JP3814660B2 - Manufacturing method of high-hardness ultrafine diamond composite sintered body - Google Patents

Manufacturing method of high-hardness ultrafine diamond composite sintered body Download PDF

Info

Publication number
JP3814660B2
JP3814660B2 JP2002332819A JP2002332819A JP3814660B2 JP 3814660 B2 JP3814660 B2 JP 3814660B2 JP 2002332819 A JP2002332819 A JP 2002332819A JP 2002332819 A JP2002332819 A JP 2002332819A JP 3814660 B2 JP3814660 B2 JP 3814660B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
powder
capsule
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002332819A
Other languages
Japanese (ja)
Other versions
JP2004168558A5 (en
JP2004168558A (en
Inventor
實 赤石
啓吾 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute for Materials Science
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute for Materials Science, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002332819A priority Critical patent/JP3814660B2/en
Publication of JP2004168558A publication Critical patent/JP2004168558A/en
Publication of JP2004168558A5 publication Critical patent/JP2004168558A5/ja
Application granted granted Critical
Publication of JP3814660B2 publication Critical patent/JP3814660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超微粒ダイヤモンド複合焼結体とその製造法に関する。
【0002】
【従来の技術】
従来、Co等の金属を焼結助剤とするダイヤモンド焼結体や微粒ダイヤモンド焼結体が通常の超高圧合成装置で製造されることが知られている(特許文献1,2)。また、金属焼結助剤を全く使用しないで、アルカリ土類金属の炭酸塩を焼結助剤に用いて、従来よりも高い圧力、温度条件下で焼結することにより、耐熱性に優れた高硬度ダイヤモンド焼結体を得る合成法が知られている(非特許文献1)。しかしながら、これらの焼結体は、焼結体中のダイヤモンド粒子径が約5μmと比較的大きな粒子径に限定されている。
【0003】
本発明者らは、CO−HO流体相の源となるシュウ酸二水和物を炭酸塩に添加した混合粉末を作製し、この混合粉末上に粒径幅0〜1μmの天然ダイヤモンド粉末を積層し、微粒ダイヤモンド焼結体を製造する方法を報告した(特許文献3,非特許文献2,3)が、その製造には2200℃以上の高温を必要とする。
【0004】
本発明者らは、同様な方法で、さらに微細なダイヤモンド粉末、例えば、粒径幅0〜0.1μmのダイヤモンド粉末を焼結した例を報告した(非特許文献4)。しかし、ダイヤモンドの異常粒成長が起こり、高硬度ダイヤモンド焼結体を製造することが出来なかった。
【0005】
最近、黒鉛からダイヤモンドヘの直接変換反応により12〜25GPa、2000〜2500℃の条件で焼結助剤なしでダイヤモンド焼結体を合成する方法が発表され、透光性焼結体となると報告されている(非特許文献5)。
【0006】
【特許文献1】
特公昭52−12126号公報
【特許文献2】
特公平4−50270号公報
【特許文献3】
特開2002−187775号公報
【0007】
【非特許文献1】
Diamond and Related Mater.,5巻,2−7ページ,Elsevier Science S.A,1996年
【非特許文献2】
第41回高圧討論会講演要旨集108ページ,日本高圧力学会,2000年
【非特許文献3】
Proceedings of the 8th NIRIM International Symposium on Advanced Materials,33−34ページ,無機材質研究所,2001年
【非特許文献4】
第42回高圧討論会講演要旨集89ページ,日本高圧力学会,2001年
【非特許文献5】
T.Irifune et al.,”Characterization of polycrystalline diamonds synthesized by direct conversion of graphite using multi anvil apparatus”,6thHigh Pressure Mineral Physics Seminar,28 August,2002,Verbania,Italy
【0008】
【発明が解決しようとする課題】
焼結助剤を含むダイヤモンド焼結体では、固体の助剤を含有しているため、助剤の占有する体積の量だけダイヤモンド粒子の体積が減少する。その結果、焼結助剤を含有するダイヤモンド焼結体では、助剤を全く含有しない理想的なダイヤモンド焼結体に比較し、それらのヴィカース硬さは低くなる。
【0009】
従来から、本発明者らは、7.7GPa、〜2500℃の高圧高温条件で新しいダイヤモンド合成触媒を探索してきた。その結果、金属触媒、非金属触媒に加えて、第3の範疇に属するCO2とH2OからなるC−O−H流体相等の流体相がダイヤモンド合成触媒となることを発見し、報告した(例えば、C−O−H流体触媒によるダイヤモンド合成の論文、M.Akaishi and S.Yamaoka,“Crystallization of diamond from C−O−H fluids under high−pressure and high−temperature conditions”,J. Crystal Growth, 209,999(2000)。
【0010】
従来のダイヤモンド粉末の焼結助剤は、Co等の金属系助剤やMgCOのような非金属系炭酸塩である。既存の焼結助剤は、金属又は非金属助剤に拘わらず、何れもダイヤモンド合成触媒の範疇に属している。
そこで、本発明者らが、新たにダイヤモンド合成触媒となることを明らかにした高圧高温条件下で分解してC−O−H流体触媒となるシュウ酸二水和物(以下「OAD」と略記する)がダイヤモンドの焼結助剤として機能すれば、ダイヤモンド焼結体中に固体の焼結助剤が全く残らない焼結体の合成が期待された。
【0011】
しかし、粒径幅0〜1μmの粒子径からなる天然ダイヤモンド粉末を脱シリケート処理後、これらの粉末をOAD粉末上に積層し、Ta製カプセルに充填して、7.7GPa〜9.4GPaと広範な圧力条件下で加熱加圧しても、OADはダイヤモンドの焼結助剤としては全く機能しなかった。すなわち、7.7GPa、2000℃の条件で処理後に回収したダイヤモンド試料は無数にクラックの存在する乳白色の塊状体であったが、研削抵抗の全くないものであった。
【0012】
また、圧力を9.4GPaに高くして処理して回収したダイヤモンド試料は、僅かに灰色がかった白色のものであった。この試料はクラックはほとんど存在しないものの、全く研削抵抗のないものであった。
このように、焼結助剤を全く含有しない理想的な高硬度ダイヤモンド焼結体の製造は困難であった。
【0013】
【課題を解決するための手段】
本発明者らは、粒径幅0〜0.1μmの超微粒天然ダイヤモンド粉末を脱シリケート処理した後に凍結乾燥して調製した粉末をOADとともにTa製カプセルに充填し超高圧合成装置により9.4GPa、2150℃の条件で20分間処理し、試料を回収したところ、試料はほぼ灰色で、研削抵抗の大変大きい焼結体が得られた。その結果、炭素、酸素、水素からなる有機酸が超微粒天然ダイヤモンドの焼結に有効な焼結助剤となることを発見した。ダイヤモンドの粒子径を小さくすると、粒子の表面エネルギーが大きくなるため、このエネルギーが焼結の駆動力として働くと考えられる。
【0014】
また、この焼結体は灰色を呈するが、その理由が明確でないので、試料のX線回折図形を測定したところ、驚くことに、ダイヤモンドの回折線の他に、Taの酸化物と炭化物が確認された。これらの化合物は、OADの分解生成物の酸素や炭素と円筒状のカプセル材料のTaやダイヤモンド粉末層に積層したTa箔とが反応して生成したものと考えられる。Taの酸化物の最強回折線の相対強度はダイヤモンドの最強回折線の強度を100とすると68であり、Taの炭化物の最強回折線の相対強度は、50であった。
【0015】
すなわち、本発明は、下記のとおりである。
【0016】
(1)粒径幅0〜0.1μmの超微粒天然ダイヤモンド粉末を脱シリケート処理した後に水溶液を用いて凍結乾燥することにより調製した粉末をTa製カプセルに封入し、該カプセルを超高圧合成装置を用いてダイヤモンドの熱力学的安定条件の1900℃以上の温度、8.5GPa以上の圧力下で炭素、酸素、及び水素からなる有機酸粉末を焼結助剤として加熱加圧することによりダイヤモンド粉末を焼結することにより焼結体中にTaの化合物からなる生成物を含み、焼結体中のダイヤモンド粒子径が100nm以下である焼結体を得ることを特徴とする高硬度超微粒ダイヤモンド複合焼結体の製造法。
【0017】
本発明のダイヤモンド焼結体中のダイヤモンドの粒子径は電子顕微鏡観察で100nm以下であり、硬さは、ヴィッカース硬さ80GPa以上の高硬度を有しており、異常粒成長の全く認められない均質な微細な粒子からなるので、優れた耐摩耗性と耐熱性を有し、鋭利な刃先形状に加工可能であることから、例えば、高Si−Al合金等の難削材料の仕上げ切削、金属・合金の超精密加工等に適用した場合、優れた切削性能を発揮する。
【0018】
【発明の実施の形態】
本発明のダイヤモンド焼結体を製造するために用いる脱シリケート処理した超微粒天然ダイヤモンド粉末は具体的には以下のようにして調製する。なお、この方法は、特願2002−030863号明細書に開示した二次粒子の形成を抑制したダイヤモンド粉末の調製法と同様の方法である。
【0019】
市販の粒径幅0〜0.1μmの天然ダイヤモンド粉末をジルコニウム坩堝を用いて、溶融水酸化ナトリウム中で処理し、ダイヤモンド中に不純物として含有する珪酸塩を水溶性の珪酸ナトリウムに変換する。
なお、微粉末ダイヤモンドについては規格化された測定方法に基づく粒度規格は存在しないが、粒径幅を0〜1/4,0〜1/2,0〜1,0〜2,1〜3,2〜4,4〜8のように区分して標準粒度規格(中心粒径は粒径幅の中間値)としたものに基づいて市販されており、本明細書において、天然ダイヤモンド粉末の粒径幅はこのような区分に基づくものである。
【0020】
溶融水酸化ナトリウム中からダイヤモンド粉末をアルカリ水溶液中に回収し、塩酸で中和処理してから、蒸留水で数回水洗して、塩化ナトリウムを除去する。
ダイヤモンド粉末が分散した溶液に王水を加えて、熱王水中でダイヤモンド粉末を処理し、ジルコニウム坩堝から混入の可能性のあるジルコニウムを除去する。熱王水処理後、蒸留水で3回以上水洗し、弱酸性溶液中にダイヤモンド粉末を回収する。ダイヤモンド粉末を分散している処理溶液はpH約3〜5の弱酸性となっている。
【0021】
この脱シリケート処理したダイヤモンド粉末を分散した弱酸性水溶液をプラスチック製等の容器中で好ましくは、約20〜30分間、振盪器を用いて十分に振盪処理をし、次に、液体窒素中で該容器を撹拌しながら、短時間で凍結する。振盪器から移して液体窒素に浸すまでの時間はできるだけ短く、好ましくは30秒以内とする。その結果、プラスチック製容器の底へのダイヤモンド粉末の沈降は抑制され、二次粒子の形成も抑制される。液体窒素は安価であること、及び溶液を容易に凍結可能であるので冷凍処理に用いるのに適している。
【0022】
凍結乾燥は、凍結したダイヤモンド粉末の入った容器の蓋を緩めて、真空中に配置し、凍結物を真空状態にすると、凍結した弱酸性の氷が昇華する。昇華熱により凍結物の入った容器は冷却され、凍結した状態を保つことができる。気化した水分は、真空ポンプの排気系の途中に−100℃以下の冷凍器を配置して、トラップする。この場合、15grのダイヤモンド粉末/100mlの溶液系では、凍結乾燥に約4日間を要する。
【0023】
この方法は、容器中の水溶液に微細なダイヤモンド粉末を分散させたまま、ダイヤモンド粒子表面が水溶液で覆われている状態で凍結し、そのまま凍結乾燥することにより、二次粒子の形成を抑制する方法である。 凍結乾燥した状態でダイヤモンド粉末はバラバラの粉末状となり、従来法のろ過・加熱乾燥法のそれらと全く異なり、流動性に富んださらさらとした粉末が得られる。上記の凍結乾燥法により調製した粉末は、電子顕微鏡観察で平均粒子径約80nmの一次粒子である。なお、上記には具体的な数値条件を例示したが、凍結乾燥により結果として上記のように二次粒子の形成を抑制したさらさらした粉末が得られればよく、具体的数値条件は適宜変更できる。
【0024】
本発明のダイヤモンド焼結体の製造法には、上記のような方法で凍結乾燥により調製した天然超微粒ダイヤモンド粉末を出発物質として用いる。図1は、本発明の製造法において、ダイヤモンド粉末を焼結するための流体相封止可能な焼結体合成用カプセルにダイヤモンド粉末を充填した状態の一例を示す断面図である。
【0025】
図1に示すように、円筒状のTa製カプセル3の底にカプセルの変形抑制用の黒鉛製円盤5Aを置き、Ta箔又はMo箔1Aを介してOAD等の炭水素化合物の粉末4を充填し、その上にダイヤモンド粉末2を加圧充填する。Ta又はMo箔は、所望の厚さの焼結体を合成するためのダイヤモンド粉末どうしの分離、黒鉛とダイヤモンド粉末の分離、圧力媒体の侵入防止、流体相のシール等のために用いている。
【0026】
炭水素化合物は充填するときは固体状態であるが、高圧高温条件では分解してCO、HO及びCが生成する。この分解したCO−HO流体がダイヤモンドの粒子間に溶浸する。この溶浸したC−O−H流体とTaが反応して、酸化物及び炭化物を生成すると考えられる。したがって、本発明の超微粒焼結体中には、主にタンタル酸化物及び炭化タンタルからなる生成物が均質に分散して含まれることになる。炭水素化合物としては、OAD以外のダイヤモンド合成触媒となる炭素、酸素、及び水素からなるマロン酸、コハク酸、無水シュウ酸等の有機酸でもよい。このダイヤモンド粉末2上にTa箔1Bを配置して、その上にカプセルの変形抑制用の黒鉛製円盤5Bを配置する。
【0027】
このカプセルを圧力媒体中に収容し、ベルト型超高圧合成装置などの静的圧縮法による超高圧装置を用いて、室温条件下で8.5GPa以上まで加圧し、同圧力条件下で1900℃以上の所定の温度まで加熱して、焼結を行う。圧力が8.5GPa未満では、1900℃以上の温度でも所望の高硬度焼結体が得られない。また、焼結温度が1900℃未満では、8.5GPa以上の圧力でも所望の高硬度焼結体が得られない。温度、圧力は必要以上に高くしてもエネルギー効率を悪くするだけであるから、装置の対応限度も考慮して必要最小限度とすることが望ましい。
【0028】
【実施例】
以下、本発明のダイヤモンド焼結体の製造法を実施例により具体的に説明する。
(実施例1)
市販の粒径幅0〜0.1μmの天然ダイヤモンド粉末を出発物質として上記のとおりの凍結乾燥法で調製した粉末を用意した。この粉末は電子顕微鏡観察から平均粒径80nmと決定された。肉厚0.2mm、外径6mmの円筒状Ta製カプセルの底にカプセルの変形抑制用の0.6mm厚の黒鉛製円盤を置き、Ta箔を介してOAD粉末15mgを加圧積層し、その上にこのダイヤモンド粉末60mgを層状に100MPaの圧力で充填した。このダイヤモンド粉末上にTa箔を置き、Ta箔の上には、カプセルの変形を抑制するために、0.6mm厚の黒鉛製円盤を配置した。
【0029】
次に、カプセルを塩化セシウムの圧力媒体中に充填し、ベルト型超高圧合成装置を用いて、9.4GPa、2000℃の条件で30分間処理した後、合成装置よりカプセルを取り出した。
【0030】
焼結体の表面に形成されたTaC等をフッ化水素酸−硝酸溶液で処理して除去した。焼結体の上下面をダイヤモンドホィールで研削した。研削後の焼結体のヴィカース硬さは、105GPaと非常に高硬度であった。焼結体のX線回折図形の測定の結果、ダイヤモンドとTaの酸化物と炭化物からなる複合焼結体であった。
(A)及びその拡大図である図2(B)に示すように、焼結体の破面の電子顕微鏡による組織観察から、焼結体中のダイヤモンド粒子径は、100nm以下であった。
【0031】
(比較例1)
実施例1のOADの代わりにMgCO−0.1molとOAD混合粉末を20mgを用いた他は、実施例1と同じ方法で焼結した。得られた焼結体を光学顕微鏡観察した結果、クラックのない均質な乳白色の焼結体であった。焼結体のヴィカース硬さは、70GPaであり、焼結助剤を用いた系におけるダイヤモンド焼結体としては十分高硬度であるが、実施例1に比較し低かった。
【0032】
(比較例2)
実施例1のOADの代わりにIrOと黒鉛粉末を等モル混合した粉末20mgを用いた他は、実施例1と同じ方法で焼結した。得られた焼結体を光学顕微鏡観察した結果、ダイヤモンド粒子間に分解生成物のIrが入り込んだ、数多くのクラックの存在する焼結体であった。IrO+Cから生成するCO流体の焼結助剤能を調べたのであるが、ダイヤモンド中にIrが入り込むため、この混合粉末は焼結助剤としては、有効でないことが明らかとなった。
【0033】
(比較例3)
焼結温度を1800℃とした以外は実施例1と同じ方法で焼結した。処理後の焼結体の研削抵抗は高くなかった。この処理条件では、OADは焼結助剤としては機能しないと言える。
【0034】
【発明の効果】
本発明の製造法により合成される高硬度超微粒ダイヤモンド複合焼結体は、従来の天然ダイヤモンド粉末から合成される焼結体とは異なる優れた高硬度材料としての特性を持っている。
【0035】
さらに、このダイヤモンド焼結体は、ダイヤモンドの他に高温安定物質であるTaの化合物から構成されている複合焼結体であることから、例えば、大気中高温条件においても優れた特性を発揮するものと考えられる。地球環境保全の立場から、炭酸ガスの排出抑制の観点から切削油を殆ど使用しないエミッションフリーマシーニングが今後の機械加工に求められている。この観点からも、切削工具材料の高温安定性は、工具材料に求められる極めて重要な特性の一つである。本発明のダイヤモンド複合焼結体は、今後、地球親和型の高硬度材料として、各種切削工具等の分野での用途が期待される。
【図面の簡単な説明】
【図1】図1は、本発明の方法において、ダイヤモンド粉末を焼結するための流体相封止可能な焼結体合成用カプセルにダイヤモンド粉末を充填した状態の一例を示す断面図である。
【図2】図2は、実施例1で得られた焼結体の破面の図面代用電子顕微鏡組織写真である。
【符号の説明】
1A,1B Ta箔
2 ダイヤモンド粉末
3 Ta製カプセル
4 シュウ酸二水和物
5A、5B 黒鉛製円盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrafine diamond composite sintered body and a method for producing the same.
[0002]
[Prior art]
Conventionally, it is known that a diamond sintered body or a fine diamond sintered body using a metal such as Co as a sintering aid is manufactured by a normal ultrahigh pressure synthesizer (Patent Documents 1 and 2). Also, without using metal sintering aids at all, by using alkaline earth metal carbonates as sintering aids and sintering under higher pressure and temperature conditions, they have superior heat resistance. A synthesis method for obtaining a high-hardness diamond sintered body is known (Non-Patent Document 1). However, these sintered bodies are limited to a relatively large particle diameter with a diamond particle diameter of about 5 μm in the sintered body.
[0003]
The present inventors prepared a mixed powder obtained by adding oxalic acid dihydrate, which is a source of a CO 2 —H 2 O fluid phase, to a carbonate, and natural diamond having a particle size range of 0 to 1 μm on the mixed powder. A method of laminating powder and producing a fine diamond sintered body has been reported (Patent Document 3, Non-Patent Documents 2 and 3), but the production requires a high temperature of 2200 ° C. or higher.
[0004]
The present inventors have reported an example in which a finer diamond powder, for example, a diamond powder having a particle size width of 0 to 0.1 μm, is sintered by the same method (Non-patent Document 4). However, abnormal grain growth of diamond occurred, and a high-hardness diamond sintered body could not be manufactured.
[0005]
Recently, a method of synthesizing a diamond sintered body without sintering aids under conditions of 12 to 25 GPa and 2000 to 2500 ° C. by direct conversion reaction from graphite to diamond has been announced and reported to become a translucent sintered body. (Non-Patent Document 5).
[0006]
[Patent Document 1]
Japanese Patent Publication No. 52-12126 [Patent Document 2]
Japanese Patent Publication No. 4-50270 [Patent Document 3]
Japanese Patent Laid-Open No. 2002-187775
[Non-Patent Document 1]
Diamond and Related Mater. , 5 pp. 2-7 , Elsevier Science S. A, 1996 [Non-Patent Document 2]
108 pages of the 41st High Pressure Discussion Meeting Abstract, Japan Society of High Pressure, 2000 [Non-Patent Document 3]
Proceedings of the 8th NIRIM International Symposium on Advanced Materials, 33-34, Institute for Inorganic Materials, 2001 [Non-Patent Document 4]
Abstracts of the 42nd high-pressure discussion meeting, 89 pages, Japan Society of High Pressure, 2001 [Non-Patent Document 5]
T.A. Irifune et al. , “Characterization of polycrystalline diamonds synthesized by direct conversion of graphs using a large amount of the two”, 6th High Pressure
[0008]
[Problems to be solved by the invention]
Since the diamond sintered body containing a sintering aid contains a solid aid, the volume of diamond particles decreases by the amount of volume occupied by the aid. As a result, the diamond sintered body containing the sintering aid has a lower Vickers hardness than the ideal diamond sintered body containing no auxiliary.
[0009]
Conventionally, the present inventors have searched for a new diamond synthesis catalyst under high pressure and high temperature conditions of 7.7 GPa and ˜2500 ° C. As a result, it was discovered and reported that a fluid phase such as a C—O—H fluid phase composed of CO 2 and H 2 O belonging to the third category in addition to a metal catalyst and a non-metal catalyst becomes a diamond synthesis catalyst (for example, C-O-H fluid catalyst diamond synthesis, M. Akashishi and S. Yamaoka, "Crystallization of diamond from C-O-fluids under high-pressure and high-temperature Jr." 999 (2000).
[0010]
Conventional diamond powder sintering aids are metallic aids such as Co and non-metallic carbonates such as MgCO 3 . Existing sintering aids, whether metallic or non-metallic, all belong to the category of diamond synthesis catalysts.
Therefore, the present inventors have newly clarified that the catalyst becomes a diamond synthesis catalyst. Oxalic acid dihydrate (hereinafter abbreviated as “OAD”) that decomposes under high pressure and high temperature conditions to become a C—O—H fluid catalyst. If it functions as a sintering aid for diamond, synthesis of a sintered body in which no solid sintering aid remains in the diamond sintered body was expected.
[0011]
However, natural diamond powder having a particle diameter of 0 to 1 μm is desilicated, and then these powders are laminated on an OAD powder and filled into a Ta capsule, and a wide range of 7.7 GPa to 9.4 GPa. Even when heated and pressed under various pressure conditions, OAD did not function as a diamond sintering aid at all. That is, the diamond sample collected after the treatment under conditions of 7.7 GPa and 2000 ° C. was a milky white block having innumerable cracks, but had no grinding resistance.
[0012]
Moreover, the diamond sample recovered by treatment with the pressure increased to 9.4 GPa was a slightly grayish white. This sample had almost no cracking, but had no grinding resistance.
As described above, it has been difficult to produce an ideal high-hardness diamond sintered body containing no sintering aid.
[0013]
[Means for Solving the Problems]
The present inventors filled a Ta capsule with a powder prepared by freeze-drying ultrafine natural diamond powder having a particle size width of 0 to 0.1 μm and then lyophilized it, and 9.4 GPa using an ultrahigh pressure synthesizer. When the sample was recovered after treatment at 2150 ° C. for 20 minutes, a sintered body having a very large grinding resistance was obtained. As a result, it was discovered that an organic acid composed of carbon, oxygen, and hydrogen is an effective sintering aid for sintering ultrafine natural diamond. When the particle diameter of diamond is reduced, the surface energy of the particles increases, and this energy is considered to work as a driving force for sintering.
[0014]
In addition, this sintered body is gray, but the reason is not clear. When the X-ray diffraction pattern of the sample was measured, surprisingly, in addition to the diffraction lines of diamond, Ta oxide and carbide were confirmed. It was done. These compounds are thought to be produced by the reaction of oxygen or carbon, which is a decomposition product of OAD, with Ta, which is a cylindrical capsule material, or Ta foil laminated on a diamond powder layer. The relative intensity of the strongest diffraction line of the Ta oxide was 68 when the intensity of the strongest diffraction line of diamond was 100, and the relative intensity of the strongest diffraction line of Ta carbide was 50.
[0015]
That is, the present invention is as follows.
[0016]
(1) A powder prepared by desiccating ultrafine natural diamond powder having a particle size range of 0 to 0.1 μm and then freeze-drying using an aqueous solution is enclosed in a Ta capsule, and the capsule is then combined with an ultrahigh pressure synthesizer The diamond powder is obtained by heating and pressing organic acid powder composed of carbon, oxygen, and hydrogen as a sintering aid at a temperature of 1900 ° C. or higher and a pressure of 8.5 GPa or higher, which is the thermodynamic stability condition of diamond. High-hardness ultrafine diamond composite firing characterized by obtaining a sintered body containing a product composed of a Ta compound in the sintered body by sintering and having a diamond particle diameter of 100 nm or less in the sintered body. A manufacturing method of a knot.
[0017]
The particle diameter of diamond in the diamond sintered body of the present invention is 100 nm or less as observed with an electron microscope, the hardness is a high Vickers hardness of 80 GPa or higher, and no homogeneous grain growth is observed at all. Because it is made of fine particles, it has excellent wear resistance and heat resistance, and can be machined into a sharp edge shape.For example, finish cutting of difficult-to-cut materials such as high Si-Al alloy, Excellent cutting performance when applied to ultra-precision machining of alloys.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The desiccated ultrafine natural diamond powder used to produce the diamond sintered body of the present invention is specifically prepared as follows. In addition, this method is the same method as the preparation method of the diamond powder which suppressed formation of the secondary particle disclosed by Japanese Patent Application No. 2002-030863.
[0019]
A commercially available natural diamond powder having a particle size range of 0 to 0.1 μm is treated in molten sodium hydroxide using a zirconium crucible to convert silicate contained as an impurity in the diamond into water-soluble sodium silicate.
In addition, although there is no particle size standard based on a standardized measurement method for fine powder diamond, the particle size range is 0 to 1/4, 0 to 1/2, 0 to 1, 0 to 2, 1 to 3, It is marketed based on the standard particle size standard (the center particle size is the intermediate value of the particle size width) divided into 2 to 4 and 4 to 8, and in this specification, the particle size of natural diamond powder The width is based on these categories.
[0020]
Diamond powder is recovered from the molten sodium hydroxide in an aqueous alkaline solution, neutralized with hydrochloric acid, and then washed several times with distilled water to remove sodium chloride.
Aqua regia is added to the solution in which the diamond powder is dispersed, and the diamond powder is treated in hot aqua regia to remove zirconium that may be mixed in from the zirconium crucible. After the hot aqua regia treatment, it is washed with distilled water three times or more, and the diamond powder is recovered in the weakly acidic solution. The treatment solution in which the diamond powder is dispersed is weakly acidic with a pH of about 3-5.
[0021]
The weakly acidic aqueous solution in which the desilicated diamond powder is dispersed is preferably sufficiently shaken with a shaker in a plastic container or the like for about 20 to 30 minutes. Freeze in a short time while stirring the container. The time from the shaker to immersion in liquid nitrogen is as short as possible, preferably within 30 seconds. As a result, the sedimentation of diamond powder on the bottom of the plastic container is suppressed, and the formation of secondary particles is also suppressed. Liquid nitrogen is suitable for use in refrigeration because it is inexpensive and the solution can be easily frozen.
[0022]
In lyophilization, the lid of a container containing frozen diamond powder is loosened and placed in a vacuum, and when the frozen material is brought into a vacuum state, the frozen weakly acidic ice sublimes. The container containing the frozen material is cooled by sublimation heat and can be kept frozen. The vaporized water is trapped by placing a freezer at −100 ° C. or lower in the middle of the exhaust system of the vacuum pump. In this case, lyophilization takes about 4 days in a 15 gr diamond powder / 100 ml solution system.
[0023]
In this method, fine diamond powder is dispersed in an aqueous solution in a container, the surface of the diamond particles is frozen in a state of being covered with the aqueous solution, and then freeze-dried as it is to suppress the formation of secondary particles. It is. When freeze-dried, the diamond powder becomes a discrete powder, which is completely different from those of the conventional filtration and heat drying methods, and a smooth powder with high fluidity can be obtained. The powder prepared by the above lyophilization method is a primary particle having an average particle diameter of about 80 nm as observed with an electron microscope. In addition, although specific numerical conditions were illustrated above, it is only necessary to obtain a free-flowing powder that suppresses the formation of secondary particles as described above by freeze drying, and the specific numerical conditions can be changed as appropriate.
[0024]
In the method for producing a diamond sintered body of the present invention, natural ultrafine diamond powder prepared by lyophilization by the above method is used as a starting material. FIG. 1 is a cross-sectional view showing an example of a state in which diamond powder is filled into a capsule for sintering a fluid phase sealable sintered body for sintering diamond powder in the production method of the present invention.
[0025]
As shown in FIG. 1, a graphite disc 5A for suppressing capsule deformation is placed on the bottom of a cylindrical Ta capsule 3, and a hydrocarbon compound powder 4 such as OAD is filled through Ta foil or Mo foil 1A. Then, diamond powder 2 is pressure-filled thereon. Ta or Mo foil is used for separating diamond powders for synthesizing a sintered body having a desired thickness, separating graphite and diamond powders, preventing intrusion of a pressure medium, sealing a fluid phase, and the like.
[0026]
The hydrocarbon compound is in a solid state when charged, but decomposes under high pressure and high temperature conditions to produce CO 2 , H 2 O and C. The decomposed CO 2 -H 2 O fluid infiltrates between diamond particles. It is considered that Ta and the infiltrated C—O—H fluid react with each other to generate oxides and carbides. Therefore, in the ultrafine sintered body of the present invention, a product mainly composed of tantalum oxide and tantalum carbide is uniformly dispersed. As the hydrocarbon compound, organic acids such as malonic acid, succinic acid, and oxalic anhydride, which are composed of carbon, oxygen, and hydrogen, which are diamond synthesis catalysts other than OAD, may be used. A Ta foil 1B is disposed on the diamond powder 2, and a graphite disk 5B for suppressing capsule deformation is disposed thereon.
[0027]
The capsule is housed in a pressure medium, and pressurized to 8.5 GPa or more at room temperature using an ultra-high pressure apparatus such as a belt-type ultra-high pressure synthesizer, and 1900 ° C. or more under the same pressure condition. Is heated to a predetermined temperature and sintered. When the pressure is less than 8.5 GPa, a desired high-hardness sintered body cannot be obtained even at a temperature of 1900 ° C. or higher. Moreover, if the sintering temperature is less than 1900 ° C., a desired high hardness sintered body cannot be obtained even at a pressure of 8.5 GPa or more. Even if the temperature and pressure are set higher than necessary, the energy efficiency is only deteriorated. Therefore, it is desirable to set the required minimum in consideration of the corresponding limit of the apparatus.
[0028]
【Example】
Hereinafter, the manufacturing method of the diamond sintered compact of this invention is demonstrated concretely by an Example.
Example 1
A powder prepared by a freeze-drying method as described above was prepared using a commercially available natural diamond powder having a particle size range of 0 to 0.1 μm as a starting material. This powder was determined to have an average particle diameter of 80 nm by electron microscope observation. A 0.6 mm thick graphite disk for suppressing capsule deformation is placed on the bottom of a cylindrical Ta capsule having a wall thickness of 0.2 mm and an outer diameter of 6 mm, and 15 mg of OAD powder is pressed and laminated through a Ta foil. On top, 60 mg of this diamond powder was filled in layers at a pressure of 100 MPa. A Ta foil was placed on the diamond powder, and a 0.6 mm thick graphite disc was placed on the Ta foil in order to suppress capsule deformation.
[0029]
Next, the capsule was filled in a cesium chloride pressure medium, treated with a belt-type ultrahigh pressure synthesizer under conditions of 9.4 GPa and 2000 ° C. for 30 minutes, and then the capsule was taken out of the synthesizer.
[0030]
The TaC or the like formed on the surface of the sintered body hydrofluoric acid - was removed by treatment with nitric acid solution. The upper and lower surfaces of the sintered body were ground with a diamond wheel. The Vickers hardness of the sintered body after grinding was as extremely high as 105 GPa. As a result of measuring the X-ray diffraction pattern of the sintered body, it was a composite sintered body made of diamond, Ta oxide and carbide.
As shown in (A) and FIG. 2 (B) which is an enlarged view thereof , the diamond particle diameter in the sintered body was 100 nm or less from the observation of the structure of the fractured surface of the sintered body with an electron microscope.
[0031]
(Comparative Example 1)
The MgCO 3 -0.1mol and OAD mixed powder instead of OAD in Example 1 except for using 20mg were sintered in the same manner as in Example 1. As a result of observing the obtained sintered body with an optical microscope, it was a homogeneous milky white sintered body without cracks. The Vickers hardness of the sintered body was 70 GPa, which was sufficiently high as a diamond sintered body in a system using a sintering aid, but was lower than that in Example 1.
[0032]
(Comparative Example 2)
Sintering was performed in the same manner as in Example 1, except that 20 mg of an equal molar mixture of IrO 2 and graphite powder was used instead of OAD in Example 1. As a result of observing the obtained sintered body with an optical microscope, it was a sintered body in which a cracked product Ir entered between diamond particles and a large number of cracks were present. The ability of the CO 2 fluid produced from IrO 2 + C to be sintered was investigated, but it was found that this mixed powder is not effective as a sintering aid because Ir enters the diamond.
[0033]
(Comparative Example 3)
Sintering was performed in the same manner as in Example 1 except that the sintering temperature was 1800 ° C. The grinding resistance of the sintered body after the treatment was not high. Under this processing condition, it can be said that OAD does not function as a sintering aid.
[0034]
【The invention's effect】
The high-hardness ultrafine diamond composite sintered body synthesized by the production method of the present invention has characteristics as an excellent high-hardness material different from a sintered body synthesized from a conventional natural diamond powder.
[0035]
Furthermore, since this diamond sintered body is a composite sintered body composed of a compound of Ta, which is a high-temperature stable substance, in addition to diamond, it exhibits excellent characteristics even under high temperature conditions in the atmosphere. it is conceivable that. From the standpoint of protecting the global environment, emission-free machining that uses almost no cutting oil is required for future machining from the viewpoint of suppressing carbon dioxide emissions. Also from this viewpoint, the high temperature stability of the cutting tool material is one of the extremely important characteristics required for the tool material. The diamond composite sintered body of the present invention is expected to be used in the field of various cutting tools and the like as an earth-friendly high-hardness material.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a state in which diamond powder is filled into a capsule for sintering a fluid phase sealable sintered body for sintering diamond powder in the method of the present invention.
FIG. 2 is a drawing-substitute electron micrograph of the fracture surface of the sintered body obtained in Example 1. FIG.
[Explanation of symbols]
1A, 1B Ta foil 2 Diamond powder 3 Ta capsule 4 Oxalic acid dihydrate 5A, 5B Graphite disk

Claims (1)

粒径幅0〜0.1μmの超微粒天然ダイヤモンド粉末を脱シリケート処理した後に水溶液を用いて凍結乾燥することにより調製した粉末をTa製カプセルに封入し、該カプセルを超高圧合成装置を用いてダイヤモンドの熱力学的安定条件の1900℃以上の温度、8.5GPa以上の圧力下で炭素、酸素、及び水素からなる有機酸粉末を焼結助剤として加熱加圧することによりダイヤモンド粉末を焼結することにより焼結体中にTaの化合物からなる生成物を含み、焼結体中のダイヤモンド粒子径が100nm以下である焼結体を得ることを特徴とする高硬度超微粒ダイヤモンド複合焼結体の製造法。A powder prepared by desiccating ultrafine natural diamond powder having a particle size range of 0 to 0.1 μm and then freeze-drying using an aqueous solution is enclosed in a Ta capsule, and the capsule is encapsulated using an ultrahigh pressure synthesizer. Diamond powder is sintered by heating and pressurizing organic acid powder composed of carbon, oxygen and hydrogen under sintering thermodynamic stability conditions at a temperature of 1900 ° C. or higher and pressure of 8.5 GPa or higher. A sintered body having a high hardness ultrafine diamond composite sintered body comprising a sintered body containing a product composed of a Ta compound and having a diamond particle diameter of 100 nm or less in the sintered body. Manufacturing method.
JP2002332819A 2002-11-15 2002-11-15 Manufacturing method of high-hardness ultrafine diamond composite sintered body Expired - Lifetime JP3814660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332819A JP3814660B2 (en) 2002-11-15 2002-11-15 Manufacturing method of high-hardness ultrafine diamond composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332819A JP3814660B2 (en) 2002-11-15 2002-11-15 Manufacturing method of high-hardness ultrafine diamond composite sintered body

Publications (3)

Publication Number Publication Date
JP2004168558A JP2004168558A (en) 2004-06-17
JP2004168558A5 JP2004168558A5 (en) 2006-03-02
JP3814660B2 true JP3814660B2 (en) 2006-08-30

Family

ID=32697732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332819A Expired - Lifetime JP3814660B2 (en) 2002-11-15 2002-11-15 Manufacturing method of high-hardness ultrafine diamond composite sintered body

Country Status (1)

Country Link
JP (1) JP3814660B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011019A1 (en) 2005-07-21 2007-01-25 Sumitomo Electric Industries, Ltd. High-hardness polycrystalline diamond and process for producing the same
JP5076300B2 (en) * 2005-10-04 2012-11-21 住友電気工業株式会社 High hardness diamond polycrystal
JP5070688B2 (en) * 2005-08-22 2012-11-14 住友電気工業株式会社 High hardness diamond polycrystal and method for producing the same
US8505654B2 (en) 2009-10-09 2013-08-13 Element Six Limited Polycrystalline diamond

Also Published As

Publication number Publication date
JP2004168558A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP3957632B2 (en) Polycrystalline abrasive coarse particles
ZA200504183B (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
JP4684599B2 (en) Method for producing cubic boron nitride
JP2005514300A (en) Low oxygen cubic boron nitride and its products
JP4811853B2 (en) Manufacturing method of high purity cubic boron nitride sintered body
JP2004196595A (en) Heat-resistant diamond compound sintered compact and method for manufacturing the same
JP3814660B2 (en) Manufacturing method of high-hardness ultrafine diamond composite sintered body
JP4014415B2 (en) Manufacturing method of high hardness fine diamond sintered body
Sumiya et al. Synthesis of polycrystalline diamond with new non-metallic catalyst under high pressure and high temperature
JP3855029B2 (en) Manufacturing method of translucent ultrafine diamond sintered body
JP2015531317A (en) Single crystal diamond or CBN characterized by microfracturing during grinding
JP4223518B2 (en) Cubic boron nitride abrasive and method for producing cubic boron nitride abrasive
JPH09142932A (en) Diamond sintered compact and its production
JPH11335174A (en) Cubic boron nitride sintered compact
JPH11335175A (en) Cubic boron nitride sintered compact
JPS5973410A (en) Preparation of boron nitride of cubic system
JPH11322310A (en) Cubic boron nitride polycrystalline abrasive grain and its production
JPS5950075A (en) Manufacture of cubic boron nitride sintered body
JPH02167666A (en) Manufacture of fine grain diamond sintering body
JPH0450273B2 (en)
JPS63266030A (en) Production of high hardness sintered body
JPS62108709A (en) Production of cubic boron nitride
JPS62108711A (en) Production of cubic boron nitride
JPS62108710A (en) Production of cubic boron nitride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent or registration of utility model

Ref document number: 3814660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term