JP3812074B2 - Outer door handle molded product made of long fiber glass reinforced propylene resin - Google Patents

Outer door handle molded product made of long fiber glass reinforced propylene resin Download PDF

Info

Publication number
JP3812074B2
JP3812074B2 JP20518697A JP20518697A JP3812074B2 JP 3812074 B2 JP3812074 B2 JP 3812074B2 JP 20518697 A JP20518697 A JP 20518697A JP 20518697 A JP20518697 A JP 20518697A JP 3812074 B2 JP3812074 B2 JP 3812074B2
Authority
JP
Japan
Prior art keywords
molded product
propylene resin
weight
glass fiber
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20518697A
Other languages
Japanese (ja)
Other versions
JPH1134097A (en
Inventor
利守 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP20518697A priority Critical patent/JP3812074B2/en
Publication of JPH1134097A publication Critical patent/JPH1134097A/en
Application granted granted Critical
Publication of JP3812074B2 publication Critical patent/JP3812074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、長繊維ガラス強化プロピレン樹脂製アウタードアハンドル成型品に関する。詳しくは、長繊維ガラスが含有している射出成形品であって、軽量で機械的強度が高く、長期耐候性に優れる長繊維ガラス強化プロピレン樹脂製アウタードアハンドル成型品に関する。
【0002】
【背景技術】
従来の自動車用アウタードアハンドルには、機械的強度の高いポリアセタール樹脂やポリアセタール樹脂にガラス繊維を添加し、さらに機械的強度を向上させたガラス繊維強化ポリアセタール樹脂組成物などが好んで使用されている。
しかし、ポリアセタール樹脂は、比重が比較的高い樹脂であり、該樹脂にガラス繊維を添加すると比重がさらに高くなるため、軽量化できないという欠点を有している。また、添加したガラス繊維が成型品から飛び出したり、該成型品を使用しているうちに、ガラス繊維の露出が除々に激しくなり、成型品の外観性を悪化させたり、該繊維の露出によりクラックが発生し易くなって、耐候性を悪化させる原因ともなる。
【0003】
近年、上記問題を解消する目的で、ポリアセタール樹脂に代わるオレフィン樹脂、特にプロピレン樹脂に対して、ガラス繊維を添加したガラス繊維強化オレフィン樹脂組成物の検討が行われている。
しかし、該樹脂にガラス繊維を添加しても、造粒工程や成型工程等の際にかかる剪断作用によって、ガラス繊維が短く切断されてしまうため、機械的強度が向上し難い。添加するガラス繊維を長いものに変更する方法もあるが、やはり該剪断作用によりほとんどのガラス繊維は短くなり、機械的強度の向上はあまり望めなく、返って切断されなかった少量の長繊維ガラスは、成型品から露出し易いため、成型品外観や耐候性の悪化に拍車をかける原因となる。
【0004】
また通常、成型品を黒く着色するのにカーボンブラックを用いるが、このカーボンブラックが配合されていると、該剪断作用が強まってしまうので、添加されているガラス繊維が極端に短くなり、ガラス繊維を添加しても得られる成型品の機械的強度はほとんど向上しなくなる。
【0005】
【発明が解決しようとする課題】
本発明者らは、前記問題点に鑑み鋭意検討した結果、特定配合のガラス繊維強化プロピレン樹脂組成物を用いると効果的であることを見出し、この知見に基づき本発明を完成するに至った。
以上の記述から明らかなように、本発明の目的は、軽量で機械的強度が高く、耐候性に優れる長繊維ガラス強化プロピレン樹脂製アウタードアハンドル成型品を提供するものである。
【0006】
【課題を解決する為の手段】
本発明の成型品は、フィラメント状のガラス繊維からなるロービングに、溶融したプロピレン樹脂を含浸させた後に引抜成形し、ペレット状に切断することによって得られるガラス繊維含有樹脂成形体とプロピレン樹脂とが、プロピレン樹脂70〜90重量%とガラス繊維10〜30重量%の割合となるように混合されたガラス繊維含有樹脂混合物100重量部に対し、分子量1000以上のヒンダードアミン系光安定剤が0.3〜2.0重量部および一次凝集時のストラクチャー長60nm以下のカーボンブラックが1〜2重量部添加されたガラス繊維強化プロピレン樹脂組成物を射出成形することにより容易に得ることができる。
【0007】
【発明の実施の形態】
以下、本発明につき詳細に説明する。
本発明に用いるプロピレン樹脂には、結晶性プロピレン単独重合体、結晶性プロピレン−α−オレフィン共重合体及びこれらの単独重合体もしくは共重合体を不飽和カルボン酸もしくはその酸無水物で変性したものを挙げることができる。ガラス繊維含有樹脂成形体を得る時に使用するプロピレン樹脂としては、ガラス繊維との相溶性および融着性を考慮して、α−オレフィン含有量8〜10重量%の結晶性プロピレン−α−オレフィン共重合体に対して、不飽和カルボン酸もしくはその酸無水物を0.1〜1重量%変性させたものが好ましい。
一方、ガラス繊維含有樹脂成形体と混合するプロピレン樹脂は、剛性を考慮して結晶性プロピレン単独重合体が好ましい。
【0008】
本発明に用いるガラス繊維には、Eガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)および耐アルカリガラス等のガラスを溶融紡糸してフィラメント状の繊維にしたものを挙げることができる。
ガラス繊維としては、繊維径が6〜20μmのものを用いることが好ましい。該繊維径のものを用いると成型品外観の良好なものを得ることができる。
【0009】
本発明に用いるガラス繊維含有樹脂成形体は、数千本からなる前記ガラス繊維のロービングを含浸ダイスに導き、フィラメント間に溶融したプロピレン樹脂を均一に含浸させた後に引抜成形し、必要な長さ(4〜20mm)に切断することにより容易に得ることができるが、製造方法に関しては特に限定するものではない。
該成形体を使用すると、成型品内部に長繊維ガラスを比較的長い状態で保持することができ、成型品から長繊維ガラスの露出が起こり難いため、長繊維ガラスとプロピレン樹脂とを単純に配合しただけの従来の長繊維ガラス強化プロピレン樹脂組成物より得られる成型品と異なり、成型品外観や耐候性を悪化させ難くなる。
【0010】
本発明に用いるガラス繊維含有樹脂混合物は、ガラス繊維含有樹脂成形体とプロピレン樹脂との混合物であり、プロピレン樹脂70〜90重量%、ガラス繊維10〜30重量%の合計100重量%で構成されているものである。使用するガラス繊維含有樹脂成形体がこの範囲のものである場合は、プロピレン樹脂を配合せずガラス繊維含有樹脂成形体のみをガラス繊維含有樹脂混合物として使用しても差し支えない。
本発明に用いるガラス繊維含有樹脂混合物におけるプロピレン樹脂の配合割合が70重量%未満であると成型品の外観が悪くなり、90重量%を越えると機械的強度が充分に向上しなくなる。
【0011】
本発明に用いるヒンダードアミン系光安定剤は、分子量が1000以上のものである。分子量が1000未満では、ヒンダードアミン系光安定剤が成型品中からブリードしやすい。分子量が1000〜10000の範囲のものが好ましい。該ヒンダードアミン系光安定剤として、具体的には、コハク酸ジメチル・1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6,−テトラメチル−4−ピペリジル)イミノ}]、N,N’−ビス(3−アミノプロピル)エチレンジアミン・2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5トリアジン縮合物等が挙げられるが、中でもポリ[(6−モルホリノ−s−トリアゾ−2,4−ジイル){2,2,6,6−テトラメチル−4−ピペリジル)イミノ}−ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]が好ましい。市販のヒンダードアミン系光安定化剤では、商品名“サイアソーブ UV3346”(サイテック製、分子量1600)が有効である。
該ヒンダードアミン系光安定剤の添加量は、ガラス繊維含有樹脂混合物100重量部に対して、0.3〜2.0重量部である。0.3重量部未満では充分な耐候性能が得られず、2.0重量部を越えるとブリードが多くなり成型品外観を悪化させる。
【0012】
本発明に用いるカーボンブラックは、一次凝集時のストラクチャー長が60nm以下のものであれば特に限定はない。一次凝集時のストラクチャー長が60nmを越えるカーボンブラックでは、ガラス繊維の切断作用が強くなり、ガラス繊維を極端に短くしてしまうため、充分な機械的強度が得にくくなる。
該カーボンブラックは、カーボン基本粒子が単一粒子として存在しているのではなく、ストラクチャーを形成しているものである。ここでのストラクチャーとは、カーボン基本粒子が融着した一次凝集体(アグリゲート)を言い、この一次凝集体がファンデルワールス力で凝集した二次凝集体(アグロメレート)とは区別されるものである。
該カーボンブラックの添加量は、ガラス繊維含有樹脂混合物100重量部に対して、1〜2重量部である。
【0013】
本発明に用いるガラス繊維強化プロピレン樹脂組成物には、本発明の目的を損なわない範囲で、各種の添加剤、例えば酸化防止剤、帯電防止剤、銅害防止剤、中和剤、顔料、分散剤、老化防止剤、滑剤、鉱物油、シランカプリング剤、チタネート系カップリング剤等の添加剤を適宜配合することができる。
【0014】
また、本発明に用いるガラス繊維強化プロピレン樹脂組成物を得る方法の一例としては、次の方法が有効である。
まず、プロピレン樹脂とヒンダードアミン系光安定剤とを所定の配合割合にて混合したマスターバッチ(H)を、一般的なプロピレン樹脂用造粒機によってペレット状に成形した成形体(H)を得る。同様に、プロピレン樹脂とカーボンブラックからなる成形体(B)を得る。
次に、タンブラー内で、これらの成形体(H)と成形体(B)に、ガラス繊維含有樹脂成形体、配合組成調整用のプロピレン樹脂および必要に応じて各種添加剤を混合して、ガラス繊維強化プロピレン樹脂組成物を得る。
【0015】
本発明の長繊維ガラス強化プロピレン樹脂製アウタードアハンドル成型品は、上記のガラス繊維強化プロピレン樹脂組成物を一般的なプロピレン樹脂用の射出成形機により容易に成型することができる。この際、該成型品に含有されているガラス繊維が平均繊維長0.5〜6mmになる様に調整しながら成型する該成型品中のガラス繊維の平均繊維長が0.5mm未満であると、該成型品の機械的強度及び衝撃強度が充分に発現せず、該成型品中のガラス繊維の平均繊維長が6mmを越えると、成形性が悪化する。成型品中の平均繊維長を変動させる要因としては、成形機の仕様、成形条件、ゲート径、繊維含有量及び溶融樹脂粘度等が挙げられる。中でも成形機の仕様条件、特に使用するスクリューが大きな要因となる。ただし、本発明で用いるガラス繊維強化プロピレン樹脂組成物は、一般的な熱可塑性樹脂用成形機を用いる限りにおいて、成型品中の繊維の平均繊維長が0.5mmを大幅に下回ることはない。
【0016】
【実施例】
以下、実施例および比較各例によって本発明を具体的に説明するが、本発明はこれらにより限定されるべきものではない。
【0017】
実施例1
繊維径17μmのフィラメント状のガラス繊維を数千本にロービングしたガラス繊維(G1)を含浸ダイスに導き、フィラメント間に溶融したメルトフローレートが120g/10min(温度230℃、荷重2.16kgf)であり、無水マレイン酸0.5重量部で変性されたエチレン含有量9重量%の結晶性プロピレン−エチレン共重合体(P1)を含浸させた後に引抜成形し、長さ6mmに切断して、ガラス繊維を50重量%含有したガラス繊維含有樹脂成形体(X1)を得た。
また、ポリ[(6−モルホリノ−s−トリアゾ−2,4−ジイル){2,2,6,6−テトラメチル−4−ピペリジル)イミノ}−ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](商品名“サイアソーブUV3346”(サイテック社製))10重量%と、メルトフローレートが24g/10min(温度230℃、荷重2.16kgf)のプロピレン樹脂90重量%とからなる混合物を、押出機により溶融混練してペレット状の成形体(H1)を得た。
前記成形体(H1)と同様の製造方法にて、一次凝集時のストラクチャー長44nmであるカーボンブラック(銘柄#900)25重量%とメルトフローレートが24g/10min(温度230℃、荷重2.16kgf)のプロピレン樹脂75重量%とからなるペレット状の成形体(B1)を得た。
次に、成形体(X1)40重量%と成形体(H1)8重量部、成形体(B1)6重量部及び結晶融点165℃、メルトフローレート75g/10min(温度230℃、荷重2.16kgf)のプロピレン樹脂(P2)46重量%をタンブラーミキサーに投入した後混合してガラス繊維強化プロピレン樹脂組成物を得た。
得られたガラス繊維強化プロピレン樹脂組成物を、射出成形機によってアウタードアハンドルの部品となる取っ手パーツと外枠パーツをそれぞれ成形した。
【0018】
比較例1
市販の耐候グレードであるガラス繊維20%強化ポリアセタール樹脂(POM−G)を、射出成形機によってアウタードアハンドルの部品となる取っ手パーツと外枠パーツをそれぞれ成形した。
【0019】
比較例2
実施例1で用いた成形体(H1)の代わりに、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(商品名“TINUVIN 770”(チバ・ガイギー社製)、分子量480.7)10重量%とメルトフローレートが24g/10min(温度230℃、荷重2.16kgf)のプロピレン樹脂90重量%とからなる混合物を、押出機により溶融混練して得たペレット状の成形体(H2)を用いた以外は、実施例1に準拠して、アウタードアハンドルの部品となる取っ手パーツと外枠パーツをそれぞれ成形した。
【0020】
比較例3
実施例1で用いた成形体(B1)の代わりに、一次凝集時のストラクチャー長248nmであるカーボンブラック(銘柄#10)25重量%とメルトフローレートが24g/10min(温度230℃、荷重2.16kgf)のプロピレン樹脂75重量%とからなるペレット状の成形体(B2)を用いた以外は、実施例1に準拠して、アウタードアハンドルの部品となる取っ手パーツと外枠パーツをそれぞれ成形した。
【0021】
比較例4
実施例1で用いた成形体(X1)およびプロピレン樹脂(P2)の代わりに、繊維径13μmで繊維長3mmのチョップドストランドガラス繊維(G2)20重量%およびメルトフローレートが5g/10min(温度230℃、荷重2.16kgf)であり、無水マレイン酸0.5重量部で変性されたプロピレン樹脂(P3)66重量%を用いた以外は、実施例1に準拠して、アウタードアハンドルの部品となる取っ手パーツと外枠パーツをそれぞれ成形した。
【0022】
比較例5
実施例1で用いた成形体(X1)、プロピレン樹脂(P2)および成形体(B1)の代わりに、ガラス繊維(G2)20重量%、プロピレン樹脂(P3)66重量%および成形体(B2)を用いた以外は、実施例1に準拠して、アウタードアハンドルの部品となる取っ手パーツと外枠パーツをそれぞれ成形した。
【0023】
実施例1および比較例1〜5で得られた成型品を、下記の試験方法(製品の破壊強度、製品中の残存繊維長、製品重量、製品外観での適否、アウタードアハンドルの物性面での適否、耐候性評価、アウタードアハンドルとして総合的判断)に準じて測定した。結果は表1の通りである。
【0024】
【表1】

Figure 0003812074
【0025】
(製品の破壊強度)
実施例1および比較例1〜5で得られた成型品である取っ手パーツと外枠パーツをヒンジとスプリングによって一体化しアウタードアハンドル成型品とし、該成型品を固定した後、取っ手部に付加を加えながら引っ張り、取っ手部が破壊される強度を測定した。この数値が高い程、成型品の機械的強度が高いことを意味する。
【0026】
(製品中の残存繊維長)
実施例1および比較例1〜5で得られた取っ手パーツの一部(約5g)を600℃に設定した電気炉内に5時間放置し、炭化させた後、炭化物を水中で撹拌し、ガラスシャーレに移し乾燥させて繊維部分のみ取り出し、取り出した繊維長を測定した。これらの繊維の平均長が、成型品内の平均繊維長を示す。
【0027】
(製品重量)
実施例1および比較例1〜5で得られた成型品である取っ手パーツと外枠パーツの重量を測定した。この数値が小さい程、軽量であることを意味する。
【0028】
(製品外観)
前記(製品の破壊強度)測定において得られたアウタードアハンドル成型品が、実用に適する外観を有してかどうかを目視により判定した。判定が否の場合は、製品として使用できない状態であることを意味する。
【0029】
(アウタードアハンドルの物性面での適否)
前記評価試験の(製品の破壊強度)、(製品中の残存繊維長)、(製品重量)および(製品外観での適否)の結果から、実施例1および比較例1〜5で得られた成型品がアウタードアハンドルとして適しているかどうかを判定した。
【0030】
(耐候性評価)
実施例1および比較例1〜5で得られた成型品を、下記の条件に設定したメタルウェザー試験機(ダイプラスウィンテス製)に放置し、定期的に成型品の外観を50倍顕微鏡で観察し、成型品に発生しているクラックを調べ、そのクラック発生割合が70%程度を占めた時点を耐候時間とした。
波 長:295〜780nm
ライトサイクル :温度80℃、湿度50RH%、照射強度80mW/cm2、サイクル 時間10Hr
ダークサイクル:温度30℃、湿度98RH%、結露あり、サイクル時間4Hr
シャワー:10sec
サイクル:ライトサイクル→シャワー→ダークサイクル→シャワー→ライトサイクル
【0031】
(アウタードアハンドルとしての総合的判断)
前記評価試験の(アウタードアハンドルの物性面での適否)及び(耐候性評価)の結果から総合的にアウタードアハンドルとしての適否を判定した。
【0032】
表1の結果より、本発明の成型品である実施例1のサンプルは、従来の成型品に相当するガラス繊維強化ポリアセタール樹脂を用いた成型品である比較例1のサンプルと比べ、軽量で機械的強度が高く、耐候性に優れていることが判る。また、実施例1のサンプルは、本発明の組成とは異なる配合処方により得られた比較例2〜5のサンプルと比べ、成型品内のガラス繊維を長い状態で保持することができ、かつ耐候性に優れてるため、機械的強度が高く長期使用が可能であることが判る。
【0033】
【発明の効果】
本発明は、特殊なガラス繊維強化プロピレン樹脂を用いて成型されたもので、軽量で機械的強度が高く、耐候性に優れているため、自動車用アウタードアハンドルとして極めて有用なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an outer door handle molded product made of long fiber glass reinforced propylene resin. More specifically, the present invention relates to an injection molded product containing long fiber glass, which is a lightweight, high mechanical strength, long fiber glass reinforced propylene resin outer door handle molded product having excellent long-term weather resistance.
[0002]
[Background]
Conventional outer door handles for automobiles preferably use a polyacetal resin having a high mechanical strength or a glass fiber reinforced polyacetal resin composition in which a glass fiber is added to the polyacetal resin and the mechanical strength is further improved. .
However, the polyacetal resin is a resin having a relatively high specific gravity, and when glass fiber is added to the resin, the specific gravity is further increased. In addition, while the added glass fiber jumps out of the molded product, or while the molded product is used, the exposure of the glass fiber becomes gradually more intense, the appearance of the molded product is deteriorated, and the exposure of the fiber causes cracks. Is likely to occur, and may cause deterioration in weather resistance.
[0003]
In recent years, a glass fiber reinforced olefin resin composition in which glass fibers are added to an olefin resin, particularly a propylene resin, which replaces a polyacetal resin has been studied for the purpose of solving the above problems.
However, even when glass fibers are added to the resin, the mechanical strength is difficult to improve because the glass fibers are cut short due to the shearing action during the granulation step, the molding step, and the like. There is also a method of changing the glass fiber to be added to a long one, but also the shearing action shortens most of the glass fiber, so the improvement in mechanical strength is not so much desired, and a small amount of long fiber glass that has not been cut back Since it is easily exposed from the molded product, it causes the appearance of the molded product and the weather resistance to deteriorate.
[0004]
Usually, carbon black is used to color the molded product black. However, when this carbon black is blended, the shearing action is strengthened, so that the added glass fiber becomes extremely short, and the glass fiber. The mechanical strength of the molded product obtained even if added is hardly improved.
[0005]
[Problems to be solved by the invention]
As a result of intensive investigations in view of the above problems, the present inventors have found that it is effective to use a glass fiber reinforced propylene resin composition having a specific composition, and have completed the present invention based on this finding.
As is apparent from the above description, an object of the present invention is to provide a long fiber glass reinforced propylene resin outer door handle molded product that is lightweight, has high mechanical strength, and is excellent in weather resistance.
[0006]
[Means for solving the problems]
The molded article of the present invention comprises a glass fiber-containing resin molded product and a propylene resin obtained by impregnating molten propylene resin into a roving made of filamentous glass fibers and then drawing and cutting into pellets. The hindered amine light stabilizer having a molecular weight of 1000 or more is 0.3 to 100 parts by weight of the glass fiber-containing resin mixture mixed in a proportion of 70 to 90% by weight of propylene resin and 10 to 30% by weight of glass fiber. It can be easily obtained by injection molding a glass fiber reinforced propylene resin composition to which 2.0 parts by weight and 1 to 2 parts by weight of carbon black having a structure length of 60 nm or less at the time of primary aggregation are added.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The propylene resin used in the present invention includes a crystalline propylene homopolymer, a crystalline propylene-α-olefin copolymer, and a homopolymer or copolymer thereof modified with an unsaturated carboxylic acid or an acid anhydride thereof. Can be mentioned. As a propylene resin used for obtaining a glass fiber-containing resin molded article, a crystalline propylene-α-olefin copolymer having an α-olefin content of 8 to 10% by weight is considered in consideration of compatibility with glass fibers and fusing property. What modified | denatured 0.1 to 1 weight% of unsaturated carboxylic acid or its acid anhydride with respect to a polymer is preferable.
On the other hand, the propylene resin mixed with the glass fiber-containing resin molded body is preferably a crystalline propylene homopolymer in consideration of rigidity.
[0008]
The glass fibers used in the present invention are melt-spun glass such as E glass (Electrical glass), C glass (Chemical glass), A glass (Alkali glass), S glass (High strength glass), and alkali-resistant glass. And the like in the form of a fiber.
It is preferable to use a glass fiber having a fiber diameter of 6 to 20 μm. When the fiber diameter is used, a molded article having a good appearance can be obtained.
[0009]
The glass fiber-containing resin molded body used in the present invention is obtained by guiding the roving of the above-mentioned thousands of glass fibers to an impregnation die, uniformly impregnating the molten propylene resin between the filaments, and then performing pultrusion to obtain the required length. Although it can obtain easily by cut | disconnecting to (4-20 mm), regarding a manufacturing method, it does not specifically limit.
When this molded body is used, the long fiber glass can be held in a relatively long state inside the molded product, and the long fiber glass is not easily exposed from the molded product, so the long fiber glass and propylene resin are simply blended. Unlike a molded product obtained from a conventional long fiber glass reinforced propylene resin composition, it is difficult to deteriorate the appearance and weather resistance of the molded product.
[0010]
The glass fiber-containing resin mixture used in the present invention is a mixture of a glass fiber-containing resin molding and a propylene resin, and is composed of a total of 100% by weight of propylene resin 70 to 90% by weight and glass fiber 10 to 30% by weight. It is what. When the glass fiber-containing resin molding to be used is in this range, it is possible to use only the glass fiber-containing resin molding as the glass fiber-containing resin mixture without blending the propylene resin.
When the blending ratio of the propylene resin in the glass fiber-containing resin mixture used in the present invention is less than 70% by weight, the appearance of the molded product is deteriorated, and when it exceeds 90% by weight, the mechanical strength is not sufficiently improved.
[0011]
The hindered amine light stabilizer used in the present invention has a molecular weight of 1000 or more. When the molecular weight is less than 1000, the hindered amine light stabilizer tends to bleed from the molded product. Those having a molecular weight in the range of 1000 to 10,000 are preferred. Specific examples of the hindered amine light stabilizer include dimethyl succinate 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6, -tetramethyl-4-piperidyl) imino}], N, N′-bis (3-aminopropyl) ethylenediamine · 2,4-bis [N-butyl-N- (1 , 2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5 triazine condensate, among others, poly [(6-morpholino-s-triazo-2, 4-diyl) {2, 2, 6 , 6-tetramethyl-4-piperidyl) imino} -hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}]. As a commercially available hindered amine light stabilizer, the trade name “Siasorb UV3346” (manufactured by Cytec, molecular weight 1600) is effective.
The addition amount of the hindered amine light stabilizer is 0.3 to 2.0 parts by weight with respect to 100 parts by weight of the glass fiber-containing resin mixture. If the amount is less than 0.3 parts by weight, sufficient weather resistance cannot be obtained. If the amount exceeds 2.0 parts by weight, the bleed increases and the appearance of the molded product is deteriorated.
[0012]
The carbon black used in the present invention is not particularly limited as long as the structure length at the time of primary aggregation is 60 nm or less. When carbon black has a structure length of more than 60 nm at the time of primary aggregation, the cutting action of the glass fiber becomes strong and the glass fiber becomes extremely short, so that it is difficult to obtain sufficient mechanical strength.
In the carbon black, the basic carbon particles do not exist as single particles but form a structure. The structure here refers to a primary aggregate (aggregate) in which carbon basic particles are fused, and this primary aggregate is distinguished from a secondary aggregate (agglomerate) in which the primary aggregate is aggregated by van der Waals force. is there.
The amount of carbon black added is 1 to 2 parts by weight with respect to 100 parts by weight of the glass fiber-containing resin mixture.
[0013]
In the glass fiber reinforced propylene resin composition used in the present invention, various additives such as an antioxidant, an antistatic agent, a copper damage preventing agent, a neutralizing agent, a pigment, and a dispersion are provided as long as the object of the present invention is not impaired. Additives such as agents, anti-aging agents, lubricants, mineral oils, silane coupling agents, titanate coupling agents and the like can be appropriately blended.
[0014]
Moreover, the following method is effective as an example of the method of obtaining the glass fiber reinforced propylene resin composition used for this invention.
First, the molding (H) which shape | molded the masterbatch (H) which mixed the propylene resin and the hindered amine light stabilizer in the predetermined | prescribed mixture ratio with the general granulator for propylene resins is obtained. Similarly, a molded body (B) made of propylene resin and carbon black is obtained.
Next, in a tumbler, these molded body (H) and molded body (B) are mixed with a glass fiber-containing resin molded body, a propylene resin for adjusting the blending composition, and various additives as required, and glass A fiber-reinforced propylene resin composition is obtained.
[0015]
The outer fiber handle reinforced propylene resin outer door handle molded product of the present invention can be easily molded from the above glass fiber reinforced propylene resin composition by a general propylene resin injection molding machine. At this time, the glass fiber contained in the molded product is molded while adjusting so that the average fiber length is 0.5 to 6 mm . When the average fiber length of the glass fiber in the molded product is less than 0.5 mm, the mechanical strength and impact strength of the molded product are not sufficiently expressed, and the average fiber length of the glass fiber in the molded product is 6 mm. If it exceeds, the moldability deteriorates. Factors that cause the average fiber length in the molded product to vary include the specifications of the molding machine, molding conditions, gate diameter, fiber content, molten resin viscosity, and the like. Among them, the specifications of the molding machine, particularly the screw used, is a major factor. However, in the glass fiber reinforced propylene resin composition used in the present invention, as long as a general thermoplastic resin molding machine is used, the average fiber length of the fibers in the molded product is not significantly less than 0.5 mm.
[0016]
【Example】
EXAMPLES Hereinafter, although an Example and each comparative example demonstrate this invention concretely, this invention should not be limited by these.
[0017]
Example 1
A glass fiber (G1) obtained by roving thousands of filament glass fibers having a fiber diameter of 17 μm is introduced into an impregnation die, and the melt flow rate melted between the filaments is 120 g / 10 min (temperature 230 ° C., load 2.16 kgf). Yes, after impregnating a crystalline propylene-ethylene copolymer (P1) having an ethylene content of 9% by weight modified with 0.5 parts by weight of maleic anhydride, it was pultruded and cut into a length of 6 mm, A glass fiber-containing resin molded product (X1) containing 50% by weight of the fiber was obtained.
In addition, poly [(6-morpholino-s-triazo-2,4-diyl) {2,2,6,6-tetramethyl-4-piperidyl) imino} -hexamethylene {(2,2,6,6- Tetramethyl-4-piperidyl) imino}] (trade name “Thiasorb UV3346” (manufactured by Cytec)) 10 wt%, 90 wt. Of propylene resin with a melt flow rate of 24 g / 10 min (temperature 230 ° C., load 2.16 kgf) % Was melt-kneaded with an extruder to obtain a pellet-shaped molded body (H1).
In the same production method as the molded body (H1), 25% by weight of carbon black (brand # 900) having a structure length of 44 nm at the time of primary aggregation and a melt flow rate of 24 g / 10 min (temperature 230 ° C., load 2.16 kgf). ) Of a propylene resin (75% by weight) was obtained.
Next, 40% by weight of the compact (X1), 8 parts by weight of the compact (H1), 6 parts by weight of the compact (B1), a melting point of crystal of 165 ° C., a melt flow rate of 75 g / 10 min (temperature 230 ° C., load 2.16 kgf) ) Was added to a tumbler mixer and mixed to obtain a glass fiber reinforced propylene resin composition.
The obtained glass fiber reinforced propylene resin composition was molded into a handle part and an outer frame part which are parts of an outer door handle by an injection molding machine.
[0018]
Comparative Example 1
A commercially available weathering grade glass fiber 20% reinforced polyacetal resin (POM-G) was molded into an outer door handle part and an outer frame part by an injection molding machine.
[0019]
Comparative Example 2
Instead of the molded body (H1) used in Example 1, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (trade name “TINUVIN 770” (manufactured by Ciba Geigy), molecular weight 480 .7) A pellet-shaped molded body obtained by melting and kneading a mixture of 10% by weight and a propylene resin having a melt flow rate of 24 g / 10 min (temperature 230 ° C., load 2.16 kgf) with an extruder. Except for using (H2), in accordance with Example 1, a handle part and an outer frame part that are parts of the outer door handle were respectively formed.
[0020]
Comparative Example 3
Instead of the molded body (B1) used in Example 1, 25% by weight of carbon black (brand # 10) having a structure length of 248 nm at the time of primary aggregation and a melt flow rate of 24 g / 10 min (temperature 230 ° C., load 2. A handle part and an outer frame part, which are parts of the outer door handle, were respectively molded in accordance with Example 1 except that a pellet-shaped molded body (B2) composed of 75% by weight of 16 kgf) propylene resin was used. .
[0021]
Comparative Example 4
Instead of the molded body (X1) and propylene resin (P2) used in Example 1, 20% by weight of chopped strand glass fiber (G2) having a fiber diameter of 13 μm and a fiber length of 3 mm and a melt flow rate of 5 g / 10 min (temperature 230) In accordance with Example 1 except that 66 wt% of propylene resin (P3) modified with 0.5 parts by weight of maleic anhydride was used. Each handle part and outer frame part were molded.
[0022]
Comparative Example 5
Instead of the molded body (X1), propylene resin (P2) and molded body (B1) used in Example 1, 20% by weight of glass fiber (G2), 66% by weight of propylene resin (P3) and molded body (B2) A handle part and an outer frame part, which are parts of the outer door handle, were respectively molded according to Example 1 except that was used.
[0023]
The molded products obtained in Example 1 and Comparative Examples 1 to 5 were subjected to the following test methods (product breaking strength, residual fiber length in the product, product weight, suitability in appearance of the product, physical properties of the outer door handle). , Suitability for weather, evaluation of weather resistance, comprehensive judgment as outer door handle). The results are shown in Table 1.
[0024]
[Table 1]
Figure 0003812074
[0025]
(Fracture strength of the product)
The handle part and the outer frame part, which are molded products obtained in Example 1 and Comparative Examples 1 to 5, are integrated by hinges and springs to form an outer door handle molded product. After fixing the molded product, the handle part is added. The strength at which the handle portion was broken while being pulled was measured. The higher this value, the higher the mechanical strength of the molded product.
[0026]
(Remaining fiber length in the product)
A part (about 5 g) of the handle parts obtained in Example 1 and Comparative Examples 1 to 5 was left in an electric furnace set at 600 ° C. for 5 hours to be carbonized, and then the carbide was stirred in water to form a glass. It was transferred to a petri dish and dried to take out only the fiber portion, and the taken-out fiber length was measured. The average length of these fibers indicates the average fiber length in the molded product.
[0027]
(Product weight)
The weights of the handle parts and the outer frame parts, which are molded products obtained in Example 1 and Comparative Examples 1 to 5, were measured. A smaller value means a lighter weight.
[0028]
(Product appearance)
Whether or not the outer door handle molded product obtained in the above (destructive strength of product) measurement had an appearance suitable for practical use was visually determined. If the determination is NO, it means that the product cannot be used.
[0029]
(Appropriateness of physical properties of outer door handle)
Molding obtained in Example 1 and Comparative Examples 1 to 5 from the results of (destructive strength of the product), (residual fiber length in the product), (product weight), and (appropriateness in appearance of the product) of the evaluation test The product was judged to be suitable as an outer door handle.
[0030]
(Weather resistance evaluation)
The molded products obtained in Example 1 and Comparative Examples 1 to 5 were left in a metal weather tester (manufactured by Die Plus Wintes) set to the following conditions, and the appearance of the molded products was periodically observed with a 50 × microscope. Observation was made to examine the cracks occurring in the molded product, and the time when the crack generation ratio occupied about 70% was defined as the weather resistance time.
Wavelength: 295-780nm
Light cycle: Temperature 80 ° C, humidity 50RH%, irradiation intensity 80mW / cm 2 , cycle time 10Hr
Dark cycle: Temperature 30 ° C, humidity 98RH%, condensation, cycle time 4Hr
Shower: 10 sec
Cycle: Light cycle->Shower-> Dark cycle->Shower-> Light cycle [0031]
(Comprehensive judgment as an outer door handle)
The suitability of the outer door handle was comprehensively determined from the results of (appropriateness of the physical properties of the outer door handle) and (weather resistance evaluation) of the evaluation test.
[0032]
From the results of Table 1, the sample of Example 1 which is a molded product of the present invention is lighter in weight than the sample of Comparative Example 1 which is a molded product using a glass fiber reinforced polyacetal resin corresponding to a conventional molded product. It can be seen that the mechanical strength is high and the weather resistance is excellent. Moreover, the sample of Example 1 can hold | maintain the glass fiber in a molded article in a long state compared with the sample of Comparative Examples 2-5 obtained by the mixing | blending prescription different from the composition of this invention, and a weather resistance. It can be seen that since it has excellent properties, it has high mechanical strength and can be used for a long time.
[0033]
【The invention's effect】
The present invention is molded using a special glass fiber reinforced propylene resin and is extremely useful as an outer door handle for automobiles because it is lightweight, has high mechanical strength, and is excellent in weather resistance.

Claims (1)

フィラメント状のガラス繊維からなるロービングに、溶融したプロピレン樹脂を含浸させた後に引抜成形し、ペレット状に切断することによって得られるガラス繊維含有樹脂成形体とプロピレン樹脂とが、プロピレン樹脂70〜90重量%とガラス繊維10〜30重量%の割合となるように混合されたガラス繊維含有樹脂混合物100重量部に対し、分子量1000以上のヒンダードアミン系光安定剤が0.3〜2.0重量部および一次凝集時のストラクチャー長60nm以下のカーボンブラックが1〜2重量部添加されたガラス繊維強化プロピレン樹脂組成物を射出成形することにより得られる成型品であり、成型品内のガラス繊維が平均繊維長0.5〜6.0mmである長繊維ガラス強化プロピレン樹脂製アウタードアハンドル成型品。A glass fiber-containing resin molded product and a propylene resin obtained by impregnating a molten propylene resin into a roving made of filamentous glass fibers, then drawing and cutting into pellets, propylene resin 70-90 weight % Of the hindered amine light stabilizer having a molecular weight of 1000 or more and primary part of 100% by weight of the glass fiber-containing resin mixture mixed in a ratio of 10% to 30% by weight of the glass fiber. It is a molded product obtained by injection molding a glass fiber reinforced propylene resin composition to which 1 to 2 parts by weight of carbon black having a structure length of 60 nm or less at the time of aggregation is added, and the glass fiber in the molded product has an average fiber length of 0 An outer door handle molded product made of long fiber glass reinforced propylene resin having a diameter of 5 to 6.0 mm .
JP20518697A 1997-07-15 1997-07-15 Outer door handle molded product made of long fiber glass reinforced propylene resin Expired - Fee Related JP3812074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20518697A JP3812074B2 (en) 1997-07-15 1997-07-15 Outer door handle molded product made of long fiber glass reinforced propylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20518697A JP3812074B2 (en) 1997-07-15 1997-07-15 Outer door handle molded product made of long fiber glass reinforced propylene resin

Publications (2)

Publication Number Publication Date
JPH1134097A JPH1134097A (en) 1999-02-09
JP3812074B2 true JP3812074B2 (en) 2006-08-23

Family

ID=16502842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20518697A Expired - Fee Related JP3812074B2 (en) 1997-07-15 1997-07-15 Outer door handle molded product made of long fiber glass reinforced propylene resin

Country Status (1)

Country Link
JP (1) JP3812074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468634A (en) * 2010-11-10 2012-05-23 江苏源盛复合材料技术股份有限公司 Conductor spacer framework for transmission line

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374902B (en) * 2005-12-14 2011-05-04 住友化学株式会社 Polyolefin resin composition, molded product thereof and preparation of polyolefin resin composition
CN113717460A (en) * 2021-07-22 2021-11-30 广东金发科技有限公司 High-surface-hydrophilicity polypropylene composite material and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284241A (en) * 1987-05-15 1988-11-21 Mitsubishi Petrochem Co Ltd Fiber-reinforced resin composition
JP2875425B2 (en) * 1992-02-28 1999-03-31 出光石油化学株式会社 Polyolefin resin molding material
JP3456301B2 (en) * 1995-03-30 2003-10-14 チッソ株式会社 Fiber-reinforced thermoplastic composite containing fibers and specific carbon black uniformly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468634A (en) * 2010-11-10 2012-05-23 江苏源盛复合材料技术股份有限公司 Conductor spacer framework for transmission line
CN102468634B (en) * 2010-11-10 2015-02-04 江苏源盛复合材料技术股份有限公司 Conductor spacer framework for transmission line

Also Published As

Publication number Publication date
JPH1134097A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
EP3081591B1 (en) Carbon fiber-reinforced resin composition and molded article produced from same
US7875667B2 (en) Long-fiber reinforced polyolefin composition
US6521693B2 (en) Long fiber-reinforced polypropylene resin composition and molded article
US7482402B2 (en) Fiber reinforced polypropylene compositions
JP6895292B2 (en) A method for producing a glass fiber reinforced thermoplastic resin molded product, and a glass fiber reinforced thermoplastic resin molded product obtained thereby.
JP6172279B2 (en) Crystalline polyamide resin composition
JP4606719B2 (en) Black-based colored fiber reinforced resin composition
Kakroodi et al. Mechanical and morphological properties of flax fiber reinforced high density polyethylene/recycled rubber composites
JPWO2010137305A1 (en) Long fiber reinforced resin composition and molded body thereof
JP3812074B2 (en) Outer door handle molded product made of long fiber glass reinforced propylene resin
JP7145416B2 (en) Polyamide resin composition with excellent weather resistance
Dweiri et al. Thermal and flow property–morphology relationship of sugarcane bagasse fiber‐filled polyamide 6 blends
JPH09235419A (en) Long-glass-fiber-reinforced polyolefin resin composition, molded product thereof and production of molded product thereof
JPH09183869A (en) Colored glass fiber-reinforced polyolefin composition
KR101549663B1 (en) A polypropylene resin composition reinforced with a long glass fiber and molded article using the same
KR20030084698A (en) Formed article of fiber-reinforced polypropylene resin
JP5111694B2 (en) Fiber reinforced polyolefin resin composition
JP2005082786A (en) Long fiber-reinforced resin pellet and its molded product
JP2001192468A (en) Long fiber-reinforced polyolefin resin composition and molded article
JPH1135751A (en) Filament fiber-reinforced thermoplastic resin composition and molded product therefrom
CN112745663A (en) High-strength nylon 6 material and preparation method thereof
Tzur et al. Immiscible ethylene vinyl acetate and nylon blends processed below nylon melting temperature
Jiang et al. Toughening wood/polypropylene composites with polyethylene octene elastomer (POE)
Benhamida et al. Evaluation of the Effectiveness of New Compatibilizers Based on EBAGMA‐LDPE and EBAGMA‐PET Masterbatches for LDPE/PET Blends
JPH07309979A (en) Glass fiber reinforced polyolefin resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees