JP3812054B2 - Capacity adjustment device for heat exchanger - Google Patents

Capacity adjustment device for heat exchanger Download PDF

Info

Publication number
JP3812054B2
JP3812054B2 JP13311997A JP13311997A JP3812054B2 JP 3812054 B2 JP3812054 B2 JP 3812054B2 JP 13311997 A JP13311997 A JP 13311997A JP 13311997 A JP13311997 A JP 13311997A JP 3812054 B2 JP3812054 B2 JP 3812054B2
Authority
JP
Japan
Prior art keywords
water
heat exchanger
steam
water tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13311997A
Other languages
Japanese (ja)
Other versions
JPH10325697A (en
Inventor
弘將 扇
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP13311997A priority Critical patent/JP3812054B2/en
Publication of JPH10325697A publication Critical patent/JPH10325697A/en
Application granted granted Critical
Publication of JP3812054B2 publication Critical patent/JP3812054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水蒸気を加熱源とする熱交換器の容量調整装置に関する。
【0002】
【従来の技術】
図3は、化学プラント、発電プラント、大型の冷凍機等において、水蒸気を加熱源とする熱交換器として広く用いられているシェル・アンド・チューブ熱交換器の構成図である。この図において、1は耐圧容器を構成するシェル、2は伝熱管(チューブ)、3はバッフル、4はヘッダである。水蒸気を用いた加熱器として用いる場合には、図に例示するように、通常、チューブ2の内側に被加熱流体5を流し、シェル1内に水蒸気6を供給する。また、逆にチューブ内に水蒸気6を流し、シェル内に被加熱流体5を流す場合もある。なお、この図で6bはドレントラップであり、凝縮水(ドレン)を排水するようになっている。また、このドレントラップに替えて調整弁を使用することもある。
【0003】
【発明が解決しようとする課題】
上述した水蒸気を加熱源とする熱交換器では、図3に例示するように水蒸気供給ラインに流量調節弁7を備え、被加熱流体5の温度を温度センサ8で検出し、この温度が所定範囲に入るように流量調節弁7を調節する。この場合、熱交換器における伝熱量Qは、熱交換器の伝熱基本式(Q=UAΔT)であらわされる。ここで、Uは熱通過率、Aは伝熱面積、ΔTはチューブ内外の温度差である。
【0004】
しかし、かかる熱交換器において、負荷減少時に伝熱量(負荷)を小さくするために、流量調節弁7を絞り、供給水蒸気量を小さくしても、熱通過率Uの蒸気圧力による変化は小さく、蒸気温度もあまり変化しないため温度差ΔTの変化も少ない。そのため、流量調節弁7を絞っても、ドレントラップ6bが閉じて内部にドレンが溜まり、伝熱面積Aが小さくなるまで、伝熱量が小さくならない問題点があった。
【0005】
そのため、従来の熱交換器では、その負荷を減じてゆくとき、例えば、ドレンが溜まるまで30分〜1時間以上もかかることがあり、その間被加熱側が過熱されてしまい、負荷低減時の制御性が極めて悪い問題点があった。また、負荷低減のために流量調節弁7を完全に全閉にしてしまうと、残留した水蒸気の凝縮に伴い内部が負圧化し、外気から空気が侵入し、熱交換器の機能を阻害するおそれがあった。
【0006】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、内部に負圧を発生させることなく水蒸気を加熱源とする熱交換器の負荷低減時の応答性を大幅に高めることができる容量調整装置を提供することにある。
【0007】
【課題を解決するための手段】
上述した水蒸気を加熱源とするこの種の熱交換器では、低負荷への対応は、ドレンによって伝熱面積を制御する手段が最も効果的であり、この手段を迅速に行うことがポイントである。本発明はかかる新規の着想に基づくものである。
【0008】
すなわち、本発明によれば、水蒸気を加熱源とする伝熱面をもった熱交換器の水蒸気室容量よりも大きい保有水量を有する水タンクと、水蒸気室下部と水タンク下部を連通するドレン配管と、水タンクの所定のレベルに取り付けられ、水蒸気の凝縮により水量が増加した場合には、該所定のレベルからの溢流水を排水して、内部の保有水水位を自動的に調整する排水ラインとを備え、前記水タンクの設置高さは、定格水蒸気圧力において熱交換器内の水位が伝熱面より低くなり、かつ、熱交換器の負荷減少に伴いその水蒸気室の水蒸気圧力が減少すると、熱交換器の伝熱面積が自動的に負荷に見合ったものになるように設定されている、ことを特徴とする熱交換器の容量調整装置が提供される。
【0009】
この発明は、加圧水蒸気圧力が低い場合に特に適している。すなわち上記本発明の構成によれば、熱交換器のドレンの排水側を高く配置し、かつそこに十分な保有量を有する水タンクを設置し、定格水蒸気圧力において熱交換器内の水位が伝熱面より低くなるように設定されているので、定格負荷時には定格水蒸気圧力により熱交換器内の水位が十分低く、全伝熱面積をそのまま有効に活用することができる。
【0010】
また、負荷減少時には加熱用水蒸気流量が絞られ凝縮圧力が低下するので、水タンク内の水圧により水を逆に熱交換器に送り込んで伝熱面積を小さくすることができる。この際、水タンクの水位は十分高いため、この差圧によって自動的に水が熱交換器側に送り込まれ、負荷に見合った伝熱面積となる水位でバランスする。水配管(ドレン配管)を十分な太さにしておけば、流れ抵抗は低く水は速やかに移動するため負荷低減時の応答性を大幅に高め、応答遅れは無視できるほど小さくできる。
【0011】
更に、水蒸気の凝縮により水量が増加した場合には、水タンクの所定のレベルから排水ラインを介して溢流水を排水することができ、内部の保有水水量を一定の範囲に自動的に調節することができる。従って、背圧を一定範囲内に維持でき、凝縮圧力をほぼ一定に保持できる。特に、この容量調整装置では、負荷減少に伴う凝縮圧力の低下が応じて水が送り込まれるため、特別な制御装置は不要であり、高い信頼性を得ることができる。
【0012】
【0013】
【0014】
従って、本発明により、被加熱流体の過熱や、凝縮圧力の負圧化も発生せず、低負荷(理論的には0%)まで安定した運転状態が得られ、熱交換器の負荷低減時の応答性を大幅に高めることができる。
【0015】
【発明の実施の形態】
以下、図面に基づいて、本発明の一実施形態を説明する。なお、各図において共通する部分には同一の符号を付し説明の重複を省略する。図1は、本発明の実施形態を示す熱交換器の容量調整装置の構成図である。この図において、熱交換器10は、シェル1内を通る伝熱管(チューブ)2を有し、チューブ2の内側に被加熱流体5を流し、シェル1内に蒸気ライン6aを介して水蒸気6を供給して被加熱流体5を加熱するようになっている。従って、伝熱管2が伝熱面であり、シェル1の一部が水蒸気室10aとなる。また、蒸気ライン6aには流量調節弁11が設けられており、被加熱流体5の温度を検出する温度センサ12の出力が設定温度になるように、流量調節弁11を調節するようになっている。また、13は負荷を調整するための流量調節弁である。
【0016】
なお、熱交換器10は、シェル・アンド・チューブ熱交換器であるのが好ましいが、本発明はこれに限定されず、水蒸気を加熱源とする伝熱面をもった間接加熱方式である限りで、その他の形式の熱交換器であってもよい。また、熱交換器10内には通常のシェル・アンド・チューブ熱交換器と相違しバッフルがないか、ある場合でも通気孔を有し、内部に溜まったドレン水がバッフルを通して自由に連通するようになっているのがよい。更に、この図では横型の熱交換器を示しているが、縦型であってもよい。
【0017】
図1において、本発明の容量調整装置14は、水タンク15、ドレン配管16及び排水ライン17を備えている。水タンク15は、熱交換器10の水蒸気室10aの容量よりも大きい保有水量を有し、かつ図に示すように高い位置に設置されている。ドレン配管16は、水蒸気室10aの下部と水タンク15の下部を連通している。排水ライン17は、水タンク15の所定のレベルからの溢流水を排水するようになっている。水タンク15は、上部が大気と連通し大気圧になるようになっている。
【0018】
更に、水タンク15の設置高さHは、熱交換器10の定格水蒸気圧力において熱交換器内の水位が伝熱面より低くなるように設定されている。すなわち、熱交換器10内の水位9が水蒸気室10aの下部より低くなるレベル(図に0で示す)から、水タンク15から水が溢流するレベルまでのヘッド差Hmが、熱交換器10の定格水蒸気圧力Pにほぼ一致するように設定されている。
【0019】
従って、定格水蒸気圧力Pが例えば0.5kg/cm2 g(すなわち0.5atg)の場合には、ヘッド差Hを約5mに設定し、1atgの場合には約10mに設定する。なお、この実施形態の容量調整装置は、加圧水蒸気圧力が低い場合に特に適しており、加圧水蒸気圧力が高い場合には、後述する参考例を用いるのが好ましい。
【0020】
上述した本発明の構成によれば、熱交換器10のドレンの排水側を高く配置し、かつそこに十分な保有量を有する水タンク15を設置し、定格水蒸気圧力Pにおいて熱交換器10内の水位が伝熱面より低くなるように設定されているので、定格負荷時には定格水蒸気圧力Pにより熱交換器10内の水位が十分低く、伝熱面積Aをそのまま有効に活用することができる。
【0021】
また、負荷減少時には流量調節弁11により加熱用水蒸気流量が絞られ凝縮圧力が低下するので、水タンク15内の水圧により水を逆に熱交換器に送り込んで伝熱面積Aを小さくすることができる。この際、水タンク15の水位は十分高いため、この差圧Hによって自動的に水が熱交換器10側に送り込まれ、負荷に見合った伝熱面積Aとなる水位でバランスする。水配管(ドレン配管16)は抵抗の少ない十分な太さにしておくのが好ましく、これにより、水は速やかに移動するため負荷低減時の応答性を大幅に高め、応答遅れは無視できるほど小さくできる。
【0022】
更に、水蒸気の凝縮により水量が増加した場合には、水タンク15の所定のレベルから排水ライン17を介して溢流水を排水することができ、内部の保有水水位を一定の範囲に自動的に調節することができる。また特に、この容量調整装置14では、負荷減少に伴う凝縮圧力の低下がもとで水が送り込まれるため、特別な制御装置は不要であり、高い信頼性を得ることができる。
【0023】
図2は、本発明の参考例を示す熱交換器の容量調整装置の構成図である。この図において、水タンク15は気密タンクであり、流量調節弁18aを有するガスライン18から供給されるガスで一定圧力に保持されるようになっている。このガスは、空気または窒素ガスであるのがよい。また、排水ライン17は、ドレン配管16から直接排水するようになっている。
【0024】
本発明の容量調整装置14は、更に、水タンク15内の水位を検出する水位センサ19と、排水ライン17を開閉する排水弁17aとを備え、水位センサ19により排水弁17aを操作して水タンク15内の水位を所定の範囲に調節するようになっている。更に、この実施形態では、水タンク15内の圧力を検出する圧力センサ20を備え、この圧力センサ20により内部圧を検出し、この内部圧を、熱交換器10の定格水蒸気圧力Pにおいて熱交換器10内の水位が水蒸気室10aの下部より低くなるように設定するようになっている。その他の構成は、図1と同様である。
【0025】
図2の参考例は、加圧水蒸気の圧力(及び温度)が高い場合に、特に適している。上述した参考例の構成によれば、水タンク15がガスで加圧された気密タンクであり、その内部圧が、熱交換器10の定格水蒸気圧力Pにおいて熱交換器内の水位が伝熱面より低くなるように設定されているので、加圧水蒸気の圧力が例えば10atg以上の場合でも、水タンク15を低い位置に設置したままで、本発明と同様に機能することができる。すなわち負荷が減少すれば、凝縮圧力が下がり、水タンク15から水が送り込まれて伝熱面積Aが制御されると共に、水タンク液位も低下することによってドレン排水弁17aも閉じる。負荷が増大すれば水位が上昇して排水弁17aが開き、ドレンを排水する。従って、水タンク15の内部圧を定格水蒸気圧力Pに応じて一定に保持するだけで、特別な制御装置は不要であり、高い信頼性を得ることができる。またドレンの排水を、簡単な水タンクの液位制御で行うことができ、保有水を適正範囲に調節することができる。
【0026】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0027】
【発明の効果】
上述したように、本発明の熱交換器の容量調整装置は、被加熱流体の過熱や、凝縮圧力の負圧化も発生せず、低負荷(理論的には0%)まで安定した運転状態が得られ、熱交換器の負荷低減時の応答性を大幅に高めることができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の実施形態を示す容量調整装置の構成図である。
【図2】参考例を示す容量調整装置の構成図である。
【図3】従来の熱交換器の構成図である。
【符号の説明】
1 耐圧容器(シェル)
2 伝熱管(チューブ)
3 バッフル
4 ヘッダ
5 被加熱流体
6 水蒸気
6a 蒸気ライン
7 流量調節弁
8 温度センサ
9 水位
10 熱交換器
10a 水蒸気室
11 流量調節弁
12 温度センサ
13 流量調節弁
14 容量調整装置
15 水タンク
16 ドレン配管
17 排水ライン
17a 排水弁
18 ガスライン
18a 流量調節弁
19 水位センサ
20 圧力センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacity adjustment device for a heat exchanger using steam as a heating source.
[0002]
[Prior art]
FIG. 3 is a configuration diagram of a shell-and-tube heat exchanger widely used as a heat exchanger using steam as a heat source in a chemical plant, a power plant, a large refrigerator, and the like. In this figure, 1 is a shell constituting a pressure vessel, 2 is a heat transfer tube (tube), 3 is a baffle, and 4 is a header. When used as a heater using water vapor, as illustrated in the figure, the fluid 5 to be heated is usually flowed inside the tube 2 and the water vapor 6 is supplied into the shell 1. On the contrary, in some cases, the water vapor 6 is allowed to flow in the tube, and the heated fluid 5 is allowed to flow in the shell. In addition, 6b is a drain trap in this figure, and drains condensed water (drain). In addition, a regulating valve may be used instead of the drain trap.
[0003]
[Problems to be solved by the invention]
In the heat exchanger using steam as a heating source as described above, the steam supply line is provided with a flow rate adjusting valve 7 as illustrated in FIG. 3, and the temperature of the heated fluid 5 is detected by the temperature sensor 8, and this temperature falls within a predetermined range. The flow control valve 7 is adjusted to enter. In this case, the heat transfer amount Q in the heat exchanger is expressed by the heat transfer basic equation (Q = UAΔT) of the heat exchanger. Here, U is the heat transfer rate, A is the heat transfer area, and ΔT is the temperature difference between the inside and outside of the tube.
[0004]
However, in such a heat exchanger, in order to reduce the heat transfer amount (load) when the load is reduced, even if the flow rate control valve 7 is throttled and the supplied water vapor amount is reduced, the change in the heat passage rate U due to the steam pressure is small, Since the steam temperature does not change so much, the change in temperature difference ΔT is small. Therefore, even if the flow control valve 7 is throttled, there is a problem that the amount of heat transfer does not decrease until the drain trap 6b is closed and the drain is accumulated inside the heat transfer area A.
[0005]
Therefore, in the conventional heat exchanger, when reducing the load, for example, it may take 30 minutes to 1 hour or more until the drain accumulates, and during that time, the heated side is overheated, and the controllability when reducing the load There was a very bad problem. Further, if the flow rate control valve 7 is completely closed to reduce the load, the internal pressure becomes negative as the remaining water vapor condenses, and air may enter from the outside air, thereby impairing the function of the heat exchanger. was there.
[0006]
The present invention has been made to solve such problems. That is, an object of the present invention is to provide a capacity adjusting device that can greatly enhance the responsiveness when reducing the load of a heat exchanger that uses steam as a heating source without generating a negative pressure inside.
[0007]
[Means for Solving the Problems]
In this type of heat exchanger using steam as a heat source as described above, the means for controlling the heat transfer area by the drain is the most effective for dealing with low loads, and the point is to perform this means quickly. . The present invention is based on such a new idea.
[0008]
That is, according to the present invention, a water tank having a larger water capacity than a water vapor chamber capacity of a heat exchanger having a heat transfer surface using water vapor as a heat source, and a drain pipe communicating the water vapor chamber lower part and the water tank lower part A drainage line that is attached to a predetermined level of the water tank and drains the overflow water from the predetermined level when the amount of water increases due to condensation of water vapor, and automatically adjusts the internal water level. The installation height of the water tank is such that the water level in the heat exchanger becomes lower than the heat transfer surface at the rated steam pressure, and the steam pressure in the steam chamber decreases as the load of the heat exchanger decreases. There is provided a capacity adjustment device for a heat exchanger, characterized in that the heat transfer area of the heat exchanger is automatically set to match the load .
[0009]
This invention is particularly suitable when the pressurized steam pressure is low. That is, according to the configuration of the present invention, the drain side of the drain of the heat exchanger is arranged high and a water tank having a sufficient holding amount is installed there, and the water level in the heat exchanger is transmitted at the rated steam pressure. Since it is set to be lower than the hot surface, the water level in the heat exchanger is sufficiently low due to the rated steam pressure at the rated load, and the entire heat transfer area can be effectively utilized as it is.
[0010]
In addition, when the load is reduced, the heating steam flow rate is reduced and the condensation pressure is reduced, so that the heat transfer area can be reduced by sending water back to the heat exchanger by the water pressure in the water tank. At this time, since the water level of the water tank is sufficiently high, water is automatically fed to the heat exchanger side by this differential pressure, and balance is achieved at the water level corresponding to the heat transfer area. If the water pipe (drain pipe) is made sufficiently thick, the flow resistance is low and the water moves quickly, so that the response at the time of load reduction is greatly improved and the response delay can be made small enough to be ignored.
[0011]
Furthermore, when the amount of water increases due to condensation of water vapor, the overflow water can be drained from the predetermined level of the water tank via the drainage line, and the amount of retained water is automatically adjusted to a certain range. be able to. Therefore, the back pressure can be maintained within a certain range, and the condensing pressure can be maintained almost constant. In particular, in this capacity adjusting device, since water is sent in response to a decrease in the condensation pressure accompanying a decrease in load, a special control device is unnecessary and high reliability can be obtained.
[0012]
[0013]
[0014]
Therefore, according to the present invention , the heated fluid does not overheat and the condensing pressure does not become negative, and a stable operating state can be obtained up to a low load (theoretically 0%). Responsiveness can be greatly improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and duplication of description is abbreviate | omitted. Figure 1 is a block diagram of a capacity adjusting device of a heat exchanger showing the implementation of the invention. In this figure, a heat exchanger 10 has a heat transfer tube (tube) 2 that passes through the inside of a shell 1, a heated fluid 5 flows inside the tube 2, and water vapor 6 flows into the shell 1 via a steam line 6 a. The heated fluid 5 is supplied and heated. Therefore, the heat transfer tube 2 is a heat transfer surface, and a part of the shell 1 becomes the water vapor chamber 10a. Further, a flow rate adjusting valve 11 is provided in the steam line 6a, and the flow rate adjusting valve 11 is adjusted so that the output of the temperature sensor 12 for detecting the temperature of the heated fluid 5 becomes a set temperature. Yes. Reference numeral 13 denotes a flow rate adjusting valve for adjusting the load.
[0016]
The heat exchanger 10 is preferably a shell-and-tube heat exchanger, but the present invention is not limited to this, as long as it is an indirect heating method having a heat transfer surface using steam as a heating source. However, other types of heat exchangers may be used. Further, unlike the ordinary shell-and-tube heat exchanger, the heat exchanger 10 has no baffle or has a vent hole even in some cases so that the drain water accumulated therein can freely communicate through the baffle. It is good to be. Further, in this figure, a horizontal heat exchanger is shown, but a vertical heat exchanger may be used.
[0017]
In FIG. 1, the capacity adjusting device 14 of the present invention includes a water tank 15, a drain pipe 16 and a drain line 17. The water tank 15 has a retained water amount larger than the capacity of the water vapor chamber 10a of the heat exchanger 10, and is installed at a high position as shown in the figure. The drain pipe 16 communicates the lower part of the water vapor chamber 10 a and the lower part of the water tank 15. The drain line 17 drains overflow water from a predetermined level of the water tank 15. The upper part of the water tank 15 communicates with the atmosphere and is at atmospheric pressure.
[0018]
Furthermore, the installation height H of the water tank 15 is set so that the water level in the heat exchanger is lower than the heat transfer surface at the rated steam pressure of the heat exchanger 10. That is, the head difference Hm from the level at which the water level 9 in the heat exchanger 10 becomes lower than the lower part of the water vapor chamber 10a (indicated by 0 in the figure) to the level at which water overflows from the water tank 15 is the heat exchanger 10. Is set so as to substantially match the rated steam pressure P.
[0019]
Therefore, when the rated water vapor pressure P is, for example, 0.5 kg / cm 2 g (ie 0.5 atg), the head difference H is set to about 5 m, and when it is 1 atg, it is set to about 10 m. The capacity adjustment apparatus implementation form of this is particularly suitable when pressurized steam pressure is low, when the pressurized steam pressure is high, it is preferable to use reference example will be described later.
[0020]
According to the configuration of the present invention described above, the drainage side of the drain of the heat exchanger 10 is arranged high, and the water tank 15 having a sufficient holding amount is installed therein, and the heat exchanger 10 has the inside at the rated steam pressure P. Since the water level in the heat exchanger 10 is sufficiently low due to the rated steam pressure P at the rated load, the heat transfer area A can be effectively utilized as it is.
[0021]
Further, when the load is reduced, the flow rate of the heating steam is reduced by the flow rate control valve 11 and the condensing pressure is lowered. Therefore, the water pressure in the water tank 15 reversely sends water to the heat exchanger to reduce the heat transfer area A. it can. At this time, since the water level of the water tank 15 is sufficiently high, the water is automatically sent to the heat exchanger 10 side by this differential pressure H, and the water level is balanced at the heat transfer area A corresponding to the load. It is preferable that the water pipe (drain pipe 16) has a sufficient thickness with little resistance. As a result, the water moves quickly so that the response at the time of reducing the load is greatly improved, and the delay in response is negligibly small. it can.
[0022]
Furthermore, when the amount of water increases due to the condensation of water vapor, the overflow water can be drained from the predetermined level of the water tank 15 through the drain line 17, and the internal water level is automatically kept within a certain range. Can be adjusted. In particular, in the capacity adjusting device 14, since water is fed based on a decrease in the condensation pressure accompanying a decrease in load, a special control device is unnecessary and high reliability can be obtained.
[0023]
FIG. 2 is a configuration diagram of a capacity adjustment device for a heat exchanger showing a reference example of the present invention. In this figure, the water tank 15 is an airtight tank, and is kept at a constant pressure by the gas supplied from the gas line 18 having the flow rate control valve 18a. This gas may be air or nitrogen gas. The drain line 17 drains directly from the drain pipe 16.
[0024]
The capacity adjusting device 14 of the present invention further includes a water level sensor 19 that detects the water level in the water tank 15 and a drain valve 17a that opens and closes the drain line 17. The water level sensor 19 operates the drain valve 17a to The water level in the tank 15 is adjusted to a predetermined range. Furthermore, in this embodiment, a pressure sensor 20 that detects the pressure in the water tank 15 is provided, and the internal pressure is detected by the pressure sensor 20, and this internal pressure is subjected to heat exchange at the rated steam pressure P of the heat exchanger 10. The water level in the vessel 10 is set to be lower than the lower part of the water vapor chamber 10a. Other configurations are the same as those in FIG.
[0025]
The reference example of FIG. 2 is particularly suitable when the pressure (and temperature) of pressurized steam is high. According to the configuration of the reference example described above, the water tank 15 is an airtight tank pressurized with gas, and the internal pressure is the rated steam pressure P of the heat exchanger 10 and the water level in the heat exchanger is the heat transfer surface. Since the pressure is set to be lower, even when the pressure of the pressurized steam is, for example, 10 atg or more, the water tank 15 can be functioned in the same manner as the present invention with the water tank 15 installed at a low position. That is, if the load decreases, the condensing pressure decreases, water is sent from the water tank 15 to control the heat transfer area A, and the drain water valve 17a is also closed by decreasing the water tank liquid level. If the load increases, the water level rises and the drain valve 17a opens to drain the drain. Therefore, only by keeping the internal pressure of the water tank 15 constant according to the rated water vapor pressure P, no special control device is required, and high reliability can be obtained. In addition, drainage can be performed by simple liquid level control of the water tank, and the retained water can be adjusted to an appropriate range.
[0026]
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0027]
【The invention's effect】
As described above, the capacity adjustment device for a heat exchanger according to the present invention does not cause overheating of the heated fluid and negative pressure of the condensation pressure, and is in a stable operating state up to a low load (theoretically 0%). Is obtained, and it has excellent effects such as greatly improving the responsiveness when the load of the heat exchanger is reduced.
[Brief description of the drawings]
1 is a configuration diagram of a capacity adjustment apparatus according to the implementation embodiments of the present invention.
FIG. 2 is a configuration diagram of a capacity adjustment device showing a reference example .
FIG. 3 is a configuration diagram of a conventional heat exchanger.
[Explanation of symbols]
1 Pressure vessel (shell)
2 Heat transfer tubes (tubes)
3 Baffle 4 Header 5 Heated fluid 6 Steam 6a Steam line 7 Flow control valve 8 Temperature sensor 9 Water level 10 Heat exchanger 10a Steam chamber 11 Flow control valve 12 Temperature sensor 13 Flow control valve 14 Capacity adjustment device 15 Water tank 16 Drain piping 17 Drain line 17a Drain valve 18 Gas line 18a Flow control valve 19 Water level sensor 20 Pressure sensor

Claims (1)

水蒸気を加熱源とする伝熱面をもった熱交換器の水蒸気室容量よりも大きい保有水量を有する水タンクと、
水蒸気室下部と水タンク下部を連通するドレン配管と、
水タンクの所定のレベルに取り付けられ、水蒸気の凝縮により水量が増加した場合には、該所定のレベルからの溢流水を排水して、内部の保有水水位を自動的に調整する排水ラインとを備え、
前記水タンクの設置高さは、定格水蒸気圧力において熱交換器内の水位が伝熱面より低くなり、かつ、熱交換器の負荷減少に伴いその水蒸気室の水蒸気圧力が減少すると、熱交換器の伝熱面積が自動的に負荷に見合ったものになるように設定されている、ことを特徴とする熱交換器の容量調整装置。
A water tank having an amount of retained water larger than the steam chamber capacity of the heat exchanger having a heat transfer surface with steam as a heating source;
A drain pipe communicating the lower part of the water vapor chamber and the lower part of the water tank;
A drainage line that is attached to a predetermined level of the water tank and drains the overflow water from the predetermined level when the amount of water increases due to condensation of water vapor, and automatically adjusts the internal water level. Prepared,
The installation height of the water tank is such that when the water level in the heat exchanger becomes lower than the heat transfer surface at the rated steam pressure, and the steam pressure in the steam chamber decreases as the load of the heat exchanger decreases, the heat exchanger The heat exchanger capacity adjustment device is characterized in that the heat transfer area of the heat exchanger is automatically set to match the load .
JP13311997A 1997-05-23 1997-05-23 Capacity adjustment device for heat exchanger Expired - Fee Related JP3812054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13311997A JP3812054B2 (en) 1997-05-23 1997-05-23 Capacity adjustment device for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13311997A JP3812054B2 (en) 1997-05-23 1997-05-23 Capacity adjustment device for heat exchanger

Publications (2)

Publication Number Publication Date
JPH10325697A JPH10325697A (en) 1998-12-08
JP3812054B2 true JP3812054B2 (en) 2006-08-23

Family

ID=15097243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13311997A Expired - Fee Related JP3812054B2 (en) 1997-05-23 1997-05-23 Capacity adjustment device for heat exchanger

Country Status (1)

Country Link
JP (1) JP3812054B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540315B2 (en) * 2003-08-08 2010-09-08 Ihiプラント建設株式会社 Cryogenic liquid heating method and apparatus
JP5109275B2 (en) * 2006-03-29 2012-12-26 株式会社Ihi Gas cooler control device
JP2019178737A (en) * 2018-03-30 2019-10-17 大阪瓦斯株式会社 Liquefied natural gas vaporizer, and operation method of liquefied natural gas vaporizer
CN109405090B (en) * 2018-09-06 2023-11-17 珠海格力电器股份有限公司 Device and method for removing haze by utilizing air conditioner condensed water and air conditioner
CN114352364B (en) * 2021-07-22 2023-11-21 杭州绿能环保发电有限公司 Main steam temperature control device
CN114294971B (en) * 2022-01-12 2023-01-20 连云港华港电力设备有限公司 Condenser convenient to cold junction increase-volume

Also Published As

Publication number Publication date
JPH10325697A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
JP3812054B2 (en) Capacity adjustment device for heat exchanger
JP2020143796A (en) Drain recovery device
JPS5925130B2 (en) Heat recovery method and device
JP4115064B2 (en) Steam heating method for cryogenic fluid
JP2001300512A (en) Evaporating/concentrating device
JP3789988B2 (en) Heat exchanger
JPH08210704A (en) Vacuum type hot-water machine
JP2002257497A (en) Heat exchanger, control method of heat exchange temperature and hot heat supplier
JPH0660771B2 (en) Absorption refrigerator crystal prevention method
JP2000304467A (en) Heat exchanger
JPH0624642Y2 (en) Vacuum steam generator
JP4472103B2 (en) Steam heating device
JP2008070087A (en) Air heater
JP2780546B2 (en) Heat transfer device
JPS5848526Y2 (en) Absorption refrigerator water heater
JPS62182593A (en) Separate type heat pipe heat exchanger
JPS6080088A (en) Controlling method of heat exchanging amount in separate type heat exchanger
JP2806110B2 (en) Heat transfer device
SU1053070A1 (en) Device for control of condensate level in steam-water heater
JPH02597Y2 (en)
JPH0575942B2 (en)
JP5047425B2 (en) Steam heating device
JPH0113963Y2 (en)
JP2003021344A (en) Hot-water system
JPH0791870A (en) Top heat type heat pipe, cooling system and heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees