JP3814263B2 - Separation and recovery of iron and manganese coexisting in water - Google Patents

Separation and recovery of iron and manganese coexisting in water Download PDF

Info

Publication number
JP3814263B2
JP3814263B2 JP2003172379A JP2003172379A JP3814263B2 JP 3814263 B2 JP3814263 B2 JP 3814263B2 JP 2003172379 A JP2003172379 A JP 2003172379A JP 2003172379 A JP2003172379 A JP 2003172379A JP 3814263 B2 JP3814263 B2 JP 3814263B2
Authority
JP
Japan
Prior art keywords
manganese
iron
water
removal
radium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003172379A
Other languages
Japanese (ja)
Other versions
JP2005008455A (en
Inventor
富弘 瀧
政喜 長沼
始男 佐藤
Original Assignee
核燃料サイクル開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 核燃料サイクル開発機構 filed Critical 核燃料サイクル開発機構
Priority to JP2003172379A priority Critical patent/JP3814263B2/en
Publication of JP2005008455A publication Critical patent/JP2005008455A/en
Application granted granted Critical
Publication of JP3814263B2 publication Critical patent/JP3814263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水中に共存している鉄とマンガンを分離回収する方法に関し、更に詳しく述べると、被処理水のpH制御と適切な酸化方法とによって、まず除鉄塔で鉄分のみを除去し、次いで除マンガン塔でマンガンを除去するようにして、鉄とマンガンを確実に分離し、別個に回収できるようにした水中に共存している鉄とマンガンの分離回収方法に関するものである。この技術は、特にラジウムを含む廃水の処理において、放射性物質を含む廃棄物量の低減に有用である。
【0002】
【従来の技術】
例えば、ウラン鉱滓の処理、ラジウムを含むウラン廃棄物の処理、ラジウムを含む汚染土壌の処理、あるいはラジウムを含むウラン廃棄物の処置などにおいては、被処理水中に必然的に、あるいは意に反してラジウムが含まれる状態が生じうる。処理水中のラジウム濃度の排出基準は、現在、原子炉等規制法などにより3.0Bq/Lに規制されている。しかし地域によっては、地元自治体との上乗せ基準等によって更に厳しい排出基準(例えば、0.037Bq/L以下)に規制されている事業所もある。
【0003】
従来、ラジウムを含む廃水の処理方法としては、廃水に塩化バリウムと硫酸又は硫酸塩を添加し、発生する硫酸バリウムにより共沈除去する方法がある。しかし、この共沈法は、劇物指定の薬品を取り扱うなど環境負荷が大きいこと、沈澱池、濾過設備などに広いスペースを必要とする上、発生するラジウム含有固形廃棄物量が多いなどの問題がある。
【0004】
他の処理方法としては、イオン交換樹脂を用いてラジウムを選択的に吸着除去する方法が知られている。しかし、吸着材として用いるイオン交換樹脂は高価である。そこで、コスト低減化を図るために、吸着材(イオン交換樹脂)を再生して繰り返し使用するのが一般的である。ところが、ラジウムは資源としての利用価値が低いことから、再生工程で発生するラジウム溶離液は、硫酸バリウムによる共沈法などで処理され廃棄物として処置されることになる。従って、そのための処理設備が別途必要となり、十分満足しうる問題解決法とはなっていない。
【0005】
このような問題を解決できる技術として、本発明者等は先に、マンガン及びラジウムを含む水に、酸化目的で次亜塩素酸ナトリウム溶液を加え、酸化マンガンが被着している濾過材に接触させると、濾過材表面に酸化マンガンを付着させつつラジウムを選択的に吸着除去できることを見出し、それに基づく水中ラジウムの除去方法を提案した(特願2001−389244参照)。この方法は、粒子表面に酸化マンガンが付着し続けるため、長期間にわたって効率よくラジウムを吸着除去することができる利点がある。
【0006】
しかし、被処理水中に鉄分が含まれている場合には、マンガンやラジウムと一緒に鉄分も濾過材に吸着されてしまう。そのため濾過材への吸着物量が増大し、濾過装置(カラム)への通水時における圧力損失が増加する。そこで、このような場合には、水中のマンガンやラジウムを除去する工程の前処理として、被処理水から予め鉄分を除去しておくことが望ましいことになる。
【0007】
【発明が解決しようとする課題】
水中のマンガンやラジウムの吸着除去においては、上記のように、予め水中に存在している鉄分を除去しておくのが望ましいことは判明している。水中の鉄分を除去する方法は種々知られており、実験室規模のような小規模の実施では特に大きな問題は生じない。しかし、大規模な且つ長期間にわたる実施においては、鉄分のみを効率よく除去する方法は未だ開発されていない。
【0008】
水中に存在している鉄分の簡便な除去方法の一つとして、濾過材の酸化触媒作用による吸着除去法がある。例えば、被処理水中に空気を吹き込むことにより鉄分を空気酸化し、あるいは酸化剤(次亜塩素酸ナトリウム溶液など)の添加により鉄分を酸化し、水酸化第2鉄からなる濾過材あるいは粒子表面にオキシ水酸化鉄を被着させた濾過材により吸着させる方法である。この方法は、大規模な実施にも適用できる。
【0009】
しかし、この処理方法は、水中にマンガンが共存している場合には、鉄分のみならずマンガンも同時に吸着されてしまう。そのため、マンガン及びラジウムが含まれている被処理水中の鉄分の吸着除去を長期間にわたって継続すると、除鉄用濾過材の表面に酸化マンガンが付着し、そのためラジウムも一緒に吸着されることになる。
【0010】
ところが、ラジウムは放射性物質であるため、処理の過程で発生する廃棄物は一般の廃棄物と区別した管理となることから、保管に係わる負担の軽減化が求められている。しかし上記の方法では、鉄と一緒にマンガン及びラジウムも同じ濾過材に吸着されてしまうために分離回収ができず、そのため廃棄物量が増大し、処分・保管が難しくなる。
【0011】
本発明の目的は、水中に含まれている鉄とマンガンを、容易にしかも確実に分離回収できる方法を提供することである。本発明の他の目的は、鉄とマンガン及びラジウムを分離できるようにすることにより、ラジウムを含む廃棄物量を低減し、保管に係わる負担の軽減化を図ることができるような方法を提供することである。
【0012】
【課題を解決するための手段】
本発明者等は、鉄とマンガンが共存している被処理水に、酸化剤を添加するのではなく、空気(酸素)を吹き込み空気酸化させながら除鉄用濾過材(鉄分を吸着する濾過材)に接触させると、
(A)被処理水のpHによって鉄とマンガンの吸着度合いが異なること、
(B)被処理水のpHを5.0〜6.0の範囲に調整すると、マンガンは殆ど吸着されずに水中に溶存したままとなるが、鉄分のみは除鉄用濾過材に吸着されること、
を見出し、それに基づき本発明を完成させるに至ったものである。
【0013】
本発明は、鉄とマンガンを含む水をpH5.0〜6.0に調整し、空気吹き込みにより鉄のみを空気酸化させながら除鉄用濾過材と接触させることにより鉄を吸着させる除鉄工程と、
鉄を除去した水のpHを中性付近に調整し、塩素系酸化剤を加えることでマンガンを酸化させながら除マンガン用濾過材と接触させることによりマンガンを吸着させる除マンガン工程と、
を具備し、鉄が付着した除鉄用濾過材とマンガンが付着した除マンガン用濾過材に対して逆洗操作を行い、各濾過材の付着物を分別回収することを特徴とする水中に共存している鉄とマンガンの分離回収方法である。
【0014】
また本発明は、鉄とマンガン及びラジウムを含む水をpH5.0〜6.0に調整し、空気吹き込みにより鉄のみを空気酸化させながら除鉄用濾過材と接触させることにより鉄を吸着させる除鉄工程と、
鉄を除去した水のpHを中性付近に調整し、塩素系酸化剤を加えることでマンガンを酸化させながら除マンガン用濾過材と接触させることによりマンガン及びラジウムを吸着させる除マンガン工程と、
を具備し、鉄が付着した除鉄用濾過材とマンガン及びラジウムが付着した除マンガン用濾過材とに対して清水を用いて逆洗操作を行い、各濾過材の付着物をスラリーとして分別回収することを特徴とする水中に共存している鉄とマンガンの分離回収方法である。
【0015】
これらの分離回収方法において、除鉄工程における水のpHは5.0〜6.0の範囲内とするが、特に5.5〜6.0に調整するのが好ましい。除鉄用濾過材としては、例えば粒子表面にオキシ水酸化鉄を被着した濾過材を用いる。また除マンガン用濾過材としては、例えば粒子表面に酸化マンガンを被着した濾過材を用いる。
【0016】
【発明の実施の形態】
図1は、本発明に係る鉄とマンガンの分離回収方法の一例を示すフロー図である。被処理水は、例えば過去の探鉱活動に伴い発生した坑水などであり、マンガン及びラジウムの他に鉄を含んでいる。この被処理水に、硫酸あるいは水酸化ナトリウム溶液を加えてpHを5.0〜6.0に調整する。次に、この被処理水を通す配管中に空気を吹き込んで除鉄塔に通液し、充填されている除鉄用濾過材に接触させる。これによって鉄のみが空気酸化されながら除鉄用濾過材に吸着される。鉄が除去された被処理水に、水酸化ナトリウム溶液を加えてpHを排水基準を満たす中性付近(各種の基準に応じて、例えば、pHが5.8〜8.6)に調整し、塩素系酸化剤(次亜塩素酸ナトリウム溶液等)を加えて除マンガン塔に通液し、充填されている除マンガン用濾過材に接触させる。これによってマンガンは酸化されながら除マンガン用濾過材に吸着される。このとき、同時にラジウムも除マンガン用濾過材に吸着される。従って、まず除鉄塔で鉄分が除去され、次に除マンガン塔でマンガン及びラジウムが除去されて、最終的にはそれらが除去された処理水が排出されることになる。この処理水は、pHが中性付近に調整されたものであるため、そのまま排水することが可能である。
【0017】
長期間にわたる除鉄操作・除マンガン操作によって、除鉄塔の除鉄用濾過材には鉄分が、また除マンガン塔の除マンガン用濾過材にはマンガン分及びラジウム分が多量に付着し、除鉄塔あるいは除マンガン塔に通液した時の圧力損失が増大するようになる。そこで、除鉄塔及び除マンガン塔にそれぞれ清水を供給して、鉄が付着した除鉄用濾過材とマンガン及びラジウムが付着した除マンガン用濾過材とに対して逆洗操作を行う。それぞれ清水を用いて逆洗操作を行うと、鉄澱物スラリー及びマンガン・ラジウム澱物スラリーが得られ、それぞれ分別回収することができる。それらは、水分を除去することで固形化することができる。なお上記のように最終的に排出される処理水は、鉄とマンガン及びラジウムが除去されているので、それを清水として逆洗操作に使用するのが好ましい。
【0018】
ところで本発明において、除鉄工程で空気酸化しているのは、被処理水中に含まれている鉄とマンガンを分離するためである。pHを5.0〜6.0に調整した被処理水に空気(実際には酸素)を吹き込んだ場合、マンガンの酸化反応は極めて徐々にしか進行しないため、鉄は酸化されてもマンガンは殆ど酸化されずに水中に溶存した状態が維持される。そのためマンガンは除鉄用濾過材には捕捉されず、除鉄塔をそのまま通過する。本発明は、この現象を利用している。なお、マンガンが鉄よりも酸化され難いのは、マンガンの酸化還元系の電位が鉄の酸化還元系の電位より高いからである。仮に空気に代えて塩素系の酸化剤を添加すると、鉄のみならずマンガンまでもが急速に酸化されて除鉄塔で固形物として析出してしまい、分離は行えない。
【0019】
本発明方法による分離処理において発生する廃棄物は、除鉄塔及び除マンガン塔の逆洗によって発生する濾過材表面から剥離した固形物、及び性能劣化に伴い交換が必要となる濾過材である。前述のように、ラジウムは放射性物質であるために、一般の廃棄物と区別した管理となることから、保管に係わる負担の軽減化が求められる。本発明では、予め除鉄塔で鉄分のみを分離除去するために、鉄分を含むスラリーは放射性物質を含まないことから、それについては簡易処分が可能となる。
【0020】
除鉄用濾過材は、例えば濾過砂(天然に産する石英質の硬い珪砂を水洗しながら濾過に適した粒度分布となるように篩い分けしたもの)の表面をオキシ水酸化鉄で被覆した粒子である。濾過砂は、水中に浮遊する懸濁物質を捕捉する機能を兼ねている。鉄分を含んだ水を、この濾過砂で濾過すると、水中の溶存酸素により、濾過砂の表面には次第に酸化鉄が生成する。これが酸化促進剤となって水中の鉄分の除去が容易になる。そこで、効率よく鉄分を除去できる濾過材として、濾過砂表面をオキシ水酸化鉄で被覆した粒子が除鉄用濾過材として市販されており(例えば、「トヨレックス」株式会社トーケミ製)、本発明ではこの市販品をそのまま用いることができる。
【0021】
除マンガン用濾過材は、例えば濾過砂(天然に産する石英質の硬い珪砂を水洗しながら濾過に適した粒度分布となるように篩い分けしたもの)の表面を酸化マンガンで被覆した粒子である。この場合も濾過砂は、水中に浮遊する懸濁物質を捕捉する機能を兼ねている。マンガンを含んだ水に塩素を加えて、この濾過砂で濾過すると、水中のマンガンが酸化されて、濾過砂の表面には次第に酸化マンガンが生成する。これが酸化促進剤となって水中のマンガンの除去が容易になる。これを一般的に「マンガン砂」と呼ぶ。しかし、マンガン砂となるためには、マンガン含有量によるが数ヶ月から数年かかることもある。そこで、濾過砂を塩化マンガンと過マンガン酸カリウムによって繰り返し処理して、濾過砂表面を酸化マンガンで被覆した粒子が除マンガン用濾過材として市販されており(例えば、「マンガン砂」株式会社トーケミ製)、本発明ではこの市販品をそのまま用いることができる。
【0022】
長期間にわたる使用によって、濾過材への付着物量は増大する。それにより濾過抵抗(圧力損失)が増大するため、濾過材に付着したフロックなどを濾過材同士の衝突や摩擦によって剥離し、取り除く必要がある。その操作が逆洗である。この逆洗操作によって、付着物を回収することができる。逆洗方法としては、表層逆洗、空気逆洗、機械攪拌、強力水流による逆洗などがある。本発明は、これらいずれの方法による逆洗でもよいが、ここでは処理水を用いて逆洗を行い、付着物をスラリーとして回収している。即ち、除鉄塔の逆洗によって鉄分は鉄澱物スラリーとして回収され、除マンガン塔の逆洗によってマンガン分及びラジウム分はマンガン・ラジウム澱物スラリーとして回収されることになる。
【0023】
【実施例】
市販の除鉄用濾過材及び除マンガン用濾過材を、それぞれ内径が150mmφのプラスチック製カラムに充填して、除鉄塔と除マンガン塔の2塔直列による濾過装置を構成した。鉄及びマンガンを含む被処理水(原水)に硫酸を加えて、pHを4.0〜7.3の範囲で7段階に変化させて通水し、除鉄塔と除マンガン塔の出口での濃度を測定する試験を行った。いずれの試験も、配管中に圧縮空気を送りながら、除鉄塔に通液速度3L/分で通液した。除鉄塔出口液に水酸化ナトリウム溶液を加えてpHを7.3に調整した後、次亜塩素酸ナトリウム溶液をポンプで添加しながら除マンガン塔に通液速度3L/分で通液した。試験の結果を表1に示す。
【0024】
【表1】

Figure 0003814263
【0025】
試験番号3〜5が本発明に相当する方法である。いずれの試験でも除鉄塔で鉄分は除去されるがマンガンは除去されずに通過し、最終的に除マンガン塔では鉄もマンガンもほぼ完全に除去されていることが分かる。特に試験番号3〜4のように、pHを5.5〜6.0に調整するのが最適である。このようにすると、除鉄塔出口での被処理水中での鉄分濃度は極めて小さく(大部分の鉄分が除去されている)且つマンガン濃度には殆ど変化がない(大部分のマンガンは捕捉されていない)ことが分かる。つまり、鉄分は除鉄塔で、マンガンは除マンガン塔で、それぞれ別々に吸着除去されており、分離の目的が達成されている。
【0026】
それに対して、試験番号1〜2では、除鉄塔で鉄分とともにかなりの量のマンガンも除去されてしまい、分離回収の目的が達成されていない。逆に試験番号6〜7では、除鉄塔で鉄分の除去が不十分であり、残った鉄分が除マンガン塔で除去されており、同様に、分離回収の目的が十分には達成されていない。なお、試験番号5〜7で除鉄塔出口液のマンガン濃度が入口液(被処理水)のそれよりも増加したのは、過去の試験で除鉄用濾過材に付着していたマンガン分が溶出したためと考えられる。
【0027】
この実施例ではラジウムを用いた例は示していないが、前述のように、マンガン及びラジウムを含む水に、酸化目的で次亜塩素酸ナトリウム溶液を加え、酸化マンガンが被着している濾過材に接触させると、濾過材表面に酸化マンガンを付着させつつラジウムを選択的に吸着除去できるのであるから、本発明方法によって被処理水から先ず鉄分のみを分離除去し、その後、マンガン及びラジウムを吸着除去できることになる。
【0028】
【発明の効果】
本発明は上記のように、水のpH5.0〜6.0に調整し、空気吹き込みにより鉄のみを空気酸化さながら除鉄用濾過材と接触させることにより、鉄を吸着除去し、次に水のpHを中性付近に調整し、塩素系酸化剤を加えてマンガンを酸化さながら除マンガン用濾過材と接触させてマンガンを除去する方法であるから、鉄とマンガン(及びラジウム)とを容易にしかも確実に分離することができ、長期間にわたって安価に操業できる。
【0029】
また本発明は、鉄が付着した除鉄用濾過材とマンガンが付着した除マンガン用濾過材とに対して、それぞれ清水により逆洗操作を行い、逆洗水に含まれる成分をそれぞれ分別回収する方法であるから、鉄とマンガンを分離回収することができる。特に被処理水が、鉄とマンガン及びラジウムを含む場合には、鉄を含むスラリーとマンガン及びラジウムを含むスラリーに分離回収できる。そのため、ラジウムを含む放射性廃棄物量を低減することができ、保管に係わる負担の軽減化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る鉄とマンガンの分離回収方法の一例を示すフロー図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for separating and recovering iron and manganese coexisting in water, and more specifically, first, only iron content is removed by a iron removal tower by pH control and an appropriate oxidation method of water to be treated. The present invention relates to a method for separating and recovering iron and manganese coexisting in water, in which manganese is removed by a manganese removal tower so that iron and manganese can be reliably separated and recovered separately. This technique is useful for reducing the amount of waste containing radioactive substances, particularly in the treatment of wastewater containing radium.
[0002]
[Prior art]
For example, in the treatment of uranium slag, the treatment of uranium waste containing radium, the treatment of contaminated soil containing radium, or the treatment of uranium waste containing radium, it is inevitably or contrary to the treated water. A state containing radium may occur. The discharge standard for radium concentration in the treated water is currently regulated to 3.0 Bq / L by the Reactor Regulation Law. However, depending on the region, there are some establishments that are regulated to stricter emission standards (for example, 0.037 Bq / L or less) by additional standards with local governments.
[0003]
Conventionally, as a method for treating wastewater containing radium, there is a method in which barium chloride and sulfuric acid or sulfate are added to the wastewater, and coprecipitation is removed by the generated barium sulfate. However, this coprecipitation method has problems such as large environmental load such as handling chemicals designated as deleterious substances, large space for sedimentation basins and filtration facilities, and a large amount of solid waste containing radium. is there.
[0004]
As another treatment method, a method of selectively adsorbing and removing radium using an ion exchange resin is known. However, ion exchange resins used as adsorbents are expensive. Therefore, in order to reduce the cost, the adsorbent (ion exchange resin) is generally regenerated and used repeatedly. However, since radium has low utility value as a resource, the radium eluent generated in the regeneration process is treated as waste by being treated by a coprecipitation method using barium sulfate or the like. Therefore, a processing facility for that purpose is required separately, and it is not a satisfactory problem solving method.
[0005]
As a technique that can solve such problems, the inventors previously added a sodium hypochlorite solution to water containing manganese and radium for the purpose of oxidation, and contacted the filter medium on which manganese oxide was deposited. Then, it was found that radium can be selectively adsorbed and removed while adhering manganese oxide to the surface of the filter medium, and a method for removing radium in water based on this was proposed (see Japanese Patent Application No. 2001-389244). This method has an advantage that radium can be adsorbed and removed efficiently over a long period of time because manganese oxide continues to adhere to the particle surface.
[0006]
However, when iron is contained in the water to be treated, iron is also adsorbed by the filter medium together with manganese and radium. For this reason, the amount of adsorbed material on the filter medium increases, and the pressure loss during water flow to the filter device (column) increases. Therefore, in such a case, it is desirable to previously remove iron from the water to be treated as a pretreatment for removing the manganese and radium in the water.
[0007]
[Problems to be solved by the invention]
In adsorption removal of manganese and radium in water, it has been proved that it is desirable to remove iron existing in water in advance as described above. Various methods for removing iron in water are known, and no particular problem arises in a small-scale implementation such as a laboratory scale. However, in a large-scale and long-term implementation, a method for efficiently removing only iron has not been developed yet.
[0008]
As a simple method for removing iron present in water, there is an adsorption removal method using an oxidation catalytic action of a filter medium. For example, iron is air-oxidized by blowing air into the water to be treated, or iron is oxidized by adding an oxidizing agent (such as sodium hypochlorite solution) to the filter medium or particle surface made of ferric hydroxide. This is a method of adsorbing with a filter medium coated with iron oxyhydroxide. This method can also be applied to large scale implementations.
[0009]
However, in this treatment method, when manganese coexists in water, not only iron but also manganese is adsorbed simultaneously. Therefore, if adsorption removal of iron in the water to be treated containing manganese and radium is continued for a long period of time, manganese oxide adheres to the surface of the filter material for iron removal, and therefore radium is also adsorbed together. .
[0010]
However, since radium is a radioactive substance, waste generated in the process is managed separately from general waste, so that the burden on storage is required to be reduced. However, in the above method, manganese and radium are adsorbed on the same filter medium together with iron, so that they cannot be separated and recovered, so that the amount of waste increases and disposal / storage becomes difficult.
[0011]
An object of the present invention is to provide a method capable of easily and reliably separating and recovering iron and manganese contained in water. Another object of the present invention is to provide a method capable of reducing the amount of waste containing radium and reducing the burden on storage by making it possible to separate iron, manganese and radium. It is.
[0012]
[Means for Solving the Problems]
The present inventors do not add an oxidizing agent to the water to be treated in which iron and manganese coexist, but blow air (oxygen) and oxidize the air while removing the air (filtering material that adsorbs iron). )
(A) The degree of adsorption of iron and manganese differs depending on the pH of the water to be treated;
(B) When the pH of the water to be treated is adjusted to the range of 5.0 to 6.0, manganese is hardly adsorbed and remains dissolved in water, but only iron is adsorbed to the filter material for removing iron. thing,
And the present invention has been completed based on this.
[0013]
The present invention relates to an iron removal step of adsorbing iron by adjusting water containing iron and manganese to pH 5.0 to 6.0 and bringing the iron into contact with a filter medium for iron removal while oxidizing only air by air blowing. ,
A manganese removal step of adsorbing manganese by adjusting the pH of the water from which iron has been removed to near neutrality and contacting the filter material for manganese removal while oxidizing manganese by adding a chlorine-based oxidant;
Co-existing in water characterized by performing back-washing operation on the filter material for iron removal and the filter material for manganese removal on which manganese is adhered, and separating and collecting the deposits on each filter medium This is a method for separating and recovering iron and manganese.
[0014]
Further, the present invention adjusts the water containing iron, manganese and radium to pH 5.0 to 6.0, and removes the iron by adsorbing the iron by bringing it into contact with the filter medium for removing iron while air-oxidizing only the iron. Iron process,
A manganese removal step of adsorbing manganese and radium by adjusting the pH of water from which iron has been removed to near neutrality and contacting the filter material for manganese removal while oxidizing manganese by adding a chlorine-based oxidizing agent;
The filter media for removing iron with iron and the filter media for removing manganese with manganese and radium are back-washed with fresh water, and the deposits of each filter media are separated and recovered as a slurry. This is a method for separating and recovering iron and manganese coexisting in water.
[0015]
In these separation and recovery methods, the pH of the water in the iron removal step is in the range of 5.0 to 6.0, but is particularly preferably adjusted to 5.5 to 6.0. As the filter material for removing iron, for example, a filter material in which iron oxyhydroxide is deposited on the particle surface is used. Further, as the filtering material for removing manganese, for example, a filtering material in which manganese oxide is deposited on the particle surface is used.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart showing an example of a method for separating and recovering iron and manganese according to the present invention. The water to be treated is, for example, mine water generated by past exploration activities, and contains iron in addition to manganese and radium. To this treated water, sulfuric acid or sodium hydroxide solution is added to adjust the pH to 5.0 to 6.0. Next, air is blown into the pipe through which the water to be treated is passed, and the liquid is passed through the iron removal tower to be brought into contact with the filled iron filter material. As a result, only iron is adsorbed to the filter material for removing iron while being oxidized by air. To the water to be treated from which iron has been removed, a sodium hydroxide solution is added to adjust the pH to near neutrality (for example, the pH is 5.8 to 8.6 according to various standards) A chlorinated oxidant (sodium hypochlorite solution or the like) is added, and the solution is passed through a manganese removal tower and brought into contact with the filled filter material for manganese removal. As a result, manganese is adsorbed to the filter material for removing manganese while being oxidized. At the same time, radium is also adsorbed on the filter material for removing manganese. Therefore, iron is first removed by the iron removal tower, then manganese and radium are removed by the manganese removal tower, and finally the treated water from which they have been removed is discharged. Since this treated water has a pH adjusted to around neutral, it can be drained as it is.
[0017]
After a long period of iron removal operation and manganese removal operation, the iron removal filter medium of the iron removal tower has a large amount of iron, and the manganese removal filter medium of the manganese removal tower has a large amount of manganese and radium. Alternatively, the pressure loss increases when the liquid is passed through the manganese removal tower. Accordingly, fresh water is supplied to the iron removal tower and the manganese removal tower, respectively, and the backwashing operation is performed on the iron removal filter medium to which iron is adhered and the manganese removal filter medium to which manganese and radium are adhered. When backwashing operation is performed using fresh water, an iron starch slurry and a manganese / radium starch slurry can be obtained and collected separately. They can be solidified by removing moisture. In addition, since the treated water finally discharged | emitted as mentioned above has removed iron, manganese, and radium, it is preferable to use it for backwash operation as fresh water.
[0018]
By the way, in this invention, it is in order to isolate | separate the iron and manganese contained in to-be-processed water that it is oxidizing in the air at the iron removal process. When air (actually oxygen) is blown into water to be treated whose pH is adjusted to 5.0 to 6.0, the oxidation reaction of manganese proceeds only very slowly, so even if iron is oxidized, most of the manganese is present. The state dissolved in water without being oxidized is maintained. Therefore, manganese is not captured by the filter material for iron removal, and passes through the iron removal tower as it is. The present invention utilizes this phenomenon. The reason why manganese is less likely to be oxidized than iron is that the potential of manganese redox system is higher than the potential of iron redox system. If a chlorine-based oxidant is added instead of air, not only iron but also manganese is rapidly oxidized and deposited as a solid in the iron removal tower, and separation cannot be performed.
[0019]
The waste generated in the separation treatment according to the method of the present invention is a solid separated from the surface of the filter medium generated by backwashing the iron removal tower and the manganese removal tower, and a filter medium that needs to be replaced as performance deteriorates. As described above, since radium is a radioactive substance, it is managed separately from general waste, so that it is required to reduce the burden on storage. In the present invention, since only the iron component is separated and removed in advance by the iron removal tower, the slurry containing iron does not contain a radioactive substance, so that it can be easily disposed of.
[0020]
The filter material for removing iron is, for example, particles in which the surface of filter sand (natural hard quartz sand that has been screened to obtain a particle size distribution suitable for filtration while being washed with water) is coated with iron oxyhydroxide. It is. Filter sand also has a function of capturing suspended substances suspended in water. When water containing iron is filtered through the filter sand, iron oxide is gradually generated on the surface of the filter sand due to dissolved oxygen in the water. This becomes an oxidation accelerator and facilitates removal of iron in water. Therefore, as a filtering material that can efficiently remove iron, particles whose surface is filtered with iron oxyhydroxide are commercially available as a filtering material for iron removal (for example, “Toyolex” manufactured by Tokemi Co., Ltd.). Then, this commercial product can be used as it is.
[0021]
The filter material for removing manganese is, for example, particles in which the surface of filter sand (the hard silica sand produced naturally is sieved to have a particle size distribution suitable for filtration while being washed) is coated with manganese oxide. . In this case, the filter sand also has a function of capturing suspended substances suspended in water. When chlorine is added to water containing manganese and filtered through the filter sand, manganese in the water is oxidized, and manganese oxide is gradually formed on the surface of the filter sand. This becomes an oxidation accelerator and facilitates removal of manganese in the water. This is generally called “manganese sand”. However, depending on the manganese content, it may take several months to several years to become manganese sand. Accordingly, particles obtained by repeatedly treating the filtration sand with manganese chloride and potassium permanganate and coating the surface of the filtration sand with manganese oxide are commercially available as filter media for removing manganese (for example, “Manganese Sand” manufactured by Tochemi Corporation). In the present invention, this commercially available product can be used as it is.
[0022]
The amount of deposits on the filter medium increases with long-term use. As a result, the filtration resistance (pressure loss) increases, so it is necessary to remove and remove flocs and the like adhering to the filter medium by collision or friction between the filter mediums. The operation is backwashing. Deposits can be collected by this backwashing operation. Examples of the backwashing method include surface backwashing, air backwashing, mechanical stirring, and backwashing with a strong water flow. The present invention may be backwashed by any of these methods, but here the backwashing is performed using treated water, and the deposits are recovered as a slurry. That is, iron is recovered as an iron starch slurry by backwashing the iron removal tower, and manganese and radium are recovered as manganese / radium starch slurry by backwashing the manganese removal tower.
[0023]
【Example】
A commercially available filter material for iron removal and a filter material for manganese removal were each packed into a plastic column having an inner diameter of 150 mmφ to constitute a filter device in which two towers of an iron removal tower and a manganese removal tower were connected in series. Sulfuric acid is added to the water to be treated (raw water) containing iron and manganese, the pH is changed in seven stages within the range of 4.0 to 7.3, and the water is passed through. The concentration at the outlet of the iron removal tower and the manganese removal tower The test which measures was performed. In any of the tests, liquid was passed through the iron removal tower at a flow rate of 3 L / min while sending compressed air through the pipe. After adjusting the pH to 7.3 by adding a sodium hydroxide solution to the iron removal tower outlet liquid, the solution was passed through the manganese removal tower at a flow rate of 3 L / min while adding the sodium hypochlorite solution with a pump. The test results are shown in Table 1.
[0024]
[Table 1]
Figure 0003814263
[0025]
Test numbers 3 to 5 are methods corresponding to the present invention. In any test, it is understood that iron is removed in the iron removal tower, but manganese passes through without being removed, and finally iron and manganese are almost completely removed in the manganese removal tower. In particular, as shown in Test Nos. 3 to 4, it is optimal to adjust the pH to 5.5 to 6.0. In this way, the iron concentration in the water to be treated at the exit of the iron removal tower is extremely small (most of the iron is removed) and the manganese concentration is almost unchanged (most of the manganese is not trapped). ) That is, the iron content is removed from the iron removal tower and the manganese content is removed from the manganese removal tower separately, thereby achieving the purpose of separation.
[0026]
On the other hand, in Test Nos. 1 and 2, a considerable amount of manganese is removed together with the iron content in the iron removal tower, and the purpose of separation and recovery is not achieved. On the other hand, in Test Nos. 6 to 7, the removal of iron in the iron removal tower is insufficient, and the remaining iron is removed in the manganese removal tower. Similarly, the purpose of separation and recovery is not sufficiently achieved. In addition, the manganese concentration of the iron removal tower outlet liquid increased more than that of the inlet liquid (treated water) in test numbers 5 to 7 because the manganese content adhering to the iron removal filter material in the previous test was eluted. It is thought that it was because.
[0027]
Although the example using radium is not shown in this embodiment, as described above, a filter medium in which a sodium hypochlorite solution is added to water containing manganese and radium for the purpose of oxidation, and manganese oxide is deposited. , It is possible to selectively adsorb and remove radium while adhering manganese oxide to the surface of the filter medium. Therefore, the method of the present invention first separates and removes only iron from the water to be treated, and then adsorbs manganese and radium. It can be removed.
[0028]
【The invention's effect】
In the present invention, as described above, the pH of water is adjusted to 5.0 to 6.0, and the iron is adsorbed and removed by bringing the iron into contact with the filter material for removing iron while only oxidizing iron by air blowing. This is a method that removes manganese by adjusting the pH of the solution to near neutral and adding a chlorinated oxidant to contact manganese with the manganese removal filter while oxidizing manganese, so iron and manganese (and radium) can be easily removed. Moreover, it can be reliably separated and can be operated at low cost over a long period of time.
[0029]
In addition, the present invention performs a backwash operation with fresh water on the filter material for removing iron and the filter media for removing manganese with adhering manganese, respectively, and separately collects components contained in the backwash water. Since this method is used, iron and manganese can be separated and recovered. In particular, when the water to be treated contains iron, manganese and radium, it can be separated and recovered into a slurry containing iron and a slurry containing manganese and radium. Therefore, the amount of radioactive waste containing radium can be reduced, and the burden on storage can be reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a method for separating and recovering iron and manganese according to the present invention.

Claims (3)

鉄とマンガンを含む水をpH5.0〜6.0に調整し、空気吹き込みにより鉄のみを空気酸化させながら除鉄用濾過材と接触させることにより鉄を吸着させる除鉄工程と、
鉄を除去した水のpHを中性付近に調整し、塩素系酸化剤を加えることでマンガンを酸化させながら除マンガン用濾過材と接触させることによりマンガンを吸着させる除マンガン工程と、
を具備し、鉄が付着した除鉄用濾過材とマンガンが付着した除マンガン用濾過材に対して逆洗操作を行い、各濾過材の付着物を分別回収することを特徴とする水中に共存している鉄とマンガンの分離回収方法。
Iron removal step of adsorbing iron by adjusting water containing iron and manganese to pH 5.0 to 6.0 and bringing it into contact with a filter medium for iron removal while oxidizing only air by air blowing,
A manganese removal step of adsorbing manganese by adjusting the pH of the water from which iron has been removed to near neutrality and contacting the filter material for manganese removal while oxidizing manganese by adding a chlorine-based oxidant;
Co-existing in water characterized by performing back-washing operation on the filter material for iron removal and the filter material for manganese removal on which manganese is adhered, and separating and collecting the deposits on each filter medium Separating and recovering iron and manganese.
鉄とマンガン及びラジウムを含む水をpH5.0〜6.0に調整し、空気吹き込みにより鉄のみを空気酸化させながら除鉄用濾過材と接触させることにより鉄を吸着させる除鉄工程と、
鉄を除去した水のpHを中性付近に調整し、塩素系酸化剤を加えることでマンガンを酸化させながら除マンガン用濾過材と接触させることによりマンガン及びラジウムを吸着させる除マンガン工程と、
を具備し、鉄が付着した除鉄用濾過材とマンガン及びラジウムが付着した除マンガン用濾過材に対して清水を用いて逆洗操作を行い、各濾過材の付着物をスラリーとして分別回収することを特徴とする水中に共存している鉄とマンガンの分離回収方法。
Iron removal step of adsorbing iron by adjusting water containing iron, manganese and radium to pH 5.0-6.0, and contacting with the filter material for iron removal while oxidizing only air by air blowing,
A manganese removal step of adsorbing manganese and radium by adjusting the pH of water from which iron has been removed to near neutrality and contacting the filter material for manganese removal while oxidizing manganese by adding a chlorine-based oxidizing agent;
The filter media for removing iron with iron and the filter media for removing manganese with manganese and radium are back-washed with fresh water, and the deposits of each filter media are separated and recovered as a slurry. A method for separating and recovering iron and manganese coexisting in water.
除鉄用濾過材として、粒子表面にオキシ水酸化鉄を被着した濾過材を用い、除マンガン用濾過材として、粒子表面に酸化マンガンを被着した濾過材を用いる請求項1又は2記載の水中に共存している鉄とマンガンの分離回収方法。The filter medium according to claim 1 or 2, wherein a filter medium with iron oxyhydroxide coated on the particle surface is used as the filter medium for iron removal, and a filter medium with manganese oxide coated on the particle surface is used as the filter medium for manganese removal. Separation and recovery method of iron and manganese coexisting in water.
JP2003172379A 2003-06-17 2003-06-17 Separation and recovery of iron and manganese coexisting in water Expired - Fee Related JP3814263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172379A JP3814263B2 (en) 2003-06-17 2003-06-17 Separation and recovery of iron and manganese coexisting in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003172379A JP3814263B2 (en) 2003-06-17 2003-06-17 Separation and recovery of iron and manganese coexisting in water

Publications (2)

Publication Number Publication Date
JP2005008455A JP2005008455A (en) 2005-01-13
JP3814263B2 true JP3814263B2 (en) 2006-08-23

Family

ID=34096554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172379A Expired - Fee Related JP3814263B2 (en) 2003-06-17 2003-06-17 Separation and recovery of iron and manganese coexisting in water

Country Status (1)

Country Link
JP (1) JP3814263B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357192C (en) * 2006-01-16 2007-12-26 深圳市危险废物处理站 Deferrization method of iron-containing liquor
KR101377760B1 (en) 2011-12-30 2014-03-27 재단법인 포항산업과학연구원 Method for extracting manganese in system of recovering lithium in sea water and mehtod for manufacturing adsorbent for recovering lithium in sea water
KR101377758B1 (en) 2011-12-30 2014-03-27 재단법인 포항산업과학연구원 Method for extracting manganese in system of recovering lithium in sea water and mehtod for manufacturing adsorbent for recovering lithium in sea water
JP6207067B2 (en) * 2013-09-27 2017-10-04 国立研究開発法人土木研究所 Algae growth suppression method
KR101536737B1 (en) * 2013-12-24 2015-07-15 재단법인 포항산업과학연구원 Apparatus for purification of impurity in sea water
CN111777290A (en) * 2020-08-07 2020-10-16 浙江华强环境科技有限公司 Petrochemical wastewater treatment method
CN112941551A (en) * 2021-01-27 2021-06-11 阳光电源股份有限公司 Electrolytic bath system, pure water treatment system thereof and metal recovery method

Also Published As

Publication number Publication date
JP2005008455A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US7459086B2 (en) Method for treating water containing iron, manganese and arsenic
US20210346822A1 (en) Methods and systems for recovery of valuable target species from brine solutions
WO2001010786A1 (en) An iron powder and sand filtration process for treatment of water contaminated with heavy metals and organic compounds
JP3814263B2 (en) Separation and recovery of iron and manganese coexisting in water
US10525415B2 (en) Processing systems for produced water and methods for recovering organic compounds from the produced water
US5395534A (en) Water filtration medium and method of use
CA2158404A1 (en) Process for the purification of groundwater
JP3715570B2 (en) Removal of radium in water
JP3791760B2 (en) Method and apparatus for removing and recovering phosphorus from water containing SS and phosphorus
CN105854783A (en) Instantly regenerated magnetic filter material for removing nitrogen and phosphorus and preparation method of instantly regenerated magnetic filter material
EP1697263B1 (en) Method for the removal of metals from a metal-containing aqueous medium
JP3786885B2 (en) Water purification method for manganese-containing water
US20170210647A1 (en) Process for reducing selenium from an ion-exchange or adsorption media brine
CA3144648C (en) Process for reducing selenium from ion-exchange brine
JP2008207110A (en) ADSORBENT FOR TREATING WATER CONTAINING IRON ION AND ARSENIC-CONTAINING ION AND HAVING pH OF LESS THAN FOUR AND WATER TREATMENT METHOD USING THE SAME
CN111054301B (en) Remediation method of heavy metal polluted surface water
FR2772019A1 (en) PROCESS FOR DEFERRIZING FERRUGINOUS MINERAL WATER RICH IN CARBON GAS
JP2004521728A (en) Treatment method for water containing manganese
JP3443573B2 (en) Arsenic-removing filter medium and method for purifying water containing arsenic
JP4915054B2 (en) Organic wastewater treatment equipment
JP2002200485A (en) Water treatment method
JPH08267060A (en) Separation of bacterial cell
JP2022028414A (en) Fluorine recovery method
JPS59313A (en) Separation of magnetic component and non-magnetic component
JP3257085B2 (en) Metal compound adsorption removal material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees