
[0007]
An object of the present invention is to provide a wide-band antenna device that is omnidirectional in a horizontal plane and can keep the voltage standing wave ratio low by suppressing the reflected current in consideration of the above facts.
[0008]
[Means for Solving the Problems]
The antenna device according to claim 1 is a shape in which the spherical surface is in contact with the conical shape from the bottom side of the conical shape , and the rotational symmetry axis of the conical portion is arranged vertically. A teardrop-shaped element;
A base plate disposed opposite to the apex of the conical portion constituting the teardrop-shaped element;
A coaxial line in which the inner conductor is connected to the apex of the conical portion constituting the teardrop-shaped element, and the outer conductor is connected to the ground plane;
It is characterized by having.
[0009]
The operation of the antenna device according to claim 1 will be described below.
According to the antenna device of the present invention, the rotational symmetry axis of the conical portion is vertically arranged in a shape in which the spherical surface is in contact with the conical shape from the bottom surface side of the conical shape. A teardrop-shaped element is formed in a round shape, and a ground plane is arranged opposite to the apex of the conical portion of the teardrop-shaped element. Further, the inner conductor of the coaxial line is connected to the apex of the conical portion constituting the teardrop-shaped element, and the outer conductor of the coaxial line is connected to the ground plane.
[0010]
In other words, in the antenna device according to the present invention, the conductive sphere is inscribed in substantially from the bottom surface side of the cone forming the monocone antenna, and the sphere is fitted in place of the bottom surface of the cone. A teardrop-shaped element was adopted, and the rotational symmetry axis of the conical portion of the teardrop-shaped element was vertically arranged . Therefore, according to the antenna device of the present claim, the reflected current reflected from the bottom surface of the conventional conical antenna having a conical shape is suppressed, and the current passes through the surface of the spherical portion having conductivity, This spherical part gradually attenuates. As a result, according to the present claim, the voltage standing wave ratio can be surely suppressed as the change in input impedance can be reduced over a wide band, and the omnidirectional and wideband antenna apparatus in the horizontal plane can be achieved. It becomes feasible.
[0011]
The operation of the antenna device according to claim 2 will be described below.
The antenna device according to the present invention has the same effect as that of the first aspect. However, in this claim, a hole is formed in the central portion of the ground plate, and the vertex of the cone-shaped portion is in a state where the rotational symmetry axis of the cone-shaped portion of the teardrop-shaped element is perpendicular to the ground plate. It has the structure of being located facing the center part of the ground plane which has a hole.
[0012]
That is, the ground plate is installed in such a manner that the rotational symmetry axis of the conical portion of the teardrop-shaped element is perpendicular to the ground plate, so that not only the operational effect of claim 1 can be obtained more reliably, but also the conical shape. Since the apex of the portion is located opposite to the central portion of the ground plane having the hole portion, the inner conductor of the coaxial line can be reliably connected to the teardrop-shaped element through the hole portion.
[0013]
The operation of the antenna device according to claim 3 will be described below.
The antenna device according to the present invention has the same effect as that of the first aspect. However, in this claim, the joining members that can connect between the teardrop-shaped element and the inner conductor of the coaxial line and between the ground plane and the outer conductor of the coaxial line, respectively, It has the structure of arrange | positioning facing.
[0014]
In other words, the bonding member is disposed to face the teardrop-shaped element with the ground plate interposed therebetween, so that the teardrop-shaped element and the ground plane can be easily connected to the coaxial line side, respectively, and the bonding member is also strong. As a result, the positional relationship between the teardrop-shaped element and the ground plane hardly changes, and the characteristics are stabilized.
[0016]
The operation of the antenna device according to claim 4 will be described below.
The antenna device according to the present invention has the same effect as that of the first aspect. However, the present invention has a configuration in which a support member made of a material having a relative dielectric constant of 1.1 or less is arranged on the ground plate so as to support the teardrop-shaped element.
That is, if the teardrop-shaped element is supported only at the apex of the cone, the teardrop-shaped element may become unstable. Therefore, the teardrop-shaped element is stably supported by the support member. At this time, the support member was made of a material having a relative dielectric constant of 1.1 or less so as not to affect the characteristics of the antenna device.
[0017]
The operation of the antenna device according to claim 5 will be described below.
The antenna device according to the present invention has the same effect as that of the first aspect. However, the present invention has a configuration in which the height of the teardrop-shaped element from the ground plane is set to a dimension of 0.23 times or more the wavelength at the lower limit frequency of the usable frequency band.
That is, when the usable range of this antenna device is a frequency band where VSWR is 1.5 or less, the height of the teardrop-shaped element from the ground plane is set to 0.23 of the wavelength at the lower limit frequency of the usable frequency band. It is because it is thought that it is appropriate to set it as the dimension more than double.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an antenna device according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic perspective view showing an antenna device 10 according to the present embodiment, and FIG. 2 is a schematic longitudinal sectional view showing the antenna device 10 according to the present embodiment. FIG. 3 is an enlarged vertical sectional view of a main part of the antenna device 10 according to the present embodiment.
[0019]
As shown in these drawings, the main body portion of the antenna device 10 according to the present embodiment is a teardrop having a shape in which the spherical surface is in contact with the conical shape from the bottom side of the conical shape. A shaping element 12 is constructed. The half apex angle Ψ of the conical portion 12A that is a conical portion constituting the teardrop-shaped element 12 is set to an angle of 45 ° or more and 50 ° or less. Here, this half apex angle Ψ means an angle between the rotational symmetry axis L corresponding to the cone axis and the outer peripheral surface of the cone portion 12A.
[0020]
In the portion of the teardrop-shaped element 12 facing the apex of the conical portion 12A, a ground plate 14 formed of a circular plate material is positioned so as to be orthogonal to the conical portion 12A. A circular hole portion 14A is provided through the center portion of the ground plate 14 facing the apex of 12A. For this reason, the apex of the conical portion 12A is opposed to the hole portion 14A of the main plate 14 in a state where the rotational symmetry axis L of the conical portion 12A is perpendicular to the main plate 14. The teardrop-shaped element 12 and the ground plane 14 are respectively formed of a metal material such as an aluminum material so as to have conductivity.
[0021]
Furthermore, as a specific size of the antenna device 10 according to the present embodiment, the diameter D1 of the teardrop-shaped element 12 shown in FIG. 2 is set to 63.5 mm, for example, and the upper end of the teardrop-shaped element 12 from the upper surface of the ground plate 14 It is conceivable that the height H along the rotational symmetry axis L is 75 mm, for example, and the half apex angle Ψ of the conical portion 12A is 48 °, for example, and the diameter D2 of the circular base plate 14 is 300 mm, for example. It is possible to do. In the antenna device 10 of the present embodiment, the teardrop-shaped element 12 is arranged so that the upper surface of the ground plane 14 and the apex of the conical portion 12A of the teardrop-shaped element 12 are located on the same plane. .
[0022]
2 and 3, the upper end of the inner conductor 26 of the coaxial connector 24 is connected to the tip of the conical portion 12A of the teardrop-shaped element 12 via a joining member 30 having a male screw on the outer periphery. The inner conductor 20 of the coaxial cable 18 is joined to the lower end portion of the inner conductor 26.
[0023]
In addition, the outer conductor 28 is formed on the outer peripheral side portion of the coaxial connector 24, and the upper surface of the flange portion protruding to the outer periphery of the upper outer conductor 28 A constituting the upper portion of the outer conductor 28 is a hole portion of the ground plane 14. The upper outer conductor 28A and the lower outer conductor 28B constituting the lower portion of the outer conductor 28 are screwed together and connected to each other. The outer conductor 22 of the coaxial cable 18 is connected to the lower outer conductor 28B.
[0024]
That is, the inner conductor 20 of the coaxial cable 18 that is a coaxial line is connected to the apex of the conical portion 12A constituting the teardrop-shaped element 12 via the joining member 30 and the inner conductor 26 of the coaxial connector 24, and The outer conductor 22 of the coaxial cable 18 is connected to the circular ground plane 14 via the outer conductor 28 of the coaxial connector 24.
[0025]
On the other hand, when the teardrop-shaped element 12 and the inner conductor 26 of the coaxial connector 24 shown in FIG. 3 are connected, first, a screw in the form of a female thread is formed on the distal end side of the inner conductor 26 of the coaxial connector 24. In addition to providing a hole, a screw hole in the form of a female thread along the rotational symmetry axis L is also provided on the tip side of the conical portion 12A of the teardrop-shaped element 12. Thereafter, the teardrop-shaped element 12 and the coaxial connector 24 are connected to each other by screwing the joining members 30 that are male threaded on the outer periphery into the screw holes.
[0026]
Furthermore, when the teardrop-shaped element 12 is supported only by the apex of the conical portion 12A, the teardrop-shaped element 12 may become unstable. In this embodiment, the relative permittivity is 1.1. A ring-shaped support member 16 made of the following material was placed on the main plate 14. Then, the spherical portion 12B of the teardrop-shaped element 12 is supported on the upper side of the inner peripheral surface 16A formed in two steps of the support member 16 shown in FIG. 2, and the conical portion is formed on the lower side of the inner peripheral surface 16A. By supporting 12A, it was set as the structure which supports the teardrop-shaped element 12 stably.
[0027]
As the material of the support member 16, not only the dielectric constant is 1.1 or less but also the workability is good. For example, a foamed resin is suitable, but other synthetic resin materials and resin materials are suitable. Other materials can be used.
[0028]
Next, the operation of the antenna device 10 according to the present embodiment will be described in detail.
According to the antenna device 10 according to the present embodiment, the teardrop-shaped element 12 is formed in a shape in which the spherical surface is in contact with the conical shape from the bottom side of the conical shape and is geometrically combined. A ground plane 14 having a hole portion 14A at the center is disposed opposite to the apex of the conical portion 12A of the teardrop-shaped element 12.
[0029]
Specifically, with respect to the ground plate 14, the rotational axis L of the conical portion 12A of the teardrop-shaped element 12 is perpendicular to the ground plate 14 and the conical portion 12A has an apex having a hole portion 14A. A support member 16 made of a material having a relative dielectric constant of 1.1 or less is disposed on the main plate 14 so as to support the teardrop-shaped element 12. Yes. Further, the inner conductor 20 of the coaxial cable 18 is connected to the apex of the conical portion 12 </ b> A constituting the teardrop-shaped element 12, and the outer conductor 22 of the coaxial cable 18 is connected to the ground plane 14.
[0030]
Therefore, for example, the current fed from the outer conductor 22 of the coaxial cable 18 to the outer conductor 28 of the coaxial connector 24 is transmitted to the ground plane 14 through the outer conductor 28. On the other hand, the current fed from the inner conductor 20 of the coaxial cable 18 to the inner conductor 26 of the coaxial connector 24 is transmitted to the conical portion 12A of the teardrop-shaped element 12 through the inner conductor 26 and the inside of the joining member 30. become.
[0031]
At this time, in the antenna device 10 according to the present embodiment, a teardrop shape having a structure in which a conductive sphere is inscribed in the bottom surface of the cone forming the monocone antenna and the sphere is fitted in place of the bottom surface of the cone. Since the element 12 is employed, the current transmitted to the conical portion 12A of the teardrop-shaped element 12 is as follows. That is, the reflected current reflected on the bottom surface of the conventional monocone antenna having a conical shape is not generated because there is no bottom surface in the teardrop-shaped element 12 of the antenna device 10 of the present embodiment, and most of the current is not generated. Is transmitted through the surface of the spherical portion 12B having conductivity, and gradually attenuates at the spherical portion 12B.
[0032]
As a result, according to the present embodiment, since the reflected current at the bottom of the cone is suppressed, the coaxial cable that is a coaxial line used for feeding as the change in input impedance can be suppressed over a wide band. Since the voltage standing wave ratio on 18 can be surely suppressed, the wideband antenna device 10 with non-directionality in the horizontal plane can be realized.
[0033]
In addition, a hole 14A is formed at the center of the base plate 14, and the base plate 14 is installed in such an arrangement that the rotational symmetry axis L of the conical portion 12A of the teardrop-shaped element 12 is perpendicular to the base plate 14. In addition to obtaining the above-mentioned effects more reliably, the apex of the conical portion 12A is positioned opposite to the central portion of the main plate 14 having the hole portion 14A. The inner conductor 20 of the coaxial cable 18 can be connected to the teardrop element 12.
[0034]
Furthermore, when the teardrop-shaped element 12 is supported only by the apex of the cone, the teardrop-shaped element 12 may become unstable. In this embodiment, the teardrop-shaped element 12 is supported by the support member 16. 12 was stably supported. At this time, the support member 16 is made of a material having a relative dielectric constant of 1.1 or less so as not to affect the characteristics of the antenna device 10.
[0035]
On the other hand, in the present embodiment, the coaxial connector 24 and the joining member that can connect the teardrop-shaped element 12 and the inner conductor 20 of the coaxial cable 18 and between the ground plane 14 and the outer conductor 22 of the coaxial cable 18, respectively. 30 is arranged opposite to the teardrop-shaped element 12 with the ground plane 14 interposed therebetween.
[0036]
In other words, the coaxial connector 24 and the joining member 30 are arranged to face the teardrop-shaped element 12 with the ground plane 14 interposed therebetween, so that the teardrop-shaped element 12 and the ground plane 14 can be easily connected to the coaxial cable 18 side. In addition, by being firmly joined by the coaxial connector 24 and the joining member 30, the positional relationship between the teardrop-shaped element 12 and the ground plane 14 is difficult to change, and the characteristics are stabilized. .
[0037]
Next, a modification of the antenna device according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member same as the said embodiment, and the overlapping description is abbreviate | omitted.
FIG. 4 is a schematic perspective view showing an antenna apparatus according to this modification. As shown in FIG. 4, the antenna device 10 according to this modification has almost the same structure as that of the above embodiment, but the support member 16 is not provided in this modification. That is, if the teardrop-shaped element 12 is not unstable even if it is supported only by the apex of the cone, it is not necessary to use the support member 16, so that the structure shown in FIG. 4 can be obtained. And in this modification, with the absence of the support member 16, the manufacturing cost can be reduced.
[0038]
Next, the graph of FIG. 5 shows the relationship between the half apex angle Ψ of the antenna device 10 having the above-described configuration and the maximum VSWR when power is supplied by the coaxial cable 18 that is a coaxial line having a characteristic impedance of 50Ω. Based on the calculation result shown, it demonstrates.
That is, the optimum value of the maximum voltage standing wave ratio that is the maximum VSWR is considered to be 1.2 or less. On the other hand, if the half apex angle ψ of the conical portion 12A of the teardrop-shaped element 12 is a size within an angle range of 45 ° or more and 50 ° or less from the graph of FIG. Therefore, the voltage standing wave ratio is lowered to a necessary and sufficient value. From the above, it can be understood that the half apex angle Ψ of the conical portion 12A is set to the angle of 45 ° or more and 50 ° or less. Here, the frequency range in which the maximum VSWR is calculated is 2 GHz to 10 GHz.
[0040]
Furthermore, it is known that the lower limit frequency of the usable frequency band of the finite-length monocone antenna, which is a conventional example of the antenna device 10 according to the above-described embodiment, varies depending on the length of the cone.
[0041]
Therefore, when the height H from the upper surface of the ground plane 14 along the rotational symmetry axis L of the conical portion 12A of the teardrop-shaped element 12 shown in FIG. 2 is changed, the antenna device 10 of the present embodiment is used. The change of the lower limit frequency of the possible frequency band was investigated by numerical calculation. In this numerical calculation, as described above, the ground plane 14 of the antenna device 10 is a circle having a diameter D2 of 300 mm, and the half apex angle Ψ of the teardrop-shaped element 12 is set to an angle of 48 °. Constant.
[0042]
That is, in the antenna device 10 according to the above-described embodiment, the height H of the teardrop-shaped element 12 is set to 75 mm. However, from the quarter height of 18.75 mm, the height is four times 300 mm. Until this height H is changed, a finite integration method (Finite-Integration method (T. Barts, et al., “Maxwell's grid”) is applied to each of five points of 18.75 mm, 37.5 mm, 75 mm, 150 mm, and 300 mm. numerical calculation of input impedance according to equations, “Frequenz, vol. 44, no. 1, pp. 9-16, 1990)), and VSWR was obtained respectively.
[0043]
At this time, the usable range of the antenna device 10 was set to a frequency band in which VSWR was 1.5 or less, and the lower limit frequency of the usable frequency band in this case was obtained based on the result of the numerical calculation. Then, each point obtained from the result of the numerical calculation is shown in the graph of FIG. 6 , and each point on the graph is connected by a solid line.
[0044]
From the graph shown in FIG. 6 , it can be understood that the relationship between the height H of the teardrop-shaped element 12 and the lower limit frequency of the usable frequency band is an inversely proportional relationship. Similarly, it is considered that the height H of the teardrop-shaped element 12 is proportional to the wavelength λ L of this lower limit frequency. In addition to the display of each point of the calculation result, when the relationship between the height H of the teardrop-shaped element 12 and the wavelength λ L of the lower limit frequency of the usable frequency band is H = 0.23λ L The characteristic curve is also shown by a broken line in the graph of FIG .
[0045]
In the graph of FIG. 6 , the lower limit frequency when the height H is 300 mm is higher than the lower limit frequency when the height H is 150 mm. The reason is that the size of is relatively larger than that of the main plate 14. And it has been confirmed by calculation that this phenomenon can be avoided by increasing the size of the main plate 14.
[0046]
From the above results, the height H is lower than 150 mm, which is the radius of the base plate 14, and the height including three points of 18.75 mm, 37.5 mm, and 75 mm, which is considered not to be affected by the size of the base plate 14. In the range of H, it has been found that the relationship between the wavelength λ L of the lower limit frequency and the height H of the teardrop-shaped element 12 is along the curve of H = 0.23λ L shown by the broken line in FIG . That is, it was confirmed that it is appropriate to set the height H of the teardrop-shaped element 12 from the ground plane 14 to a dimension that is 0.23 times or more the wavelength λ L at the lower limit frequency of the usable frequency band. .
[0047]
Next, an example of a more miniaturized antenna device 10 will be described below.
In this example, the height H of the teardrop-shaped element 12 from the ground plane 14 shown in FIG. 2 is 25 mm, the diameter D1 of the teardrop-shaped element 12 is 21.32 mm, and the half apex angle Ψ of the teardrop-shaped element 12 is 48 °. The diameter D2 of the circular base plate 14 was set to 100 mm. And the measured value and calculated value of VSWR of the antenna apparatus 10 in this example are shown in the graph of FIG .
[0048]
In the graph of FIG. 7 , the horizontal axis is frequency, and the vertical axis is VSWR meaning the voltage standing wave ratio. Of the characteristic curves, A is the actual measurement value of the antenna device 10 of this example, and B is the calculated value of the antenna device 10 of this example.
[0049]
That is, in the frequency range from 3 GHz to 20 GHz, which is the upper limit of the measurement system, the actual measurement value and the calculated value VSWR are both lower than 1.5, and VSWR <1.3 is realized . It can be understood from. Even in the antenna device 10 of this example, it is considered appropriate to set the height H of the teardrop-shaped element 12 from the ground plane 14 to a size of 0.23 times or more of the wavelength λ L.
[0050]
In the present embodiment, the teardrop-shaped element 12 and the ground plane 14 and the coaxial cable 18 are connected using the coaxial connector 24. However, this antenna device approximates a self-similar shape, It is desirable that the connector to be a part is small enough to be ignored even for a short wavelength. Accordingly, for example, an N connector, an SMA connector, a K connector, and a V connector can be considered as the types of coaxial connectors used in the present embodiment.
[0051]
Further, the teardrop-shaped element according to the above embodiment is formed of a metal material such as an aluminum material so as to have conductivity. However, the teardrop-shaped element may have a hollow structure, and the surface of the resin material. Alternatively, a conductive material may be attached by vapor deposition or the like so as to have conductivity.
[0052]
【The invention's effect】
As described above, according to the above-described configuration of the present invention, the voltage standing wave ratio is kept low by suppressing the reflected current as compared with the conventional non-directional horizontal plane antenna device and the broadband antenna device. It has the outstanding effect that the antenna apparatus which can suppress a standing wave ratio reliably can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an antenna device according to an embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view of an antenna device according to an embodiment of the present invention.
FIG. 3 is an enlarged vertical sectional view of a main part of the antenna device according to one embodiment of the present invention.
FIG. 4 is a schematic perspective view of an antenna device according to a modification of the embodiment of the present invention.
FIG. 5 is a graph showing a calculation result of the relationship between the half apex angle and the maximum VSWR of the antenna device according to the embodiment of the present invention.
FIG. 6 is a graph showing the relationship between the height of a teardrop-shaped element and the lower limit frequency of an available frequency band.
FIG. 7 is a graph showing measured values and calculated values of VSWR in another example of the antenna device according to the present embodiment.
FIG. 8 is a schematic perspective view of a conventional finite-length monocone antenna.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Antenna apparatus 12 Teardrop-shaped element 12A Conical part 14 Base plate 14A Hole 16 Support member 18 Coaxial cable (coaxial line)
20 Inner conductor 22 Outer conductor 24 Coaxial connector 30 Joining member

Claims (5)

円錐形の底面側からこの円錐形に球面が接する形にこれらが幾何学的に組み合わされた形状で、円錐形部分の回転対称軸が垂直に配置された涙滴形素子と、
涙滴形素子を構成する円錐形部分の頂点と対向して配置された地板と、
内側導体が涙滴形素子を構成する円錐形部分の頂点に接続されると共に、外側導体が地板に接続される同軸線路と、
を有することを特徴とするアンテナ装置。
A teardrop-shaped element in which the spherical surface is in contact with the conical shape from the bottom side of the conical shape , and the rotational symmetry axis of the conical portion is arranged vertically .
A base plate disposed opposite to the apex of the conical portion constituting the teardrop-shaped element;
A coaxial line in which the inner conductor is connected to the apex of the conical portion constituting the teardrop-shaped element, and the outer conductor is connected to the ground plane;
An antenna device comprising:
地板の中央部に穴部が形成され、この地板に対して涙滴形素子の円錐形部分の回転対称軸が垂直にされた状態で、この円錐形部分の頂点が穴部を有する地板の中央部に対向して位置することを特徴とする請求項1記載のアンテナ装置。  A hole is formed in the center of the ground plane, and the axis of rotational symmetry of the cone-shaped portion of the teardrop-shaped element is perpendicular to the ground plane. The antenna device according to claim 1, wherein the antenna device is located opposite to the portion. 涙滴形素子と同軸線路の内側導体との間及び、地板と同軸線路の外側導体との間をそれぞれ接続し得る接合部材が、地板を挟んで涙滴形素子と対向して配置されることを特徴とする請求項1記載のアンテナ装置。  Joint members capable of connecting between the teardrop-shaped element and the inner conductor of the coaxial line and between the ground plane and the outer conductor of the coaxial line are arranged to face the teardrop-shaped element across the ground plane. The antenna device according to claim 1. 比誘電率を1.1以下とした材料により作製される支持部材が、涙滴形素子を支える形で地板上に配置されることを特徴とする請求項1記載のアンテナ装置。 2. The antenna device according to claim 1 , wherein a support member made of a material having a relative dielectric constant of 1.1 or less is disposed on the ground plane so as to support the teardrop-shaped element . 地板からの涙滴形素子の高さが、利用可能な周波数帯域の下限周波数における波長の0.23倍以上の寸法とされることを特徴とする請求項1記載のアンテナ装置。 2. The antenna device according to claim 1 , wherein a height of the teardrop-shaped element from the ground plane is set to a size of 0.23 times or more of a wavelength at a lower limit frequency of an available frequency band .
JP2003156474A 2002-08-08 2003-06-02 Antenna device Expired - Fee Related JP3814684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156474A JP3814684B2 (en) 2002-08-08 2003-06-02 Antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002230799 2002-08-08
JP2003156474A JP3814684B2 (en) 2002-08-08 2003-06-02 Antenna device

Publications (2)

Publication Number Publication Date
JP2004129209A JP2004129209A (en) 2004-04-22
JP3814684B2 true JP3814684B2 (en) 2006-08-30

Family

ID=32300905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156474A Expired - Fee Related JP3814684B2 (en) 2002-08-08 2003-06-02 Antenna device

Country Status (1)

Country Link
JP (1) JP3814684B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028212A1 (en) * 2004-09-10 2006-03-16 Murata Manufacturing Co., Ltd. Surface implementation type antenna and wireless communication apparatus having the same
JP2006186945A (en) * 2004-12-28 2006-07-13 Toyota Motor Corp Antenna device and communication method using same
JP4876412B2 (en) * 2005-03-16 2012-02-15 ソニー株式会社 Communication device
JP2008258821A (en) 2007-04-03 2008-10-23 Nippon Soken Inc Antenna module
JP2010068425A (en) * 2008-09-12 2010-03-25 Fujitsu Component Ltd Antenna device
JP2010068424A (en) 2008-09-12 2010-03-25 Fujitsu Component Ltd Antenna device
JP2010154078A (en) * 2008-12-24 2010-07-08 Fujitsu Component Ltd Antenna device
JP2010154077A (en) * 2008-12-24 2010-07-08 Fujitsu Component Ltd Antenna device
FR2995697B1 (en) * 2012-09-17 2016-12-30 Commissariat Energie Atomique ELECTROMAGNETIC FIELD SENSOR GAIN MEASURING DEVICE
US9293815B1 (en) * 2013-09-24 2016-03-22 The United States Of America As Represented By The Secretary Of The Navy Ultra-wideband hemispherical teardrop antenna with a conical ground

Also Published As

Publication number Publication date
JP2004129209A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
TWI412178B (en) Folded conical antenna and associated methods
JP3814684B2 (en) Antenna device
JP4475583B2 (en) Discone antenna and information communication equipment using the discone antenna
US6677913B2 (en) Log-periodic antenna
US20060250315A1 (en) Conical dipole antenna and associated methods
JP5063813B2 (en) Broadband terminated discone antenna and related methods
JPH04287505A (en) Small sized antenna for portable radio
JPH08195617A (en) Circularly polarized wave loop antenna
CN201820872U (en) Miniaturized omni antenna with C-band broad band
US20080186243A1 (en) VSWR improvement for bicone antennas
US6486849B2 (en) Small L-band antenna
JPH09223919A (en) Balun for portable radio equipment and antenna assembly with tuning element
TWI450446B (en) An antenna structure
JP5139919B2 (en) Cross dipole antenna
JP2007267214A (en) Antenna unit
US8547291B1 (en) Direct fed bifilar helix antenna
TW201025725A (en) A circularly polarized patch antenna with a capacitively coupled feed
US7538737B2 (en) High impedance bicone antenna
US6549175B1 (en) Simultaneous mode matching feedline
JP5562080B2 (en) antenna
JP2005269626A (en) Antenna
JP2005236648A (en) Coaxial microstrip line converter
JP2002076719A (en) Impedance matching method and circuit and wideband antenna
KR920007592Y1 (en) Spiral antenna
JP5043774B2 (en) Microstrip line antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees