JP3811058B2 - Electrophotographic developing carrier and electrophotographic developer - Google Patents

Electrophotographic developing carrier and electrophotographic developer Download PDF

Info

Publication number
JP3811058B2
JP3811058B2 JP2001381222A JP2001381222A JP3811058B2 JP 3811058 B2 JP3811058 B2 JP 3811058B2 JP 2001381222 A JP2001381222 A JP 2001381222A JP 2001381222 A JP2001381222 A JP 2001381222A JP 3811058 B2 JP3811058 B2 JP 3811058B2
Authority
JP
Japan
Prior art keywords
carrier
resin
coating
coated
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001381222A
Other languages
Japanese (ja)
Other versions
JP2003186253A (en
Inventor
智英 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2001381222A priority Critical patent/JP3811058B2/en
Publication of JP2003186253A publication Critical patent/JP2003186253A/en
Application granted granted Critical
Publication of JP3811058B2 publication Critical patent/JP3811058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【産業上の利用分野】
本発明は,表面に樹脂コーテイングが施されたソフトフェライト粒子からなる電子写真現像用キャリヤに関する。
【0002】
【従来の技術】
二成分系の現像剤に用いられるキャリヤ(電子写真現像用キャリヤ)には,様々な特性(磁気特性,摩擦帯電性,耐久性,流動性など)が要求されるが,表面に樹脂コーテイングが施されたキャリヤ(樹脂被覆キャリヤ)においては,樹脂被覆本来の目的であるスペント化の防止(トナーがキャリヤ表面に融着する現象の阻止)を長期にわたって維持できることが肝要であるが,樹脂被覆層が有している摩擦帯電性(帯電特性)に変化を来たさないことも重要である。
【0003】
この帯電特性を改善する処方については種々の提案がなされており,例えば特開平4−309965号公報や特開平5−34991号公報などには,表面に樹脂コーテイングが施こされる芯粒子の径と嵩密度を規定して芯粒子表面の凹凸を細かくして(或いはキャリヤ形状を不定形にして),キャリヤの表面積を大きくすることなくキャリヤの摩擦帯電機能を大きくする方法が提案され,特開平4−93954号公報には芯粒子に凹凸を形成し,凸部が露出するように樹脂コーテイングしたものが記載されている。また,特開平6−222619号公報は核となるフエライトキャリヤの粒子表面を表面空孔率10体積%以下とすることによって帯電量の経時変化を抑制できると教示している。
【0004】
一方では,近年カラーコピー(フルカラー)用の複写機が頻繁に開発され,透光性カラートナーがキャリヤと共に使用されるようになったが,この場合には,透光性カラートナーの透光性を維持するために,従来はモノクロトナー用に使用していた有色顔料(帯電制御剤)が使用できなくなったことから,トナーとしての充分な摩擦帯電機能を保持することが困難となり,キャリヤ側に一層良好な摩擦帯電特性が要求されるようになってきた。
【0005】
さらに,カラーコピー(フルカラー)用複写機ではベタ画像領域が増大し,現像領域での現像トナー量を充分に確保するための現像システムサイドの工夫(例えば交流バイアスを印加する等)が成されているが,これによって高濃度の画像が達成できる反面,キャリヤ飛び,電荷リークによるベタ画像内のホワイトスポット等の不具合が発生しており,このような不具合を発生させないキャリヤが要求されている。
【0006】
【発明が解決しょうとする課題】
本発明は,上記のような事情により,良好な摩擦帯電量を確保し,且つキャリヤ飛び,電荷リークによるホワイトスポット等の発生しないキャリヤを得ることを課題としたものである。
【0007】
【課題を解決するための手段】
本発明によれば,ソフトフェライト粒子の表面に樹脂コーテイングが施された電子写真現像用キャリヤであって,平均粒径が40〜60μmで嵩密度が2.25〜2.45g/cm3未満のソフトフェライト粒子粉末に対し,2.5〜5.0重量%の樹脂をコーテイングしてなる電子写真現像用キャリヤを提供する。このものは,ソフトフェライト粒子の表面全体が完全に樹脂コーテイングされているのが好ましい。
【0008】
【発明の実施の形態】
本発明は,ソフトフェライト粒子の表面に樹脂被覆した電子写真用キャリヤに関するが,そのソフトフェライト粒子(以下,コア粒子と呼ぶことがある)としては種々のものが適用でき,代表的にはMO・Fe23 ( Mは二価の金属の1種または2種)系のソフトフェライトが適用できる。Mは例えば亜鉛,鉛,スズ,ビスマス,マンガン, マグネシウム等の金属が挙げられる。このようなフェライトは,目標組成となるように原料を調合し,仮焼,粉砕,乾燥,造粒,焼成,解砕,分級の諸工程を経て製造することができる。
【0009】
例えばMnO−MgO−Fe23系フェライトの製造を例とすると,原料中のMn, MgおよびFeの組成比が意図するフェライトの組成比に相当するように,炭酸塩,水酸化物または酸化物等の形態の原料を秤量調合し,よく混合したうえ,加熱炉中で600〜1000℃の温度に大気雰囲気中で加熱し,1〜5時間保持して仮焼する。これにより,炭酸塩や水酸化物等の形態で調合した原料は実質的に酸化物の形態の塊状物となり,揮発性成分や非金属介在物などは分解・蒸発除去される。得られた仮焼品は,冷却後,粉砕機例えば振動ミルで1μm程度まで粉砕し,次いで水を加えて70%程度の粗スラリーとし,これをボールミル等で湿式粉砕する。これにより,微細に粉砕された仮焼粉のスラリーが得られる。この仮焼粉スラリーに,必要に応じてポリカルボン酸等の分散剤を加えたうえ,例えば噴霧乾燥機で噴霧乾燥するか,或いはペレタイザーで造粒し,10〜500μmの球状ペレットにして乾燥する。
【0010】
次いで,前記の造粒品を焼成してフェライトとするが,この焼成工程の雰囲気を制御することにより,意図する飽和磁化のソフトフェライトを得ることができる。例えば実質上フェライト組成と同等の酸化物組成を有した仮焼粉を,実際にフェライトに焼成するに十分な温度,例えば1150〜1200℃に少なくとも60分間保持する焼成処理を行う場合,他の条件は一定にして,空気から窒素ガスにまで雰囲気中の酸素分圧を連続的に変化させると,それに追従して飽和磁化も連続的に上昇するので,意図する飽和磁化を得るには,それが得られる酸素分圧を採用すればよい。
【0011】
フェライトに焼成された焼成品は解砕機で解砕し,解砕粉を分級または篩分けしてキャリヤとして適正な粒度のものを採取する。これにより平均粒子径が揃った球形のMnO−MgO−Fe23 系ソフトフェライト粒子を得る。このMn・Mg系のソフトフェライトに限らず,他の二価金属を構成成分とするソフトフェライトの製法も同様の工程を経て製造することができる。そのさい,ソフトフェライト粒子の平均粒径を40μm〜60μm,好ましくは45μm〜55μm,この粒子粉末の嵩密度を2.25g/cm3〜2.45g/cm3未満,好ましくは2.30g/cm3〜2.40g/cm3未満に調整する。
【0012】
樹脂被覆するキャリアコア粒子の平均粒径が40μmより小さいものを使用すると,現像スリーブへの付着力が弱くなるため,画像域および非画像域へのキャリヤ付着が生じ易くなり,コーテイング時にも会合し易くなる。他方,キャリヤ粒子の平均粒径が60μmを超えると,画像エッジ部の再現性にシヤーブさがなく,画質を低下させる。
【0013】
また粒子粉末の嵩密度が2.25g/cm3より小さいと,コア粒子の表面凹凸が大きくなり,樹脂被覆を施した場合,コア粒子の表面全体への完全被覆が困難になり,コア露出部による低抵抗化が見受けられ,キヤリア飛びや電荷リークによる画像内へのホワイトスポットが生じ易くなる。他方,嵩密度が2.45g/cm3以上になると,コア粒子の表面凹凸性が少なくなり過ぎ,コア粒子表面と被覆樹脂との結着性が低下し,耐久性が得られなくなる。
【0014】
このような嵩密度の調整すなわちコア粒子表面の凹凸性の調整はフエライト製造工程の焼成過程で制御可能である。例えば,フエライトの焼成条件において,焼成温度が高いほどフエライト粒子を構成するそれぞれの組成金属の結晶化が進み,コアの表面凹凸がなくなって平滑になる。逆に焼成温度が低いとフエライト粒子を構成するそれぞれの組成金属の結晶化が進まず,コアの表面凹凸も細かくなる。
【0015】
次に,このようにして得たソフトフェライト粒子(キャリヤコア)の表面に樹脂被覆するが,その被覆量としてはキャリヤコア総量の2.5〜5.0重量%に調整することによって満足なキャリヤ性能が発揮できる。例えば後記の実施例に示したように,樹脂被覆量が2.5重量%より少なくても多くてもキャリヤ飛びが発生しやすくなる。被覆する樹脂としては種々のものが適用でき,例えばアクリル系樹脂,スチレン系樹脂,スチレン−アクリル系樹脂,オレフイン系樹脂(ポリエチレン,塩素化ポリエチレン,ポリプロピレン等),ポリエステル系樹脂(ポリエチレンテレフタレート,ポリカーボネート等),不飽和ポリエステル系樹脂(塩化ビニル系樹脂,ポリアミド系樹脂,ポリウレタン系樹脂,エポキシ系樹脂,シリコーン系樹脂,フッ素系樹脂(ポリテトラフルオロエチレン,ポリクロロトリフルオロエチレン,ポリ弗化ビニリデン等),フエノール系樹脂,キシレン系樹脂,ジアリルフタレート系樹脂等が挙げられる。
【0016】
樹脂コーテイングを行うには,前記の樹脂を溶剤に希釈してキャリヤコアの表面に被覆するのが一般的である。溶剤としては各樹脂が可溶なものであればよく,有機溶剤に可溶な樹脂の場合の溶剤としては,トルエン,キシレン,メチルエチルケトン,メチルイソブチルケトン,メタノール等を使用することができ,水溶性樹脂またはエマルジョンタイプの樹脂であれば,水を用いる。
【0017】
キャリヤコアの表面に対し溶剤で希釈された樹脂を被覆するには,その液にキャリヤコアを浸漬して攪拌する浸漬法,該液をキャリヤコアにスプレーするスプレー法,刷毛塗りする刷毛塗り法等が適用でき,該液を塗布後は溶剤を乾燥させる。このようなコーテイング法は湿式法とも言えるが,溶剤を使用しないで乾式法によってキャリヤコア表面に樹脂粉末を被着させる方法も採用できる。
【0018】
いずれにしても,キャリヤコア粒子の表面に被覆付着させた樹脂を焼き付けるのが好ましく,固定式または流動式の電気炉,ロータリー式電気炉,バーナー炉などを使用して,外部加熱方式または内部加熱方式で焼き付けることができる。マイクロウエーブによる焼き付けも可能である。焼き付け温度は樹脂によって異なるが,融点以上またはガラス転移点以上の温度が必要である。熱硬化性樹脂または縮合型樹脂では硬化が十分に進む温度まで上げる必要がある。
【0019】
シリコーン樹脂でキャリヤコアの被膜を形成する場合を例として具体的に説明すると,シリコーン樹脂をトルエンで希釈し,この液とキャリヤコアを攪拌機の容器に入れて攪拌する。これにより,例えばシリコーン樹脂の割合が3重量%となるように浸漬法で被着させる。そのさい,使用する樹脂種に応じて硬化剤を添加する。攪拌混合が終えたら,溶媒を乾燥除去する(例えば130℃×30分の加熱処理)。ついで加熱攪拌しながら硬化する(例えばオイルバスで加熱し且つ攪拌しながら190℃×30分の加熱処理を行う)。ついでオーブンまたはトンネル炉を用いて樹脂の焼き付け処理を行う(例えば160〜280℃×3時間)。これにより樹脂被覆キャリヤ成品が得られる。
【0020】
このようにして得られた樹脂被覆キャリヤは,この状態でトナーと組み合わされて2成分系の電子写真用現像剤となるが,その場合,被覆樹脂がフェライトコア表面に強固に焼き付けられていても,帯電特性や抵抗性さらには耐久性などにおいてさらなる改善を必要とする場合がある。この場合には,この樹脂被覆キャリヤ成品を研磨処理することによって,具体的には,この成品の樹脂コーテイング層に圧縮応力が作用する機械的表面処理を施すことによって,より具体的には,この成品の粒子同士を互いに衝突させる粒子同士の研磨処理によって,該成品の前記の特性を一層良好にすることができる。
【0021】
【実施例】
〔実施例1〕
MnO‐MgO‐Fe23 のフエライト組成となるようにMn源としてのMnCO3,Mg源としてのMg(OH)2,鉄源としてのFe23 をそれぞれMnCO3:25モル%,Mg(OH)2:25モル%,Fe23 :50モル%の割合で混合して,原料調合を行なった。
【0022】
この混合粉を加熱炉で900℃で3時問大気雰囲気で加熱して仮焼した。得られた仮焼品を冷却後,振動ミルでほぼ1μm大に粉砕し,乾燥粉に対して1重量%の割合で分散剤(商品名:サンノプコSNデイスパーサント5468)を水と共に加えてスラリー濃度が70%のスラリーとした。このスラリーを湿式ボールミルに装填して湿式粉砕し,得られる懸濁液をスプレードライヤーに供給し,平均粒径が70μm程度の乾燥粒子からなる造粒品を得た。
【0023】
この造粒品を焼成炉に装填し,窒素ガス中の酸素濃度をほぼ2vol.%に調整した混合ガス中で,1140℃で3時間焼成した。焼成品を解砕機で粉砕した後篩分けして,粒径がほぼ50μmに揃った球形のソフトフェライト粉を得た。このフエライト粉の嵩密度は2.40g/cm3,飽和磁化は65emu/g であった。このフエライト粉を以下「キャリヤコア」と呼ぶ。
【0024】
シリコーン系樹脂成分をトルエンに溶解してなるコーテイング樹脂液を準備し,このコーティング樹脂液と前記のキヤリアコアを所定の割合で攪拌機の容器に装入し,この樹脂液にキャリヤコアを所定時間浸積しながら混合撹件する方法で,キャリアコア総量に対してコーティング樹脂総量が3.50重量%の割合となるように各キヤリアコア粒子にコーテイング樹脂を被覆した。この被覆粉を固定式加熱装置に装填し,240℃で4時問加熱保持して該樹脂を硬化させ,樹脂コーティングキャリアを得た。
【0025】
得られた樹脂コーティングキャリアの平均粒径は53μmで,キャリヤの静抵抗は5×1013Ω・cmであった。また,電子顕微鏡観察では樹脂の被覆状況は,粒子表面に樹脂が完全に被覆されていることが確認された。
【0026】
さらに,得られた樹脂コーテイングキャリヤ92重量%に対しトナー8重量部を混合して現像剤とし,この現像剤の帯電量を測定(三協パイオテック社製吸引式帯電量測定装置を使用)すると共に,この現像剤の特性評価として,20cpm機をベースにした現像域で交流バイアスを印加するデジタル反転現像方式の評価機によって,その画像評価を行った。評価指標は次のとおりである。
【0027】
〔画像濃度〕:該評価機による初期画像3枚(5ポイント/枚)の平均を次の三段階ランク付けを行なった。
○:それぞれの測定値が平均値から大きくズレておらず均一で良好なもの。
△:画像濃度として,許容範囲内(使用可能)のもの。
×:ベた領域内でムラがあり,濃度的にも許容範囲外のもの。
【0028】
〔かぶり濃度〕:該評価機による初期画像(白紙)を実施し,感光体(ドラム)上のかぶりをセロテーブにより剥がしとり,濃度計にて数値化し,次の三段階のランク付けを行なった。
○:かぶり濃度が見られないもの。
△:かぶり濃度がわずかで許容範囲内(使用可能)のもの。
×:かぶり濃度が高くて使用できないもの。
【0029】
〔キヤリア飛び〕:かぶり濃度と同じく初期画像時の感光体(ドラム)上のキヤリア付着をセロテープによって剥がし取り,単位面積当たりの個数に数値化し,次の三段階ランク付けを行なった。
○:キャリヤ飛びが全く見られないもの。
△:わずかにキャリヤ飛びが見られるが許容範囲内(使用可能)のもの。
×:キャリヤ飛びがあり,使用できないもの。
【0030】
〔ベタ画像,領域内のホワイトスポット〕:前記の初期画像取り終了後に,A4全面ベタ画像をトナー無補給で連続5枚コピーし,キヤリアから感光体(ドラム)への電荷リークによる白抜け(ホワイトスポット)の発生状況を数値化し,次の三段階ランク付けを行なった。
○:白抜けが全く見られないもの。
△:わずかな白抜けが見られるが許容範囲内(使用可能)のもの。
×:白抜けが見られ,使用できないもの。
【0031】
〔画質〕:初期画像の階調画像,ベタ黒部周辺・細線画像等,目視により画像再現性を確認し,次の三段階ランク付けを行なった。
○:画質が極めて良好なもの。
△:画質が良好なもの(使用可能なもの)。
×:画質が良好ではなく使用できないもの。
【0032】
表1にキャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を総括して示した。
【0033】
〔実施例2〕
焼成温度を1170℃とした以外は実施例1を繰り返し,篩分けにより平均粒径が43μm,飽和磁化が64emu/g ,嵩密度が2.43g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.85重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。本例のキャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。
【0034】
〔実施例3〕
実施例1を繰り返して得たソフトフェライトから箭分けにより平均粒径が57μm,飽和磁化が65emu/g ,嵩密度が2.38g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.60重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。
【0035】
〔実施例4〕
実施例1を繰り返して得たソフトフェライトから箭分けにより平均粒径が43μm,飽和磁化が65emu/g ,嵩密度が2.28g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が4.75重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。
【0036】
〔比較例1〕
焼成温度を1120℃とした以外は実施例1を繰り返し,篩分けにより平均粒径が43μm,飽和磁化が66emu/g ,嵩密度が2.30g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.30重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。表1に見られるように,本例では樹脂被覆量が本発明で規定する範囲より低いために,キャリヤ飛びが発生している。
【0037】
〔比較例2〕
比較例lを繰り返して得たソフトフェライトから箭分けにより平均粒径が43μm,飽和磁化が66emu/g ,嵩密度が2.15g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.90重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例ではキャリヤコアの嵩密度が本発明で規定する範囲より低いので,キャリヤ飛びが発生し且つ画質も良くない。
【0038】
〔比較例3〕
実施例2を繰り返して得たソフトフェライトから箭分けにより平均粒径が57μm,飽和磁化が64emu/g ,嵩密度が2.70g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.55重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例ではキャリヤコアの嵩密度が本発明で規定するよりも高いので,画像濃度が劣る。
【0039】
〔比較例4〕
実施例1を繰り返して得たソフトフェライトから箭分けにより平均粒径が65μm,飽和磁化が65emu/g ,嵩密度が2.40g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が3.70重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例ではキャリヤコアの平均粒径が本発明で規定するよりも大きいので画像濃度および画質が良くない。
【0040】
〔比較例5〕
比較例1を繰り返して得たソフトフェライトから箭分けにより平均粒径が35μm,飽和磁化が66emu/g ,嵩密度が2.32g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.25重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例ではキャリヤコアの平均粒径が本発明で規定するよりも小さく且つ樹脂被覆量も少ないのでキャリヤ飛びが発生し白抜けも発生している。
【0041】
〔比較例6〕
実施例2を繰り返して得たソフトフェライトから箭分けにより平均粒径が43μm,飽和磁化が64emu/g ,嵩密度が2.60g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.40重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例ではキャリヤコアの嵩密度が本発明で規定するよりも高いのでキャリヤ飛びが発生しやすく且つ画質もやや劣る。
【0042】
〔比較例7〕
実施例1を繰り返して得たソフトフェライトから箭分けにより平均粒径が43μm,飽和磁化が65emu/g ,嵩密度が2.21g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が5.20重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例では樹脂被覆量が本発明で規定するよりも多いのでキャリヤ飛びが発生し,画質濃度が高く且つ白抜けも発生している。
【0043】
〔比較例8〕
実施例2を繰り返して得たソフトフェライトから箭分けにより平均粒径が43μm,飽和磁化が64emu/g ,嵩密度が2.60g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が4.80重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例ではキャリヤコアの嵩密度が本発明で規定するより高いので画像濃度が悪い。
【0044】
〔比較例9〕
比較例1を繰り返して得たソフトフェライトから箭分けにより平均粒径が37μm,飽和磁化が65emu/g ,嵩密度が2.34g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.35重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例ではキャリヤコアの粒径が本発明で規定する範囲より小さいのでキャリヤ飛びが発生し白抜けも発生している。
【0045】
〔比較例10〕
実施例1を繰り返して得たソフトフェライトから箭分けにより平均粒径が63μm,飽和磁化が65emu/g ,嵩密度が2.35g/cm3のキャリヤコアを得た。このキャリヤコア総量に対してコーティング樹脂総量が2.40重量%の割合となるようにコーティング樹脂を被覆した以外は実施例1を繰り返して,樹脂コーテイングキャリヤを得た。キャリヤコアの特性,樹脂コーテイングキャリヤの特性および評価結果を表1に併記した。本例ではキャリヤコアの平均粒径が本発明で規定する範囲より大きいのでキャリヤ飛びが発生している。
【0046】
【表1】

Figure 0003811058
【0047】
比較例1〜10のものは前述のようにキャリヤの性能評価のうちいずれかのものが不満足な結果となったのに対し,実施例1〜4のものはいずれも良好な評価が得られており,品質の良好なキャリヤであることがわかる。すなわち,トナーとの混合により摩擦帯電性能に優れ画像かぶりの無いシャープな画質を得ることができ,またキヤリアコア表面を完全に樹脂被覆したことにより,高抵抗化が実現出来,キヤリア飛びや白抜け(ホワイトスポット)の発生も少ないものであることがわかる。
【0048】
【発明の効果】
以上説明したように,本発明によれば,良好な摩擦帯電量が確保でき且つキャリヤ飛び,電荷リークによるホワイトスポット等の発生しない電子写真現像用キャリヤを得ることができる。[0001]
[Industrial application fields]
The present invention relates to an electrophotographic developing carrier comprising soft ferrite particles having a resin coating on the surface.
[0002]
[Prior art]
Carriers used for two-component developers (electrophotographic developer carriers) are required to have various properties (magnetic properties, tribocharging, durability, fluidity, etc.), but the surface is coated with resin. In the case of the carrier (resin-coated carrier), it is important that the prevention of spenting (preventing the phenomenon that the toner is fused to the carrier surface), which is the original purpose of the resin coating, can be maintained for a long time. It is also important not to change the triboelectric chargeability (charging characteristics).
[0003]
Various proposals have been made for prescriptions for improving the charging characteristics. For example, JP-A-4-309965 and JP-A-5-34991 disclose the diameter of core particles on which the surface is coated with resin. And a method of increasing the frictional charging function of the carrier without increasing the surface area of the carrier by defining the bulk density and reducing the irregularities on the surface of the core particles (or making the carrier shape irregular). Japanese Patent Application Laid-Open No. 4-93954 describes a resin particle coated with irregularities on the core particles so that the convex portions are exposed. Japanese Patent Application Laid-Open No. 6-222619 teaches that the change in the charge amount with time can be suppressed by setting the surface of the ferrite carrier particles as the core to a surface porosity of 10% by volume or less.
[0004]
On the other hand, copiers for color copying (full color) have been frequently developed in recent years, and translucent color toners have been used with carriers. In this case, however, translucent color toners have translucency. In order to maintain the toner, the colored pigment (charge control agent) used in the past for monochrome toners can no longer be used, making it difficult to maintain a sufficient tribocharging function as a toner. Better triboelectric charging characteristics have been demanded.
[0005]
Further, in a color copying (full color) copying machine, the solid image area increases, and a development system side device (for example, applying an AC bias) has been made to ensure a sufficient amount of developing toner in the developing area. However, although a high-density image can be achieved by this, defects such as white spots in a solid image due to carrier jump and charge leakage have occurred, and a carrier that does not cause such defects is required.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to obtain a carrier that secures a good triboelectric charge amount and does not generate a white spot or the like due to a carrier jump or charge leak due to the above-described circumstances.
[0007]
[Means for Solving the Problems]
According to the present invention, there is provided a carrier for electrophotographic development in which the surface of soft ferrite particles is resin-coated, having an average particle size of 40 to 60 μm and a bulk density of less than 2.25 to 2.45 g / cm 3 . Provided is an electrophotographic developing carrier obtained by coating 2.5 to 5.0% by weight of a resin with respect to soft ferrite particle powder. It is preferable that the entire surface of the soft ferrite particles is completely resin-coated.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a carrier for electrophotography in which the surface of soft ferrite particles is resin-coated, but various soft ferrite particles (hereinafter sometimes referred to as core particles) can be applied. Fe 2 O 3 (M is one or two divalent metals) type soft ferrites can be applied. Examples of M include metals such as zinc, lead, tin, bismuth, manganese, and magnesium. Such ferrite can be manufactured through various processes of calcining, pulverization, drying, granulation, firing, pulverization, and classification by preparing raw materials so as to have a target composition.
[0009]
For example, taking the production of MnO-MgO-Fe 2 O 3 ferrite as an example, carbonate, hydroxide, or oxidation so that the composition ratio of Mn, Mg and Fe in the raw material corresponds to the intended composition ratio of ferrite. The raw materials in the form of products are weighed and mixed, mixed well, heated in a heating furnace to a temperature of 600 to 1000 ° C. in the air atmosphere, and calcined by holding for 1 to 5 hours. As a result, the raw material prepared in the form of carbonate, hydroxide, or the like becomes a massive substance in the form of oxide, and volatile components and non-metallic inclusions are decomposed and removed by evaporation. The obtained calcined product is cooled, pulverized to about 1 μm with a pulverizer, for example, a vibration mill, and then added with water to form a coarse slurry of about 70%, which is wet pulverized with a ball mill or the like. Thereby, a finely pulverized calcined powder slurry is obtained. If necessary, a dispersant such as polycarboxylic acid is added to the calcined powder slurry and, for example, spray-dried with a spray dryer, or granulated with a pelletizer, and dried into 10-500 μm spherical pellets. .
[0010]
Next, the granulated product is fired to obtain ferrite. By controlling the atmosphere of the firing process, soft ferrite having an intended saturation magnetization can be obtained. For example, if a calcining powder having an oxide composition substantially equivalent to the ferrite composition is subjected to a calcining process at which the calcined powder is actually calcined into ferrite, for example, held at 1150-1200 ° C. for at least 60 minutes, other conditions If the oxygen partial pressure in the atmosphere is continuously changed from air to nitrogen gas, the saturation magnetization continuously increases accordingly, so that to obtain the intended saturation magnetization, What is necessary is just to employ | adopt the oxygen partial pressure obtained.
[0011]
The fired product fired into ferrite is crushed with a crusher, and the crushed powder is classified or sieved to obtain a carrier having an appropriate particle size. As a result, spherical MnO—MgO—Fe 2 O 3 soft ferrite particles having a uniform average particle diameter are obtained. Not only this Mn · Mg-based soft ferrite, but also a method for producing soft ferrite containing other divalent metals as constituent components can be produced through the same steps. At that time, the average particle diameter of the soft ferrite particles is 40 μm to 60 μm, preferably 45 μm to 55 μm, and the bulk density of the particle powder is 2.25 g / cm 3 to less than 2.45 g / cm 3 , preferably 2.30 g / cm. 3 is adjusted to less than ~2.40g / cm 3.
[0012]
If the average particle diameter of the carrier core particles to be coated with the resin is smaller than 40 μm, the adhesion force to the developing sleeve is weakened, so that the carrier adhesion to the image area and the non-image area is likely to occur, and it is also associated during coating. It becomes easy. On the other hand, when the average particle diameter of the carrier particles exceeds 60 μm, there is no sheave in the reproducibility of the image edge portion, and the image quality is deteriorated.
[0013]
If the bulk density of the particle powder is less than 2.25 g / cm 3 , the surface irregularity of the core particle becomes large, and when the resin coating is applied, it becomes difficult to completely coat the entire surface of the core particle, and the core exposed portion As a result, the white spot in the image is likely to occur due to carrier skipping or charge leakage. On the other hand, when the bulk density is 2.45 g / cm 3 or more, the surface irregularity of the core particles becomes too small, the binding property between the core particle surface and the coating resin is lowered, and durability cannot be obtained.
[0014]
Such adjustment of the bulk density, that is, adjustment of the unevenness of the core particle surface can be controlled in the firing process of the ferrite manufacturing process. For example, under the firing conditions of ferrite, the higher the firing temperature, the more the crystallization of each component metal constituting the ferrite particles proceeds, and the surface irregularities of the core disappear and become smooth. On the other hand, when the firing temperature is low, crystallization of each component metal constituting the ferrite particles does not proceed and the surface irregularities of the core become fine.
[0015]
Next, the surface of the soft ferrite particles (carrier core) obtained as described above is coated with a resin. The coating amount is adjusted to 2.5 to 5.0% by weight of the total amount of the carrier core. Performance can be demonstrated. For example, as shown in the examples described later, carrier jumps are likely to occur even if the resin coating amount is less than 2.5% by weight. Various resins can be used for coating, such as acrylic resins, styrene resins, styrene-acrylic resins, olefin resins (polyethylene, chlorinated polyethylene, polypropylene, etc.), polyester resins (polyethylene terephthalate, polycarbonate, etc.) ), Unsaturated polyester resins (vinyl chloride resins, polyamide resins, polyurethane resins, epoxy resins, silicone resins, fluorine resins (polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, etc.) , Phenol resins, xylene resins, diallyl phthalate resins, and the like.
[0016]
In general, the resin coating is performed by diluting the resin in a solvent and coating the surface of the carrier core. Solvents can be used as long as each resin is soluble. Toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methanol, etc. can be used as the solvent in the case of resins soluble in organic solvents. If it is a resin or emulsion type resin, use water.
[0017]
To coat the surface of the carrier core with resin diluted with a solvent, immersing the carrier core in the liquid and stirring it, spraying the liquid onto the carrier core, spraying the brush, etc. Can be applied, and after applying the liquid, the solvent is dried. Although such a coating method can be said to be a wet method, a method of depositing resin powder on the surface of the carrier core by a dry method without using a solvent can also be employed.
[0018]
In any case, it is preferable to bake the resin adhered to the surface of the carrier core particles, using an external heating system or an internal heating system using a fixed or fluidized electric furnace, rotary electric furnace, burner furnace, etc. Can be baked by the method. Baking with microwaves is also possible. The baking temperature varies depending on the resin, but a temperature higher than the melting point or higher than the glass transition point is required. In the case of a thermosetting resin or a condensation type resin, it is necessary to raise the temperature to a level at which the curing proceeds sufficiently.
[0019]
A case where the carrier core film is formed of silicone resin will be described in detail by way of example. The silicone resin is diluted with toluene, and this liquid and the carrier core are placed in a stirrer vessel and stirred. In this way, for example, the silicon resin is deposited by a dipping method so that the ratio is 3% by weight. At that time, a curing agent is added according to the type of resin used. After stirring and mixing, the solvent is removed by drying (for example, heat treatment at 130 ° C. for 30 minutes). Next, the composition is cured while stirring with heating (for example, heating is performed in an oil bath and stirring is performed at 190 ° C. for 30 minutes). Then, a resin baking process is performed using an oven or a tunnel furnace (for example, 160 to 280 ° C. × 3 hours). As a result, a resin-coated carrier product is obtained.
[0020]
The resin-coated carrier thus obtained is combined with the toner in this state to form a two-component electrophotographic developer. In this case, even if the coating resin is firmly baked on the ferrite core surface, In some cases, further improvements in charging characteristics, resistance, and durability are required. In this case, this resin-coated carrier product is polished, more specifically, by applying a mechanical surface treatment in which a compressive stress acts on the resin coating layer of this product. The above-mentioned properties of the product can be further improved by polishing the particles that cause the particles of the product to collide with each other.
[0021]
【Example】
[Example 1]
MnCO 3 as the Mn source, Mg (OH) 2 as the Mg source, Fe 2 O 3 as the iron source, MnCO 3 : 25 mol%, Mg so as to have a ferrite composition of MnO—MgO—Fe 2 O 3 (OH) 2 : 25 mol% and Fe 2 O 3 : 50 mol% were mixed at a ratio of raw material preparation.
[0022]
This mixed powder was calcined by heating in a heating furnace at 900 ° C. for 3 hours in an air atmosphere. The obtained calcined product is cooled, pulverized to approximately 1 μm by a vibration mill, and a dispersant (trade name: San Nopco SN Dispersant 5468) is added together with water at a ratio of 1% by weight to the dry powder. A slurry having a concentration of 70% was obtained. This slurry was loaded into a wet ball mill and wet pulverized, and the resulting suspension was supplied to a spray dryer to obtain a granulated product composed of dry particles having an average particle size of about 70 μm.
[0023]
This granulated product was loaded into a firing furnace and fired at 1140 ° C. for 3 hours in a mixed gas in which the oxygen concentration in nitrogen gas was adjusted to approximately 2 vol. The fired product was pulverized with a pulverizer and sieved to obtain a spherical soft ferrite powder having a particle size of approximately 50 μm. This ferrite powder had a bulk density of 2.40 g / cm 3 and a saturation magnetization of 65 emu / g. This ferrite powder is hereinafter referred to as “carrier core”.
[0024]
A coating resin solution prepared by dissolving a silicone resin component in toluene is prepared. The coating resin solution and the carrier core are charged into a container of a stirrer at a predetermined ratio, and the carrier core is immersed in the resin solution for a predetermined time. The coating resin was coated on each carrier core particle so that the total amount of the coating resin was 3.50% by weight with respect to the total amount of the carrier core by mixing and stirring. This coated powder was loaded into a fixed heating device and heated at 240 ° C. for 4 hours to cure the resin to obtain a resin-coated carrier.
[0025]
The average particle diameter of the obtained resin-coated carrier was 53 μm, and the static resistance of the carrier was 5 × 10 13 Ω · cm. In addition, observation with an electron microscope confirmed that the resin was completely coated on the particle surface.
[0026]
Further, 8 parts by weight of toner is mixed with 92% by weight of the obtained resin coating carrier to obtain a developer, and the charge amount of this developer is measured (using a suction charge amount measuring device manufactured by Sankyo Piotech Co., Ltd.). At the same time, as an evaluation of the characteristics of the developer, the image was evaluated by a digital reversal development type evaluation machine in which an AC bias was applied in a development region based on a 20 cpm machine. The evaluation index is as follows.
[0027]
[Image density]: The average of three initial images (5 points / sheet) by the evaluator was ranked in the following three stages.
○: Each measured value is uniform and good with no significant deviation from the average value.
Δ: Image density within an allowable range (usable).
×: There is unevenness in the solid area and the density is outside the allowable range.
[0028]
[Fog density]: An initial image (blank paper) was carried out by the evaluator, and the fog on the photosensitive member (drum) was peeled off with a serotab and digitized by a densitometer, and the following three rankings were performed.
○: The fog density is not observed.
Δ: The fog density is slight and within the allowable range (can be used).
X: The fog density is high and cannot be used.
[0029]
[Carrier skip]: As with the fog density, the carrier adhering to the photoconductor (drum) at the initial image was peeled off with cellophane tape, converted into a number per unit area, and ranked in the following three stages.
○: Carrier jumping is not seen at all.
Δ: Slight carrier jumping is observed but within the allowable range (usable).
×: The carrier skips and cannot be used.
[0030]
[Solid image, white spot in the area]: After the initial image is taken, the A4 full-color image is continuously copied five times without toner supply, and white spots (white) due to charge leakage from the carrier to the photoconductor (drum). The occurrence of spot) was quantified and ranked in the following three stages.
○: No white spots are observed at all.
Δ: Slight white spots are observed but within the allowable range (usable).
X: White spots are seen and cannot be used.
[0031]
[Image quality]: Image reproducibility was confirmed by visual observation of the initial image gradation image, solid black area, and fine line image, etc., and the following three-level ranking was performed.
○: Image quality is extremely good.
Δ: Good image quality (useable).
X: Image quality is not good and cannot be used.
[0032]
Table 1 summarizes the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results.
[0033]
[Example 2]
Example 1 was repeated except that the baking temperature was 1170 ° C., and a carrier core having an average particle size of 43 μm, a saturation magnetization of 64 emu / g, and a bulk density of 2.43 g / cm 3 was obtained by sieving. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.85% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. The characteristics of the carrier core of this example, the characteristics of the resin coating carrier, and the evaluation results are also shown in Table 1.
[0034]
Example 3
A carrier core having an average particle diameter of 57 μm, a saturation magnetization of 65 emu / g, and a bulk density of 2.38 g / cm 3 was obtained by sorting from the soft ferrite obtained by repeating Example 1. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.60% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results.
[0035]
Example 4
A carrier core having an average particle size of 43 μm, a saturation magnetization of 65 emu / g, and a bulk density of 2.28 g / cm 3 was obtained from the soft ferrite obtained by repeating Example 1. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 4.75% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results.
[0036]
[Comparative Example 1]
Example 1 was repeated except that the firing temperature was 1120 ° C., and a carrier core having an average particle size of 43 μm, a saturation magnetization of 66 emu / g, and a bulk density of 2.30 g / cm 3 was obtained by sieving. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.30% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results. As can be seen from Table 1, in this example, since the resin coating amount is lower than the range defined in the present invention, the carrier jump occurs.
[0037]
[Comparative Example 2]
A carrier core having an average particle size of 43 μm, a saturation magnetization of 66 emu / g, and a bulk density of 2.15 g / cm 3 was obtained from the soft ferrite obtained by repeating Comparative Example l. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.90% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results. In this example, since the bulk density of the carrier core is lower than the range defined in the present invention, the carrier skip occurs and the image quality is not good.
[0038]
[Comparative Example 3]
A carrier core having an average particle size of 57 μm, a saturation magnetization of 64 emu / g, and a bulk density of 2.70 g / cm 3 was obtained by sorting from the soft ferrite obtained by repeating Example 2. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.55% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results. In this example, since the bulk density of the carrier core is higher than that defined in the present invention, the image density is inferior.
[0039]
[Comparative Example 4]
A carrier core having an average particle size of 65 μm, a saturation magnetization of 65 emu / g, and a bulk density of 2.40 g / cm 3 was obtained from the soft ferrite obtained by repeating Example 1. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 3.70% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results. In this example, since the average particle diameter of the carrier core is larger than that defined in the present invention, the image density and the image quality are not good.
[0040]
[Comparative Example 5]
A carrier core having an average particle diameter of 35 μm, a saturation magnetization of 66 emu / g, and a bulk density of 2.32 g / cm 3 was obtained by sorting from soft ferrite obtained by repeating Comparative Example 1. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.25% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results. In this example, since the average particle diameter of the carrier core is smaller than that defined in the present invention and the resin coating amount is small, carrier skipping occurs and white spots are also generated.
[0041]
[Comparative Example 6]
A carrier core having an average particle diameter of 43 μm, a saturation magnetization of 64 emu / g, and a bulk density of 2.60 g / cm 3 was obtained by sorting from the soft ferrite obtained by repeating Example 2. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.40% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results. In this example, since the bulk density of the carrier core is higher than that defined in the present invention, the carrier skip is likely to occur and the image quality is slightly inferior.
[0042]
[Comparative Example 7]
A carrier core having an average particle diameter of 43 μm, a saturation magnetization of 65 emu / g, and a bulk density of 2.21 g / cm 3 was obtained by sorting from the soft ferrite obtained by repeating Example 1. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 5.20% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results. In this example, since the resin coating amount is larger than that defined in the present invention, carrier skipping occurs, the image quality density is high, and white spots also occur.
[0043]
[Comparative Example 8]
A carrier core having an average particle diameter of 43 μm, a saturation magnetization of 64 emu / g, and a bulk density of 2.60 g / cm 3 was obtained by sorting from the soft ferrite obtained by repeating Example 2. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 4.80% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin coating carrier, and the evaluation results. In this example, since the bulk density of the carrier core is higher than specified in the present invention, the image density is poor.
[0044]
[Comparative Example 9]
A carrier core having an average particle diameter of 37 μm, a saturation magnetization of 65 emu / g, and a bulk density of 2.34 g / cm 3 was obtained by sorting from soft ferrite obtained by repeating Comparative Example 1. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.35% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin-coated carrier, and the evaluation results. In this example, since the particle diameter of the carrier core is smaller than the range specified in the present invention, carrier skipping occurs and white spots are also generated.
[0045]
[Comparative Example 10]
A carrier core having an average particle diameter of 63 μm, a saturation magnetization of 65 emu / g, and a bulk density of 2.35 g / cm 3 was obtained by sorting from the soft ferrite obtained by repeating Example 1. Example 1 was repeated except that the coating resin was coated so that the total amount of the coating resin was 2.40% by weight with respect to the total amount of the carrier core to obtain a resin coating carrier. Table 1 shows the characteristics of the carrier core, the characteristics of the resin coating carrier, and the evaluation results. In this example, since the average particle diameter of the carrier core is larger than the range defined by the present invention, carrier skipping occurs.
[0046]
[Table 1]
Figure 0003811058
[0047]
As described above, in Comparative Examples 1 to 10, any of the carrier performance evaluations was unsatisfactory, whereas in Examples 1 to 4, good evaluation was obtained. It can be seen that the carrier is of good quality. In other words, mixing with toner makes it possible to obtain sharp image quality with excellent frictional charging performance and no image fogging. Also, by completely coating the carrier core surface with resin, high resistance can be achieved, and carrier skipping and whiteout ( It can be seen that the occurrence of white spots) is small.
[0048]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a carrier for electrophotographic development that can secure a good triboelectric charge amount and does not generate a white spot or the like due to carrier jump and charge leakage.

Claims (3)

ソフトフェライト粒子の表面に樹脂コーテイングが施された電子写真現像用キャリヤであって,平均粒径が40〜60μmで嵩密度が2.25〜2.45g/cm3未満のソフトフェライト粒子粉末に対し,2.5〜5.0重量%の樹脂をコーテイングしてなる電子写真現像用キャリヤ。An electrophotographic development carrier having a soft ferrite particle surface coated with resin, and having an average particle size of 40 to 60 μm and a bulk density of less than 2.25 to 2.45 g / cm 3 , Carrier for electrophotographic development obtained by coating 2.5 to 5.0% by weight of resin. ソフトフェライト粒子の表面全体が完全に樹脂コーテイングされている請求項1に記載の電子写真現像用キャリヤ。2. The carrier for electrophotographic development according to claim 1, wherein the entire surface of the soft ferrite particles is completely resin-coated. 請求項1または2に記載のキャリヤとトナーからなる電子写真現像剤。An electrophotographic developer comprising the carrier according to claim 1 and a toner.
JP2001381222A 2001-12-14 2001-12-14 Electrophotographic developing carrier and electrophotographic developer Expired - Lifetime JP3811058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381222A JP3811058B2 (en) 2001-12-14 2001-12-14 Electrophotographic developing carrier and electrophotographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381222A JP3811058B2 (en) 2001-12-14 2001-12-14 Electrophotographic developing carrier and electrophotographic developer

Publications (2)

Publication Number Publication Date
JP2003186253A JP2003186253A (en) 2003-07-03
JP3811058B2 true JP3811058B2 (en) 2006-08-16

Family

ID=27591975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381222A Expired - Lifetime JP3811058B2 (en) 2001-12-14 2001-12-14 Electrophotographic developing carrier and electrophotographic developer

Country Status (1)

Country Link
JP (1) JP3811058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323211A (en) * 2005-05-19 2006-11-30 Dowa Mining Co Ltd Carrier for electrophotographic development, method for manufacturing same and electrophotographic developer

Also Published As

Publication number Publication date
JP2003186253A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
EP1975731B1 (en) Resin-coated ferrite carrier for electrophotographic developer and electrophotographic developer using the resin-coated ferrite carrier
US8895218B2 (en) Carrier core material and carrier for electrophotographic developer and process for producing the same, and electrophotographic developer using the carrier
TWI524159B (en) An oxymagnetic carrier core material for an electrophotographic developer using a ferrimagnetic particle having a shell structure, and an oxymagnet carrier, and an electrophotographic developer using the ferrimagnetic carrier
JP5522446B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
US8168364B2 (en) Resin-filled carrier for electrophotographic developer, and electrophotographic developer using the resin-filled carrier
JP5360701B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
JP3949692B2 (en) Amorphous ferrite carrier and electrophotographic developer using the ferrite carrier
JP4474561B2 (en) Carrier core material for electrophotographic developer, carrier powder for electrophotographic developer, and production method thereof
EP2642344A1 (en) Carrier for developing electrostatic latent image, two-component developer and image forming method
JP5550104B2 (en) Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2003167390A (en) Carrier for electrophotographic developer and developer using the same
JP3997291B2 (en) Electrophotographic development carrier
JP2012215858A (en) Resin-coated carrier for electrophotographic developer and electrophotographic developer using the resin-coated carrier
TWI702481B (en) Ferrite particles with shell structure
JP2018025702A (en) Carrier core material
JP3811058B2 (en) Electrophotographic developing carrier and electrophotographic developer
JP7361617B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP2003034533A (en) Ferromagnetic material powder and carrier of developing agent for electronic photograph
JP5769350B1 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP4992101B2 (en) Electrophotographic developing carrier, method for producing the same, and electrophotographic developer
JP2003029468A (en) Electrophotographic developing carrier
JP7393219B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
CN109839808B (en) Ferrite carrier core material for electrophotographic developer, carrier, and developer
JPWO2018181845A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, production method thereof, and electrophotographic developer using the ferrite carrier
JP2005195960A (en) Carrier for electrophotographic development, its manufacturing method, and electrophotographic developer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3811058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term